| /*----------------------------------------------------------------------------*/ |
| /* Copyright (c) FIRST 2008. All Rights Reserved. */ |
| /* Open Source Software - may be modified and shared by FRC teams. The code */ |
| /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ |
| /*----------------------------------------------------------------------------*/ |
| |
| #include "Encoder.h" |
| #include "DigitalInput.h" |
| #include "NetworkCommunication/UsageReporting.h" |
| #include "Resource.h" |
| #include "WPIErrors.h" |
| #include "LiveWindow/LiveWindow.h" |
| |
| static Resource *quadEncoders = NULL; |
| |
| /** |
| * Common initialization code for Encoders. |
| * This code allocates resources for Encoders and is common to all constructors. |
| * @param reverseDirection If true, counts down instead of up (this is all relative) |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then |
| * a counter object will be used and the returned value will either exactly match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) |
| { |
| m_encodingType = encodingType; |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| switch (encodingType) |
| { |
| case k4X: |
| Resource::CreateResourceObject(&quadEncoders, tEncoder::kNumSystems); |
| UINT32 index = quadEncoders->Allocate("4X Encoder"); |
| if (index == ~0ul) |
| { |
| CloneError(quadEncoders); |
| return; |
| } |
| if (m_aSource->StatusIsFatal()) |
| { |
| CloneError(m_aSource); |
| return; |
| } |
| if (m_bSource->StatusIsFatal()) |
| { |
| CloneError(m_bSource); |
| return; |
| } |
| m_index = index; |
| m_encoder = tEncoder::create(m_index, &localStatus); |
| m_encoder->writeConfig_ASource_Module(m_aSource->GetModuleForRouting(), &localStatus); |
| m_encoder->writeConfig_ASource_Channel(m_aSource->GetChannelForRouting(), &localStatus); |
| m_encoder->writeConfig_ASource_AnalogTrigger(m_aSource->GetAnalogTriggerForRouting(), &localStatus); |
| m_encoder->writeConfig_BSource_Module(m_bSource->GetModuleForRouting(), &localStatus); |
| m_encoder->writeConfig_BSource_Channel(m_bSource->GetChannelForRouting(), &localStatus); |
| m_encoder->writeConfig_BSource_AnalogTrigger(m_bSource->GetAnalogTriggerForRouting(), &localStatus); |
| m_encoder->strobeReset(&localStatus); |
| m_encoder->writeConfig_Reverse(reverseDirection, &localStatus); |
| m_encoder->writeTimerConfig_AverageSize(4, &localStatus); |
| m_counter = NULL; |
| break; |
| case k1X: |
| case k2X: |
| m_counter = new Counter(m_encodingType, m_aSource, m_bSource, reverseDirection); |
| m_index = m_counter->GetIndex(); |
| break; |
| } |
| m_distancePerPulse = 1.0; |
| m_pidSource = kDistance; |
| wpi_setError(localStatus); |
| |
| nUsageReporting::report(nUsageReporting::kResourceType_Encoder, m_index, encodingType); |
| LiveWindow::GetInstance()->AddSensor("Encoder", m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(), this); |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b modules and channels fully specified. |
| * @param aModuleNumber The a channel digital input module. |
| * @param aChannel The a channel digital input channel. |
| * @param bModuleNumber The b channel digital input module. |
| * @param bChannel The b channel digital input channel. |
| * @param reverseDirection represents the orientation of the encoder and inverts the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then |
| * a counter object will be used and the returned value will either exactly match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(UINT8 aModuleNumber, UINT32 aChannel, |
| UINT8 bModuleNumber, UINT32 bChannel, |
| bool reverseDirection, EncodingType encodingType) : |
| m_encoder(NULL), |
| m_counter(NULL) |
| { |
| m_aSource = new DigitalInput(aModuleNumber, aChannel); |
| m_bSource = new DigitalInput(bModuleNumber, bChannel); |
| InitEncoder(reverseDirection, encodingType); |
| m_allocatedASource = true; |
| m_allocatedBSource = true; |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b channels assuming the default module. |
| * @param aChannel The a channel digital input channel. |
| * @param bChannel The b channel digital input channel. |
| * @param reverseDirection represents the orientation of the encoder and inverts the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then |
| * a counter object will be used and the returned value will either exactly match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(UINT32 aChannel, UINT32 bChannel, bool reverseDirection, EncodingType encodingType) : |
| m_encoder(NULL), |
| m_counter(NULL) |
| { |
| m_aSource = new DigitalInput(aChannel); |
| m_bSource = new DigitalInput(bChannel); |
| InitEncoder(reverseDirection, encodingType); |
| m_allocatedASource = true; |
| m_allocatedBSource = true; |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b channels as digital inputs. This is used in the case |
| * where the digital inputs are shared. The Encoder class will not allocate the digital inputs |
| * and assume that they already are counted. |
| * @param aSource The source that should be used for the a channel. |
| * @param bSource the source that should be used for the b channel. |
| * @param reverseDirection represents the orientation of the encoder and inverts the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then |
| * a counter object will be used and the returned value will either exactly match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) : |
| m_encoder(NULL), |
| m_counter(NULL) |
| { |
| m_aSource = aSource; |
| m_bSource = bSource; |
| m_allocatedASource = false; |
| m_allocatedBSource = false; |
| if (m_aSource == NULL || m_bSource == NULL) |
| wpi_setWPIError(NullParameter); |
| else |
| InitEncoder(reverseDirection, encodingType); |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b channels as digital inputs. This is used in the case |
| * where the digital inputs are shared. The Encoder class will not allocate the digital inputs |
| * and assume that they already are counted. |
| * @param aSource The source that should be used for the a channel. |
| * @param bSource the source that should be used for the b channel. |
| * @param reverseDirection represents the orientation of the encoder and inverts the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then |
| * a counter object will be used and the returned value will either exactly match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) : |
| m_encoder(NULL), |
| m_counter(NULL) |
| { |
| m_aSource = &aSource; |
| m_bSource = &bSource; |
| m_allocatedASource = false; |
| m_allocatedBSource = false; |
| InitEncoder(reverseDirection, encodingType); |
| } |
| |
| /** |
| * Free the resources for an Encoder. |
| * Frees the FPGA resources associated with an Encoder. |
| */ |
| Encoder::~Encoder() |
| { |
| if (m_allocatedASource) delete m_aSource; |
| if (m_allocatedBSource) delete m_bSource; |
| if (m_counter) |
| { |
| delete m_counter; |
| } |
| else |
| { |
| quadEncoders->Free(m_index); |
| delete m_encoder; |
| } |
| } |
| |
| /** |
| * Start the Encoder. |
| * Starts counting pulses on the Encoder device. |
| */ |
| void Encoder::Start() |
| { |
| if (StatusIsFatal()) return; |
| if (m_counter) |
| m_counter->Start(); |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| m_encoder->writeConfig_Enable(1, &localStatus); |
| wpi_setError(localStatus); |
| } |
| } |
| |
| /** |
| * Stops counting pulses on the Encoder device. The value is not changed. |
| */ |
| void Encoder::Stop() |
| { |
| if (StatusIsFatal()) return; |
| if (m_counter) |
| m_counter->Stop(); |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| m_encoder->writeConfig_Enable(0, &localStatus); |
| wpi_setError(localStatus); |
| } |
| } |
| |
| /** |
| * Gets the raw value from the encoder. |
| * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale |
| * factor. |
| * @return Current raw count from the encoder |
| */ |
| INT32 Encoder::GetRaw() |
| { |
| if (StatusIsFatal()) return 0; |
| INT32 value; |
| if (m_counter) |
| value = m_counter->Get(); |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| value = m_encoder->readOutput_Value(&localStatus); |
| wpi_setError(localStatus); |
| } |
| return value; |
| } |
| |
| /** |
| * Gets the current count. |
| * Returns the current count on the Encoder. |
| * This method compensates for the decoding type. |
| * |
| * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor. |
| */ |
| INT32 Encoder::Get() |
| { |
| if (StatusIsFatal()) return 0; |
| return (INT32) (GetRaw() * DecodingScaleFactor()); |
| } |
| |
| /** |
| * Reset the Encoder distance to zero. |
| * Resets the current count to zero on the encoder. |
| */ |
| void Encoder::Reset() |
| { |
| if (StatusIsFatal()) return; |
| if (m_counter) |
| m_counter->Reset(); |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| m_encoder->strobeReset(&localStatus); |
| wpi_setError(localStatus); |
| } |
| } |
| |
| /** |
| * Returns the period of the most recent pulse. |
| * Returns the period of the most recent Encoder pulse in seconds. |
| * This method compenstates for the decoding type. |
| * |
| * @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse(). |
| * |
| * @return Period in seconds of the most recent pulse. |
| */ |
| double Encoder::GetPeriod() |
| { |
| if (StatusIsFatal()) return 0.0; |
| double measuredPeriod; |
| if (m_counter) |
| { |
| measuredPeriod = m_counter->GetPeriod(); |
| } |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| tEncoder::tTimerOutput output = m_encoder->readTimerOutput(&localStatus); |
| double value; |
| if (output.Stalled) |
| { |
| // Return infinity |
| double zero = 0.0; |
| value = 1.0 / zero; |
| } |
| else |
| { |
| // output.Period is a fixed point number that counts by 2 (24 bits, 25 integer bits) |
| value = (double)(output.Period << 1) / (double)output.Count; |
| } |
| wpi_setError(localStatus); |
| measuredPeriod = value * 1.0e-6; |
| } |
| return measuredPeriod / DecodingScaleFactor(); |
| } |
| |
| /** |
| * Sets the maximum period for stopped detection. |
| * Sets the value that represents the maximum period of the Encoder before it will assume |
| * that the attached device is stopped. This timeout allows users to determine if the wheels or |
| * other shaft has stopped rotating. |
| * This method compensates for the decoding type. |
| * |
| * @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse(). |
| * |
| * @param maxPeriod The maximum time between rising and falling edges before the FPGA will |
| * report the device stopped. This is expressed in seconds. |
| */ |
| void Encoder::SetMaxPeriod(double maxPeriod) |
| { |
| if (StatusIsFatal()) return; |
| if (m_counter) |
| { |
| m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor()); |
| } |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| m_encoder->writeTimerConfig_StallPeriod((UINT32)(maxPeriod * 1.0e6 * DecodingScaleFactor()), &localStatus); |
| wpi_setError(localStatus); |
| } |
| } |
| |
| /** |
| * Determine if the encoder is stopped. |
| * Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered |
| * stopped and false if it is still moving. A stopped encoder is one where the most recent pulse |
| * width exceeds the MaxPeriod. |
| * @return True if the encoder is considered stopped. |
| */ |
| bool Encoder::GetStopped() |
| { |
| if (StatusIsFatal()) return true; |
| if (m_counter) |
| { |
| return m_counter->GetStopped(); |
| } |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| bool value = m_encoder->readTimerOutput_Stalled(&localStatus) != 0; |
| wpi_setError(localStatus); |
| return value; |
| } |
| } |
| |
| /** |
| * The last direction the encoder value changed. |
| * @return The last direction the encoder value changed. |
| */ |
| bool Encoder::GetDirection() |
| { |
| if (StatusIsFatal()) return false; |
| if (m_counter) |
| { |
| return m_counter->GetDirection(); |
| } |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| bool value = m_encoder->readOutput_Direction(&localStatus); |
| wpi_setError(localStatus); |
| return value; |
| } |
| } |
| |
| /** |
| * The scale needed to convert a raw counter value into a number of encoder pulses. |
| */ |
| double Encoder::DecodingScaleFactor() |
| { |
| if (StatusIsFatal()) return 0.0; |
| switch (m_encodingType) |
| { |
| case k1X: |
| return 1.0; |
| case k2X: |
| return 0.5; |
| case k4X: |
| return 0.25; |
| default: |
| return 0.0; |
| } |
| } |
| |
| /** |
| * Get the distance the robot has driven since the last reset. |
| * |
| * @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse(). |
| */ |
| double Encoder::GetDistance() |
| { |
| if (StatusIsFatal()) return 0.0; |
| return GetRaw() * DecodingScaleFactor() * m_distancePerPulse; |
| } |
| |
| /** |
| * Get the current rate of the encoder. |
| * Units are distance per second as scaled by the value from SetDistancePerPulse(). |
| * |
| * @return The current rate of the encoder. |
| */ |
| double Encoder::GetRate() |
| { |
| if (StatusIsFatal()) return 0.0; |
| return (m_distancePerPulse / GetPeriod()); |
| } |
| |
| /** |
| * Set the minimum rate of the device before the hardware reports it stopped. |
| * |
| * @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse(). |
| */ |
| void Encoder::SetMinRate(double minRate) |
| { |
| if (StatusIsFatal()) return; |
| SetMaxPeriod(m_distancePerPulse / minRate); |
| } |
| |
| /** |
| * Set the distance per pulse for this encoder. |
| * This sets the multiplier used to determine the distance driven based on the count value |
| * from the encoder. |
| * Do not include the decoding type in this scale. The library already compensates for the decoding type. |
| * Set this value based on the encoder's rated Pulses per Revolution and |
| * factor in gearing reductions following the encoder shaft. |
| * This distance can be in any units you like, linear or angular. |
| * |
| * @param distancePerPulse The scale factor that will be used to convert pulses to useful units. |
| */ |
| void Encoder::SetDistancePerPulse(double distancePerPulse) |
| { |
| if (StatusIsFatal()) return; |
| m_distancePerPulse = distancePerPulse; |
| } |
| |
| /** |
| * Set the direction sensing for this encoder. |
| * This sets the direction sensing on the encoder so that it could count in the correct |
| * software direction regardless of the mounting. |
| * @param reverseDirection true if the encoder direction should be reversed |
| */ |
| void Encoder::SetReverseDirection(bool reverseDirection) |
| { |
| if (StatusIsFatal()) return; |
| if (m_counter) |
| { |
| m_counter->SetReverseDirection(reverseDirection); |
| } |
| else |
| { |
| tRioStatusCode localStatus = NiFpga_Status_Success; |
| m_encoder->writeConfig_Reverse(reverseDirection, &localStatus); |
| wpi_setError(localStatus); |
| } |
| } |
| |
| /** |
| * Set which parameter of the encoder you are using as a process control variable. |
| * |
| * @param pidSource An enum to select the parameter. |
| */ |
| void Encoder::SetPIDSourceParameter(PIDSourceParameter pidSource) |
| { |
| if (StatusIsFatal()) return; |
| m_pidSource = pidSource; |
| } |
| |
| /** |
| * Implement the PIDSource interface. |
| * |
| * @return The current value of the selected source parameter. |
| */ |
| double Encoder::PIDGet() |
| { |
| if (StatusIsFatal()) return 0.0; |
| switch (m_pidSource) |
| { |
| case kDistance: |
| return GetDistance(); |
| case kRate: |
| return GetRate(); |
| default: |
| return 0.0; |
| } |
| } |
| |
| void Encoder::UpdateTable() { |
| if (m_table != NULL) { |
| m_table->PutNumber("Speed", GetRate()); |
| m_table->PutNumber("Distance", GetDistance()); |
| m_table->PutNumber("Distance per Tick", m_distancePerPulse); |
| } |
| } |
| |
| void Encoder::StartLiveWindowMode() { |
| |
| } |
| |
| void Encoder::StopLiveWindowMode() { |
| |
| } |
| |
| std::string Encoder::GetSmartDashboardType() { |
| if (m_encodingType == k4X) |
| return "Quadrature Encoder"; |
| else |
| return "Encoder"; |
| } |
| |
| void Encoder::InitTable(ITable *subTable) { |
| m_table = subTable; |
| UpdateTable(); |
| } |
| |
| ITable * Encoder::GetTable() { |
| return m_table; |
| } |
| |