| /*! |
| * Simple example how to linearize a system and design an LQR controller. |
| * |
| * \example LQR.cpp |
| */ |
| |
| |
| #include <ct/optcon/optcon.h> // also includes ct_core |
| #include "exampleDir.h" |
| |
| int main(int argc, char** argv) |
| { |
| // get the state and control input dimension of the oscillator |
| const size_t state_dim = ct::core::SecondOrderSystem::STATE_DIM; |
| const size_t control_dim = ct::core::SecondOrderSystem::CONTROL_DIM; |
| |
| // create an auto-differentiable instance of the oscillator dynamics |
| ct::core::ADCGScalar w_n(50.0); |
| std::shared_ptr<ct::core::ControlledSystem<state_dim, control_dim, ct::core::ADCGScalar>> oscillatorDynamics( |
| new ct::core::tpl::SecondOrderSystem<ct::core::ADCGScalar>(w_n)); |
| |
| // create an Auto-Differentiation Linearizer with code generation on the quadrotor model |
| ct::core::ADCodegenLinearizer<state_dim, control_dim> adLinearizer(oscillatorDynamics); |
| |
| // compile the linearized model just-in-time |
| adLinearizer.compileJIT(); |
| |
| // define the linearization point around steady state |
| ct::core::StateVector<state_dim> x; |
| x.setZero(); |
| ct::core::ControlVector<control_dim> u; |
| u.setZero(); |
| double t = 0.0; |
| |
| // compute the linearization around the nominal state using the Auto-Diff Linearizer |
| auto A = adLinearizer.getDerivativeState(x, u, t); |
| auto B = adLinearizer.getDerivativeControl(x, u, t); |
| |
| // load the weighting matrices |
| ct::optcon::TermQuadratic<state_dim, control_dim> quadraticCost; |
| quadraticCost.loadConfigFile(ct::optcon::exampleDir + "/lqrCost.info", "termLQR"); |
| auto Q = quadraticCost.stateSecondDerivative(x, u, t); // x, u and t can be arbitrary here |
| auto R = quadraticCost.controlSecondDerivative(x, u, t); // x, u and t can be arbitrary here |
| |
| // design the LQR controller |
| ct::optcon::LQR<state_dim, control_dim> lqrSolver; |
| ct::core::FeedbackMatrix<state_dim, control_dim> K; |
| |
| std::cout << "A: " << std::endl << A << std::endl << std::endl; |
| std::cout << "B: " << std::endl << B << std::endl << std::endl; |
| std::cout << "Q: " << std::endl << Q << std::endl << std::endl; |
| std::cout << "R: " << std::endl << R << std::endl << std::endl; |
| |
| lqrSolver.compute(Q, R, A, B, K); |
| |
| std::cout << "LQR gain matrix:" << std::endl << K << std::endl; |
| |
| return 1; |
| } |