blob: 10c019d59ef51fe0b6dd7f98eaef70c60bfbf7e9 [file] [log] [blame]
// Copyright (c) FIRST and other WPILib contributors.
// Open Source Software; you can modify and/or share it under the terms of
// the WPILib BSD license file in the root directory of this project.
#include "REVPDH.h"
#include <hal/CANAPI.h>
#include <hal/CANAPITypes.h>
#include <hal/Errors.h>
#include <hal/handles/HandlesInternal.h>
#include <hal/handles/IndexedHandleResource.h>
#include <cstring>
#include <thread>
#include <fmt/format.h>
#include "HALInitializer.h"
#include "HALInternal.h"
#include "PortsInternal.h"
#include "rev/PDHFrames.h"
using namespace hal;
static constexpr HAL_CANManufacturer manufacturer =
HAL_CANManufacturer::HAL_CAN_Man_kREV;
static constexpr HAL_CANDeviceType deviceType =
HAL_CANDeviceType::HAL_CAN_Dev_kPowerDistribution;
static constexpr int32_t kDefaultControlPeriod = 50;
namespace {
struct REV_PDHObj {
int32_t controlPeriod;
HAL_CANHandle hcan;
std::string previousAllocation;
HAL_PowerDistributionVersion versionInfo;
};
} // namespace
static constexpr uint32_t APIFromExtId(uint32_t extId) {
return (extId >> 6) & 0x3FF;
}
static constexpr uint32_t PDH_SET_SWITCH_CHANNEL_FRAME_API =
APIFromExtId(PDH_SET_SWITCH_CHANNEL_FRAME_ID);
static constexpr uint32_t PDH_STATUS_0_FRAME_API =
APIFromExtId(PDH_STATUS_0_FRAME_ID);
static constexpr uint32_t PDH_STATUS_1_FRAME_API =
APIFromExtId(PDH_STATUS_1_FRAME_ID);
static constexpr uint32_t PDH_STATUS_2_FRAME_API =
APIFromExtId(PDH_STATUS_2_FRAME_ID);
static constexpr uint32_t PDH_STATUS_3_FRAME_API =
APIFromExtId(PDH_STATUS_3_FRAME_ID);
static constexpr uint32_t PDH_STATUS_4_FRAME_API =
APIFromExtId(PDH_STATUS_4_FRAME_ID);
static constexpr uint32_t PDH_CLEAR_FAULTS_FRAME_API =
APIFromExtId(PDH_CLEAR_FAULTS_FRAME_ID);
static constexpr uint32_t PDH_VERSION_FRAME_API =
APIFromExtId(PDH_VERSION_FRAME_ID);
static constexpr int32_t kPDHFrameStatus0Timeout = 20;
static constexpr int32_t kPDHFrameStatus1Timeout = 20;
static constexpr int32_t kPDHFrameStatus2Timeout = 20;
static constexpr int32_t kPDHFrameStatus3Timeout = 20;
static constexpr int32_t kPDHFrameStatus4Timeout = 20;
static IndexedHandleResource<HAL_REVPDHHandle, REV_PDHObj, kNumREVPDHModules,
HAL_HandleEnum::REVPDH>* REVPDHHandles;
namespace hal::init {
void InitializeREVPDH() {
static IndexedHandleResource<HAL_REVPDHHandle, REV_PDHObj, kNumREVPDHModules,
HAL_HandleEnum::REVPDH>
rH;
REVPDHHandles = &rH;
}
} // namespace hal::init
extern "C" {
static PDH_status_0_t HAL_ReadREVPDHStatus0(HAL_CANHandle hcan,
int32_t* status) {
uint8_t packedData[8] = {0};
int32_t length = 0;
uint64_t timestamp = 0;
PDH_status_0_t result = {};
HAL_ReadCANPacketTimeout(hcan, PDH_STATUS_0_FRAME_API, packedData, &length,
&timestamp, kPDHFrameStatus0Timeout * 2, status);
if (*status != 0) {
return result;
}
PDH_status_0_unpack(&result, packedData, PDH_STATUS_0_LENGTH);
return result;
}
static PDH_status_1_t HAL_ReadREVPDHStatus1(HAL_CANHandle hcan,
int32_t* status) {
uint8_t packedData[8] = {0};
int32_t length = 0;
uint64_t timestamp = 0;
PDH_status_1_t result = {};
HAL_ReadCANPacketTimeout(hcan, PDH_STATUS_1_FRAME_API, packedData, &length,
&timestamp, kPDHFrameStatus1Timeout * 2, status);
if (*status != 0) {
return result;
}
PDH_status_1_unpack(&result, packedData, PDH_STATUS_1_LENGTH);
return result;
}
static PDH_status_2_t HAL_ReadREVPDHStatus2(HAL_CANHandle hcan,
int32_t* status) {
uint8_t packedData[8] = {0};
int32_t length = 0;
uint64_t timestamp = 0;
PDH_status_2_t result = {};
HAL_ReadCANPacketTimeout(hcan, PDH_STATUS_2_FRAME_API, packedData, &length,
&timestamp, kPDHFrameStatus2Timeout * 2, status);
if (*status != 0) {
return result;
}
PDH_status_2_unpack(&result, packedData, PDH_STATUS_2_LENGTH);
return result;
}
static PDH_status_3_t HAL_ReadREVPDHStatus3(HAL_CANHandle hcan,
int32_t* status) {
uint8_t packedData[8] = {0};
int32_t length = 0;
uint64_t timestamp = 0;
PDH_status_3_t result = {};
HAL_ReadCANPacketTimeout(hcan, PDH_STATUS_3_FRAME_API, packedData, &length,
&timestamp, kPDHFrameStatus3Timeout * 2, status);
if (*status != 0) {
return result;
}
PDH_status_3_unpack(&result, packedData, PDH_STATUS_3_LENGTH);
return result;
}
static PDH_status_4_t HAL_ReadREVPDHStatus4(HAL_CANHandle hcan,
int32_t* status) {
uint8_t packedData[8] = {0};
int32_t length = 0;
uint64_t timestamp = 0;
PDH_status_4_t result = {};
HAL_ReadCANPacketTimeout(hcan, PDH_STATUS_4_FRAME_API, packedData, &length,
&timestamp, kPDHFrameStatus4Timeout * 2, status);
if (*status != 0) {
return result;
}
PDH_status_4_unpack(&result, packedData, PDH_STATUS_4_LENGTH);
return result;
}
/**
* Helper function for the individual getter functions for status 4
*/
PDH_status_4_t HAL_GetREVPDHStatus4(HAL_REVPDHHandle handle, int32_t* status) {
PDH_status_4_t statusFrame = {};
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return statusFrame;
}
statusFrame = HAL_ReadREVPDHStatus4(hpdh->hcan, status);
return statusFrame;
}
HAL_REVPDHHandle HAL_InitializeREVPDH(int32_t module,
const char* allocationLocation,
int32_t* status) {
hal::init::CheckInit();
if (!HAL_CheckREVPDHModuleNumber(module)) {
*status = RESOURCE_OUT_OF_RANGE;
return HAL_kInvalidHandle;
}
HAL_REVPDHHandle handle;
auto hpdh = REVPDHHandles->Allocate(module, &handle, status);
if (*status != 0) {
if (hpdh) {
hal::SetLastErrorPreviouslyAllocated(status, "REV PDH", module,
hpdh->previousAllocation);
} else {
hal::SetLastErrorIndexOutOfRange(status, "Invalid Index for REV PDH", 0,
kNumREVPDHModules, module);
}
return HAL_kInvalidHandle; // failed to allocate. Pass error back.
}
HAL_CANHandle hcan =
HAL_InitializeCAN(manufacturer, module, deviceType, status);
if (*status != 0) {
REVPDHHandles->Free(handle);
return HAL_kInvalidHandle;
}
hpdh->previousAllocation = allocationLocation ? allocationLocation : "";
hpdh->hcan = hcan;
hpdh->controlPeriod = kDefaultControlPeriod;
std::memset(&hpdh->versionInfo, 0, sizeof(hpdh->versionInfo));
return handle;
}
void HAL_FreeREVPDH(HAL_REVPDHHandle handle) {
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
return;
}
HAL_CleanCAN(hpdh->hcan);
REVPDHHandles->Free(handle);
}
int32_t HAL_GetREVPDHModuleNumber(HAL_REVPDHHandle handle, int32_t* status) {
return hal::getHandleIndex(handle);
}
HAL_Bool HAL_CheckREVPDHModuleNumber(int32_t module) {
return ((module >= 1) && (module < kNumREVPDHModules)) ? 1 : 0;
}
HAL_Bool HAL_CheckREVPDHChannelNumber(int32_t channel) {
return ((channel >= 0) && (channel < kNumREVPDHChannels)) ? 1 : 0;
}
double HAL_GetREVPDHChannelCurrent(HAL_REVPDHHandle handle, int32_t channel,
int32_t* status) {
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return 0;
}
if (!HAL_CheckREVPDHChannelNumber(channel)) {
*status = RESOURCE_OUT_OF_RANGE;
return 0;
}
// Determine what periodic status the channel is in
if (channel < 6) {
// Periodic status 0
PDH_status_0_t statusFrame = HAL_ReadREVPDHStatus0(hpdh->hcan, status);
switch (channel) {
case 0:
return PDH_status_0_channel_0_current_decode(
statusFrame.channel_0_current);
case 1:
return PDH_status_0_channel_1_current_decode(
statusFrame.channel_1_current);
case 2:
return PDH_status_0_channel_2_current_decode(
statusFrame.channel_2_current);
case 3:
return PDH_status_0_channel_3_current_decode(
statusFrame.channel_3_current);
case 4:
return PDH_status_0_channel_4_current_decode(
statusFrame.channel_4_current);
case 5:
return PDH_status_0_channel_5_current_decode(
statusFrame.channel_5_current);
}
} else if (channel < 12) {
// Periodic status 1
PDH_status_1_t statusFrame = HAL_ReadREVPDHStatus1(hpdh->hcan, status);
switch (channel) {
case 6:
return PDH_status_1_channel_6_current_decode(
statusFrame.channel_6_current);
case 7:
return PDH_status_1_channel_7_current_decode(
statusFrame.channel_7_current);
case 8:
return PDH_status_1_channel_8_current_decode(
statusFrame.channel_8_current);
case 9:
return PDH_status_1_channel_9_current_decode(
statusFrame.channel_9_current);
case 10:
return PDH_status_1_channel_10_current_decode(
statusFrame.channel_10_current);
case 11:
return PDH_status_1_channel_11_current_decode(
statusFrame.channel_11_current);
}
} else if (channel < 18) {
// Periodic status 2
PDH_status_2_t statusFrame = HAL_ReadREVPDHStatus2(hpdh->hcan, status);
switch (channel) {
case 12:
return PDH_status_2_channel_12_current_decode(
statusFrame.channel_12_current);
case 13:
return PDH_status_2_channel_13_current_decode(
statusFrame.channel_13_current);
case 14:
return PDH_status_2_channel_14_current_decode(
statusFrame.channel_14_current);
case 15:
return PDH_status_2_channel_15_current_decode(
statusFrame.channel_15_current);
case 16:
return PDH_status_2_channel_16_current_decode(
statusFrame.channel_16_current);
case 17:
return PDH_status_2_channel_17_current_decode(
statusFrame.channel_17_current);
}
} else if (channel < 24) {
// Periodic status 3
PDH_status_3_t statusFrame = HAL_ReadREVPDHStatus3(hpdh->hcan, status);
switch (channel) {
case 18:
return PDH_status_3_channel_18_current_decode(
statusFrame.channel_18_current);
case 19:
return PDH_status_3_channel_19_current_decode(
statusFrame.channel_19_current);
case 20:
return PDH_status_3_channel_20_current_decode(
statusFrame.channel_20_current);
case 21:
return PDH_status_3_channel_21_current_decode(
statusFrame.channel_21_current);
case 22:
return PDH_status_3_channel_22_current_decode(
statusFrame.channel_22_current);
case 23:
return PDH_status_3_channel_23_current_decode(
statusFrame.channel_23_current);
}
}
return 0;
}
void HAL_GetREVPDHAllChannelCurrents(HAL_REVPDHHandle handle, double* currents,
int32_t* status) {
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return;
}
PDH_status_0_t statusFrame0 = HAL_ReadREVPDHStatus0(hpdh->hcan, status);
PDH_status_1_t statusFrame1 = HAL_ReadREVPDHStatus1(hpdh->hcan, status);
PDH_status_2_t statusFrame2 = HAL_ReadREVPDHStatus2(hpdh->hcan, status);
PDH_status_3_t statusFrame3 = HAL_ReadREVPDHStatus3(hpdh->hcan, status);
currents[0] =
PDH_status_0_channel_0_current_decode(statusFrame0.channel_0_current);
currents[1] =
PDH_status_0_channel_1_current_decode(statusFrame0.channel_1_current);
currents[2] =
PDH_status_0_channel_2_current_decode(statusFrame0.channel_2_current);
currents[3] =
PDH_status_0_channel_3_current_decode(statusFrame0.channel_3_current);
currents[4] =
PDH_status_0_channel_4_current_decode(statusFrame0.channel_4_current);
currents[5] =
PDH_status_0_channel_5_current_decode(statusFrame0.channel_5_current);
currents[6] =
PDH_status_1_channel_6_current_decode(statusFrame1.channel_6_current);
currents[7] =
PDH_status_1_channel_7_current_decode(statusFrame1.channel_7_current);
currents[8] =
PDH_status_1_channel_8_current_decode(statusFrame1.channel_8_current);
currents[9] =
PDH_status_1_channel_9_current_decode(statusFrame1.channel_9_current);
currents[10] =
PDH_status_1_channel_10_current_decode(statusFrame1.channel_10_current);
currents[11] =
PDH_status_1_channel_11_current_decode(statusFrame1.channel_11_current);
currents[12] =
PDH_status_2_channel_12_current_decode(statusFrame2.channel_12_current);
currents[13] =
PDH_status_2_channel_13_current_decode(statusFrame2.channel_13_current);
currents[14] =
PDH_status_2_channel_14_current_decode(statusFrame2.channel_14_current);
currents[15] =
PDH_status_2_channel_15_current_decode(statusFrame2.channel_15_current);
currents[16] =
PDH_status_2_channel_16_current_decode(statusFrame2.channel_16_current);
currents[17] =
PDH_status_2_channel_17_current_decode(statusFrame2.channel_17_current);
currents[18] =
PDH_status_3_channel_18_current_decode(statusFrame3.channel_18_current);
currents[19] =
PDH_status_3_channel_19_current_decode(statusFrame3.channel_19_current);
currents[20] =
PDH_status_3_channel_20_current_decode(statusFrame3.channel_20_current);
currents[21] =
PDH_status_3_channel_21_current_decode(statusFrame3.channel_21_current);
currents[22] =
PDH_status_3_channel_22_current_decode(statusFrame3.channel_22_current);
currents[23] =
PDH_status_3_channel_23_current_decode(statusFrame3.channel_23_current);
}
uint16_t HAL_GetREVPDHTotalCurrent(HAL_REVPDHHandle handle, int32_t* status) {
PDH_status_4_t statusFrame = HAL_GetREVPDHStatus4(handle, status);
if (*status != 0) {
return 0;
}
return PDH_status_4_total_current_decode(statusFrame.total_current);
}
void HAL_SetREVPDHSwitchableChannel(HAL_REVPDHHandle handle, HAL_Bool enabled,
int32_t* status) {
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return;
}
uint8_t packedData[8] = {0};
PDH_set_switch_channel_t frame;
frame.output_set_value = enabled;
PDH_set_switch_channel_pack(packedData, &frame,
PDH_SET_SWITCH_CHANNEL_LENGTH);
HAL_WriteCANPacket(hpdh->hcan, packedData, PDH_SET_SWITCH_CHANNEL_LENGTH,
PDH_SET_SWITCH_CHANNEL_FRAME_API, status);
}
HAL_Bool HAL_GetREVPDHSwitchableChannelState(HAL_REVPDHHandle handle,
int32_t* status) {
PDH_status_4_t statusFrame = HAL_GetREVPDHStatus4(handle, status);
if (*status != 0) {
return 0.0;
}
return PDH_status_4_switch_channel_state_decode(
statusFrame.switch_channel_state);
}
double HAL_GetREVPDHVoltage(HAL_REVPDHHandle handle, int32_t* status) {
PDH_status_4_t statusFrame = HAL_GetREVPDHStatus4(handle, status);
if (*status != 0) {
return 0.0;
}
return PDH_status_4_v_bus_decode(statusFrame.v_bus);
}
void HAL_GetREVPDHVersion(HAL_REVPDHHandle handle,
HAL_PowerDistributionVersion* version,
int32_t* status) {
std::memset(version, 0, sizeof(*version));
uint8_t packedData[8] = {0};
int32_t length = 0;
uint64_t timestamp = 0;
PDH_version_t result = {};
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return;
}
if (hpdh->versionInfo.firmwareMajor > 0) {
version->firmwareMajor = hpdh->versionInfo.firmwareMajor;
version->firmwareMinor = hpdh->versionInfo.firmwareMinor;
version->firmwareFix = hpdh->versionInfo.firmwareFix;
version->hardwareMajor = hpdh->versionInfo.hardwareMajor;
version->hardwareMinor = hpdh->versionInfo.hardwareMinor;
version->uniqueId = hpdh->versionInfo.uniqueId;
*status = 0;
return;
}
HAL_WriteCANRTRFrame(hpdh->hcan, PDH_VERSION_LENGTH, PDH_VERSION_FRAME_API,
status);
if (*status != 0) {
return;
}
uint32_t timeoutMs = 100;
for (uint32_t i = 0; i <= timeoutMs; i++) {
HAL_ReadCANPacketNew(hpdh->hcan, PDH_VERSION_FRAME_API, packedData, &length,
&timestamp, status);
if (*status == 0) {
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
if (*status != 0) {
return;
}
PDH_version_unpack(&result, packedData, PDH_VERSION_LENGTH);
version->firmwareMajor = result.firmware_year;
version->firmwareMinor = result.firmware_minor;
version->firmwareFix = result.firmware_fix;
version->hardwareMinor = result.hardware_minor;
version->hardwareMajor = result.hardware_major;
version->uniqueId = result.unique_id;
hpdh->versionInfo = *version;
}
void HAL_GetREVPDHFaults(HAL_REVPDHHandle handle,
HAL_PowerDistributionFaults* faults, int32_t* status) {
std::memset(faults, 0, sizeof(*faults));
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return;
}
PDH_status_0_t status0 = HAL_ReadREVPDHStatus0(hpdh->hcan, status);
PDH_status_1_t status1 = HAL_ReadREVPDHStatus1(hpdh->hcan, status);
PDH_status_2_t status2 = HAL_ReadREVPDHStatus2(hpdh->hcan, status);
PDH_status_3_t status3 = HAL_ReadREVPDHStatus3(hpdh->hcan, status);
PDH_status_4_t status4 = HAL_ReadREVPDHStatus4(hpdh->hcan, status);
faults->channel0BreakerFault = status0.channel_0_breaker_fault;
faults->channel1BreakerFault = status0.channel_1_breaker_fault;
faults->channel2BreakerFault = status0.channel_2_breaker_fault;
faults->channel3BreakerFault = status0.channel_3_breaker_fault;
faults->channel4BreakerFault = status1.channel_4_breaker_fault;
faults->channel5BreakerFault = status1.channel_5_breaker_fault;
faults->channel6BreakerFault = status1.channel_6_breaker_fault;
faults->channel7BreakerFault = status1.channel_7_breaker_fault;
faults->channel8BreakerFault = status2.channel_8_breaker_fault;
faults->channel9BreakerFault = status2.channel_9_breaker_fault;
faults->channel10BreakerFault = status2.channel_10_breaker_fault;
faults->channel11BreakerFault = status2.channel_11_breaker_fault;
faults->channel12BreakerFault = status3.channel_12_breaker_fault;
faults->channel13BreakerFault = status3.channel_13_breaker_fault;
faults->channel14BreakerFault = status3.channel_14_breaker_fault;
faults->channel15BreakerFault = status3.channel_15_breaker_fault;
faults->channel16BreakerFault = status3.channel_16_breaker_fault;
faults->channel17BreakerFault = status3.channel_17_breaker_fault;
faults->channel18BreakerFault = status3.channel_18_breaker_fault;
faults->channel19BreakerFault = status3.channel_19_breaker_fault;
faults->channel20BreakerFault = status3.channel_20_breaker_fault;
faults->channel21BreakerFault = status3.channel_21_breaker_fault;
faults->channel22BreakerFault = status3.channel_22_breaker_fault;
faults->channel23BreakerFault = status3.channel_23_breaker_fault;
faults->brownout = status4.brownout_fault;
faults->canWarning = status4.can_warning_fault;
faults->hardwareFault = status4.hardware_fault;
}
void HAL_GetREVPDHStickyFaults(HAL_REVPDHHandle handle,
HAL_PowerDistributionStickyFaults* stickyFaults,
int32_t* status) {
std::memset(stickyFaults, 0, sizeof(*stickyFaults));
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return;
}
PDH_status_4_t status4 = HAL_ReadREVPDHStatus4(hpdh->hcan, status);
stickyFaults->channel0BreakerFault = status4.sticky_ch0_breaker_fault;
stickyFaults->channel1BreakerFault = status4.sticky_ch1_breaker_fault;
stickyFaults->channel2BreakerFault = status4.sticky_ch2_breaker_fault;
stickyFaults->channel3BreakerFault = status4.sticky_ch3_breaker_fault;
stickyFaults->channel4BreakerFault = status4.sticky_ch4_breaker_fault;
stickyFaults->channel5BreakerFault = status4.sticky_ch5_breaker_fault;
stickyFaults->channel6BreakerFault = status4.sticky_ch6_breaker_fault;
stickyFaults->channel7BreakerFault = status4.sticky_ch7_breaker_fault;
stickyFaults->channel8BreakerFault = status4.sticky_ch8_breaker_fault;
stickyFaults->channel9BreakerFault = status4.sticky_ch9_breaker_fault;
stickyFaults->channel10BreakerFault = status4.sticky_ch10_breaker_fault;
stickyFaults->channel11BreakerFault = status4.sticky_ch11_breaker_fault;
stickyFaults->channel12BreakerFault = status4.sticky_ch12_breaker_fault;
stickyFaults->channel13BreakerFault = status4.sticky_ch13_breaker_fault;
stickyFaults->channel14BreakerFault = status4.sticky_ch14_breaker_fault;
stickyFaults->channel15BreakerFault = status4.sticky_ch15_breaker_fault;
stickyFaults->channel16BreakerFault = status4.sticky_ch16_breaker_fault;
stickyFaults->channel17BreakerFault = status4.sticky_ch17_breaker_fault;
stickyFaults->channel18BreakerFault = status4.sticky_ch18_breaker_fault;
stickyFaults->channel19BreakerFault = status4.sticky_ch19_breaker_fault;
stickyFaults->channel20BreakerFault = status4.sticky_ch20_breaker_fault;
stickyFaults->channel21BreakerFault = status4.sticky_ch21_breaker_fault;
stickyFaults->channel22BreakerFault = status4.sticky_ch22_breaker_fault;
stickyFaults->channel23BreakerFault = status4.sticky_ch23_breaker_fault;
stickyFaults->brownout = status4.sticky_brownout_fault;
stickyFaults->canWarning = status4.sticky_can_warning_fault;
stickyFaults->canBusOff = status4.sticky_can_bus_off_fault;
stickyFaults->hasReset = status4.sticky_has_reset_fault;
}
void HAL_ClearREVPDHStickyFaults(HAL_REVPDHHandle handle, int32_t* status) {
auto hpdh = REVPDHHandles->Get(handle);
if (hpdh == nullptr) {
*status = HAL_HANDLE_ERROR;
return;
}
uint8_t packedData[8] = {0};
HAL_WriteCANPacket(hpdh->hcan, packedData, PDH_CLEAR_FAULTS_LENGTH,
PDH_CLEAR_FAULTS_FRAME_API, status);
}
} // extern "C"