Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
new file mode 100644
index 0000000..2625c4d
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
@@ -0,0 +1,262 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BICGSTAB_H
+#define EIGEN_BICGSTAB_H
+
+namespace Eigen { 
+
+namespace internal {
+
+/** \internal Low-level bi conjugate gradient stabilized algorithm
+  * \param mat The matrix A
+  * \param rhs The right hand side vector b
+  * \param x On input and initial solution, on output the computed solution.
+  * \param precond A preconditioner being able to efficiently solve for an
+  *                approximation of Ax=b (regardless of b)
+  * \param iters On input the max number of iteration, on output the number of performed iterations.
+  * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+  * \return false in the case of numerical issue, for example a break down of BiCGSTAB. 
+  */
+template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
+              const Preconditioner& precond, int& iters,
+              typename Dest::RealScalar& tol_error)
+{
+  using std::sqrt;
+  using std::abs;
+  typedef typename Dest::RealScalar RealScalar;
+  typedef typename Dest::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,1> VectorType;
+  RealScalar tol = tol_error;
+  int maxIters = iters;
+
+  int n = mat.cols();
+  VectorType r  = rhs - mat * x;
+  VectorType r0 = r;
+  
+  RealScalar r0_sqnorm = r0.squaredNorm();
+  RealScalar rhs_sqnorm = rhs.squaredNorm();
+  if(rhs_sqnorm == 0)
+  {
+    x.setZero();
+    return true;
+  }
+  Scalar rho    = 1;
+  Scalar alpha  = 1;
+  Scalar w      = 1;
+  
+  VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
+  VectorType y(n),  z(n);
+  VectorType kt(n), ks(n);
+
+  VectorType s(n), t(n);
+
+  RealScalar tol2 = tol*tol;
+  RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
+  int i = 0;
+  int restarts = 0;
+
+  while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
+  {
+    Scalar rho_old = rho;
+
+    rho = r0.dot(r);
+    if (abs(rho) < eps2*r0_sqnorm)
+    {
+      // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
+      // Let's restart with a new r0:
+      r0 = r;
+      rho = r0_sqnorm = r.squaredNorm();
+      if(restarts++ == 0)
+        i = 0;
+    }
+    Scalar beta = (rho/rho_old) * (alpha / w);
+    p = r + beta * (p - w * v);
+    
+    y = precond.solve(p);
+    
+    v.noalias() = mat * y;
+
+    alpha = rho / r0.dot(v);
+    s = r - alpha * v;
+
+    z = precond.solve(s);
+    t.noalias() = mat * z;
+
+    RealScalar tmp = t.squaredNorm();
+    if(tmp>RealScalar(0))
+      w = t.dot(s) / tmp;
+    else
+      w = Scalar(0);
+    x += alpha * y + w * z;
+    r = s - w * t;
+    ++i;
+  }
+  tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
+  iters = i;
+  return true; 
+}
+
+}
+
+template< typename _MatrixType,
+          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class BiCGSTAB;
+
+namespace internal {
+
+template< typename _MatrixType, typename _Preconditioner>
+struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
+{
+  typedef _MatrixType MatrixType;
+  typedef _Preconditioner Preconditioner;
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A bi conjugate gradient stabilized solver for sparse square problems
+  *
+  * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
+  * stabilized algorithm. The vectors x and b can be either dense or sparse.
+  *
+  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+  *
+  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+  * and NumTraits<Scalar>::epsilon() for the tolerance.
+  * 
+  * This class can be used as the direct solver classes. Here is a typical usage example:
+  * \code
+  * int n = 10000;
+  * VectorXd x(n), b(n);
+  * SparseMatrix<double> A(n,n);
+  * // fill A and b
+  * BiCGSTAB<SparseMatrix<double> > solver;
+  * solver.compute(A);
+  * x = solver.solve(b);
+  * std::cout << "#iterations:     " << solver.iterations() << std::endl;
+  * std::cout << "estimated error: " << solver.error()      << std::endl;
+  * // update b, and solve again
+  * x = solver.solve(b);
+  * \endcode
+  * 
+  * By default the iterations start with x=0 as an initial guess of the solution.
+  * One can control the start using the solveWithGuess() method.
+  * 
+  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+  */
+template< typename _MatrixType, typename _Preconditioner>
+class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
+{
+  typedef IterativeSolverBase<BiCGSTAB> Base;
+  using Base::mp_matrix;
+  using Base::m_error;
+  using Base::m_iterations;
+  using Base::m_info;
+  using Base::m_isInitialized;
+public:
+  typedef _MatrixType MatrixType;
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::Index Index;
+  typedef typename MatrixType::RealScalar RealScalar;
+  typedef _Preconditioner Preconditioner;
+
+public:
+
+  /** Default constructor. */
+  BiCGSTAB() : Base() {}
+
+  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+    * 
+    * This constructor is a shortcut for the default constructor followed
+    * by a call to compute().
+    * 
+    * \warning this class stores a reference to the matrix A as well as some
+    * precomputed values that depend on it. Therefore, if \a A is changed
+    * this class becomes invalid. Call compute() to update it with the new
+    * matrix A, or modify a copy of A.
+    */
+  BiCGSTAB(const MatrixType& A) : Base(A) {}
+
+  ~BiCGSTAB() {}
+  
+  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+    * \a x0 as an initial solution.
+    *
+    * \sa compute()
+    */
+  template<typename Rhs,typename Guess>
+  inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
+  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+  {
+    eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
+    eigen_assert(Base::rows()==b.rows()
+              && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
+    return internal::solve_retval_with_guess
+            <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
+  }
+  
+  /** \internal */
+  template<typename Rhs,typename Dest>
+  void _solveWithGuess(const Rhs& b, Dest& x) const
+  {    
+    bool failed = false;
+    for(int j=0; j<b.cols(); ++j)
+    {
+      m_iterations = Base::maxIterations();
+      m_error = Base::m_tolerance;
+      
+      typename Dest::ColXpr xj(x,j);
+      if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
+        failed = true;
+    }
+    m_info = failed ? NumericalIssue
+           : m_error <= Base::m_tolerance ? Success
+           : NoConvergence;
+    m_isInitialized = true;
+  }
+
+  /** \internal */
+  template<typename Rhs,typename Dest>
+  void _solve(const Rhs& b, Dest& x) const
+  {
+//     x.setZero();
+  x = b;
+    _solveWithGuess(b,x);
+  }
+
+protected:
+
+};
+
+
+namespace internal {
+
+  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
+struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
+  : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
+{
+  typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_BICGSTAB_H