| #!/usr/bin/python |
| |
| import numpy |
| import sys |
| from matplotlib import pylab |
| import control_loop |
| |
| class Shooter(control_loop.ControlLoop): |
| def __init__(self): |
| super(Shooter, self).__init__("Shooter") |
| # Stall Torque in N m |
| self.stall_torque = 0.49819248 |
| # Stall Current in Amps |
| self.stall_current = 85 |
| # Free Speed in RPM |
| self.free_speed = 19300.0 - 1500.0 |
| # Free Current in Amps |
| self.free_current = 1.4 |
| # Moment of inertia of the shooter wheel in kg m^2 |
| self.J = 0.0032 |
| # Resistance of the motor, divided by 2 to account for the 2 motors |
| self.R = 12.0 / self.stall_current / 2 |
| # Motor velocity constant |
| self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| (12.0 - self.R * self.free_current)) |
| # Torque constant |
| self.Kt = self.stall_torque / self.stall_current |
| # Gear ratio |
| self.G = 11.0 / 34.0 |
| # Control loop time step |
| self.dt = 0.01 |
| |
| # State feedback matrices |
| self.A_continuous = numpy.matrix( |
| [[0, 1], |
| [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]]) |
| self.B_continuous = numpy.matrix( |
| [[0], |
| [self.Kt / (self.J * self.G * self.R)]]) |
| self.C = numpy.matrix([[1, 0]]) |
| self.D = numpy.matrix([[0]]) |
| |
| self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, |
| self.dt, self.C) |
| |
| self.PlaceControllerPoles([.6, .981]) |
| |
| self.rpl = .45 |
| self.ipl = 0.07 |
| self.PlaceObserverPoles([self.rpl + 1j * self.ipl, |
| self.rpl - 1j * self.ipl]) |
| |
| self.U_max = numpy.matrix([[12.0]]) |
| self.U_min = numpy.matrix([[-12.0]]) |
| |
| |
| def main(argv): |
| # Simulate the response of the system to a step input. |
| shooter_data = numpy.genfromtxt('shooter/shooter_data.csv', delimiter=',') |
| shooter = Shooter() |
| simulated_x = [] |
| real_x = [] |
| x_vel = [] |
| initial_x = shooter_data[0, 2] |
| last_x = initial_x |
| for i in xrange(shooter_data.shape[0]): |
| shooter.Update(numpy.matrix([[shooter_data[i, 1]]])) |
| simulated_x.append(shooter.X[0, 0]) |
| x_offset = shooter_data[i, 2] - initial_x |
| real_x.append(x_offset) |
| x_vel.append((shooter_data[i, 2] - last_x) * 100.0) |
| last_x = shooter_data[i, 2] |
| |
| sim_delay = 1 |
| pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay), |
| simulated_x, label='Simulation') |
| pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality') |
| pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity') |
| pylab.legend() |
| pylab.show() |
| |
| # Simulate the closed loop response of the system to a step input. |
| shooter = Shooter() |
| close_loop_x = [] |
| close_loop_U = [] |
| velocity_goal = 300 |
| R = numpy.matrix([[0.0], [velocity_goal]]) |
| for _ in pylab.linspace(0,1.99,200): |
| # Iterate the position up. |
| R = numpy.matrix([[R[0, 0] + 10.5], [velocity_goal]]) |
| # Prevents the position goal from going beyond what is necessary. |
| velocity_weight_scalar = 0.35 |
| max_reference = ( |
| (shooter.U_max[0, 0] - velocity_weight_scalar * |
| (velocity_goal - shooter.X_hat[1, 0]) * shooter.K[0, 1]) / |
| shooter.K[0, 0] + |
| shooter.X_hat[0, 0]) |
| min_reference = ( |
| (shooter.U_min[0, 0] - velocity_weight_scalar * |
| (velocity_goal - shooter.X_hat[1, 0]) * shooter.K[0, 1]) / |
| shooter.K[0, 0] + |
| shooter.X_hat[0, 0]) |
| R[0, 0] = numpy.clip(R[0, 0], min_reference, max_reference) |
| U = numpy.clip(shooter.K * (R - shooter.X_hat), |
| shooter.U_min, shooter.U_max) |
| shooter.UpdateObserver(U) |
| shooter.Update(U) |
| close_loop_x.append(shooter.X[1, 0]) |
| close_loop_U.append(U[0, 0]) |
| |
| #pylab.plotfile("shooter.csv", (0,1)) |
| #pylab.plot(pylab.linspace(0,1.99,200), close_loop_U, 'ro') |
| #pylab.plotfile("shooter.csv", (0,2)) |
| pylab.plot(pylab.linspace(0,1.99,200), close_loop_x, 'ro') |
| pylab.show() |
| |
| # Simulate spin down. |
| spin_down_x = []; |
| R = numpy.matrix([[50.0], [0.0]]) |
| for _ in xrange(150): |
| U = 0 |
| shooter.UpdateObserver(U) |
| shooter.Update(U) |
| spin_down_x.append(shooter.X[1, 0]) |
| |
| #pylab.plot(range(150), spin_down_x) |
| #pylab.show() |
| |
| if len(argv) != 3: |
| print "Expected .h file name and .cc file name" |
| else: |
| loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter]) |
| if argv[1][-3:] == '.cc': |
| loop_writer.Write(argv[2], argv[1]) |
| else: |
| loop_writer.Write(argv[1], argv[2]) |
| |
| |
| if __name__ == '__main__': |
| sys.exit(main(sys.argv)) |