Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
new file mode 100644
index 0000000..73ca9bf
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
@@ -0,0 +1,149 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BASIC_PRECONDITIONERS_H
+#define EIGEN_BASIC_PRECONDITIONERS_H
+
+namespace Eigen { 
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A preconditioner based on the digonal entries
+  *
+  * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
+  * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
+  * \code
+  * A.diagonal().asDiagonal() . x = b
+  * \endcode
+  *
+  * \tparam _Scalar the type of the scalar.
+  *
+  * This preconditioner is suitable for both selfadjoint and general problems.
+  * The diagonal entries are pre-inverted and stored into a dense vector.
+  *
+  * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
+  *
+  */
+template <typename _Scalar>
+class DiagonalPreconditioner
+{
+    typedef _Scalar Scalar;
+    typedef Matrix<Scalar,Dynamic,1> Vector;
+    typedef typename Vector::Index Index;
+
+  public:
+    // this typedef is only to export the scalar type and compile-time dimensions to solve_retval
+    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+
+    DiagonalPreconditioner() : m_isInitialized(false) {}
+
+    template<typename MatType>
+    DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
+    {
+      compute(mat);
+    }
+
+    Index rows() const { return m_invdiag.size(); }
+    Index cols() const { return m_invdiag.size(); }
+    
+    template<typename MatType>
+    DiagonalPreconditioner& analyzePattern(const MatType& )
+    {
+      return *this;
+    }
+    
+    template<typename MatType>
+    DiagonalPreconditioner& factorize(const MatType& mat)
+    {
+      m_invdiag.resize(mat.cols());
+      for(int j=0; j<mat.outerSize(); ++j)
+      {
+        typename MatType::InnerIterator it(mat,j);
+        while(it && it.index()!=j) ++it;
+        if(it && it.index()==j)
+          m_invdiag(j) = Scalar(1)/it.value();
+        else
+          m_invdiag(j) = 0;
+      }
+      m_isInitialized = true;
+      return *this;
+    }
+    
+    template<typename MatType>
+    DiagonalPreconditioner& compute(const MatType& mat)
+    {
+      return factorize(mat);
+    }
+
+    template<typename Rhs, typename Dest>
+    void _solve(const Rhs& b, Dest& x) const
+    {
+      x = m_invdiag.array() * b.array() ;
+    }
+
+    template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
+    solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
+      eigen_assert(m_invdiag.size()==b.rows()
+                && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
+    }
+
+  protected:
+    Vector m_invdiag;
+    bool m_isInitialized;
+};
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
+  : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
+{
+  typedef DiagonalPreconditioner<_MatrixType> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A naive preconditioner which approximates any matrix as the identity matrix
+  *
+  * \sa class DiagonalPreconditioner
+  */
+class IdentityPreconditioner
+{
+  public:
+
+    IdentityPreconditioner() {}
+
+    template<typename MatrixType>
+    IdentityPreconditioner(const MatrixType& ) {}
+    
+    template<typename MatrixType>
+    IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
+    
+    template<typename MatrixType>
+    IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
+
+    template<typename MatrixType>
+    IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
+    
+    template<typename Rhs>
+    inline const Rhs& solve(const Rhs& b) const { return b; }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_BASIC_PRECONDITIONERS_H
diff --git a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
new file mode 100644
index 0000000..2625c4d
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
@@ -0,0 +1,262 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BICGSTAB_H
+#define EIGEN_BICGSTAB_H
+
+namespace Eigen { 
+
+namespace internal {
+
+/** \internal Low-level bi conjugate gradient stabilized algorithm
+  * \param mat The matrix A
+  * \param rhs The right hand side vector b
+  * \param x On input and initial solution, on output the computed solution.
+  * \param precond A preconditioner being able to efficiently solve for an
+  *                approximation of Ax=b (regardless of b)
+  * \param iters On input the max number of iteration, on output the number of performed iterations.
+  * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+  * \return false in the case of numerical issue, for example a break down of BiCGSTAB. 
+  */
+template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
+              const Preconditioner& precond, int& iters,
+              typename Dest::RealScalar& tol_error)
+{
+  using std::sqrt;
+  using std::abs;
+  typedef typename Dest::RealScalar RealScalar;
+  typedef typename Dest::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,1> VectorType;
+  RealScalar tol = tol_error;
+  int maxIters = iters;
+
+  int n = mat.cols();
+  VectorType r  = rhs - mat * x;
+  VectorType r0 = r;
+  
+  RealScalar r0_sqnorm = r0.squaredNorm();
+  RealScalar rhs_sqnorm = rhs.squaredNorm();
+  if(rhs_sqnorm == 0)
+  {
+    x.setZero();
+    return true;
+  }
+  Scalar rho    = 1;
+  Scalar alpha  = 1;
+  Scalar w      = 1;
+  
+  VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
+  VectorType y(n),  z(n);
+  VectorType kt(n), ks(n);
+
+  VectorType s(n), t(n);
+
+  RealScalar tol2 = tol*tol;
+  RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
+  int i = 0;
+  int restarts = 0;
+
+  while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
+  {
+    Scalar rho_old = rho;
+
+    rho = r0.dot(r);
+    if (abs(rho) < eps2*r0_sqnorm)
+    {
+      // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
+      // Let's restart with a new r0:
+      r0 = r;
+      rho = r0_sqnorm = r.squaredNorm();
+      if(restarts++ == 0)
+        i = 0;
+    }
+    Scalar beta = (rho/rho_old) * (alpha / w);
+    p = r + beta * (p - w * v);
+    
+    y = precond.solve(p);
+    
+    v.noalias() = mat * y;
+
+    alpha = rho / r0.dot(v);
+    s = r - alpha * v;
+
+    z = precond.solve(s);
+    t.noalias() = mat * z;
+
+    RealScalar tmp = t.squaredNorm();
+    if(tmp>RealScalar(0))
+      w = t.dot(s) / tmp;
+    else
+      w = Scalar(0);
+    x += alpha * y + w * z;
+    r = s - w * t;
+    ++i;
+  }
+  tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
+  iters = i;
+  return true; 
+}
+
+}
+
+template< typename _MatrixType,
+          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class BiCGSTAB;
+
+namespace internal {
+
+template< typename _MatrixType, typename _Preconditioner>
+struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
+{
+  typedef _MatrixType MatrixType;
+  typedef _Preconditioner Preconditioner;
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A bi conjugate gradient stabilized solver for sparse square problems
+  *
+  * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
+  * stabilized algorithm. The vectors x and b can be either dense or sparse.
+  *
+  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+  *
+  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+  * and NumTraits<Scalar>::epsilon() for the tolerance.
+  * 
+  * This class can be used as the direct solver classes. Here is a typical usage example:
+  * \code
+  * int n = 10000;
+  * VectorXd x(n), b(n);
+  * SparseMatrix<double> A(n,n);
+  * // fill A and b
+  * BiCGSTAB<SparseMatrix<double> > solver;
+  * solver.compute(A);
+  * x = solver.solve(b);
+  * std::cout << "#iterations:     " << solver.iterations() << std::endl;
+  * std::cout << "estimated error: " << solver.error()      << std::endl;
+  * // update b, and solve again
+  * x = solver.solve(b);
+  * \endcode
+  * 
+  * By default the iterations start with x=0 as an initial guess of the solution.
+  * One can control the start using the solveWithGuess() method.
+  * 
+  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+  */
+template< typename _MatrixType, typename _Preconditioner>
+class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
+{
+  typedef IterativeSolverBase<BiCGSTAB> Base;
+  using Base::mp_matrix;
+  using Base::m_error;
+  using Base::m_iterations;
+  using Base::m_info;
+  using Base::m_isInitialized;
+public:
+  typedef _MatrixType MatrixType;
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::Index Index;
+  typedef typename MatrixType::RealScalar RealScalar;
+  typedef _Preconditioner Preconditioner;
+
+public:
+
+  /** Default constructor. */
+  BiCGSTAB() : Base() {}
+
+  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+    * 
+    * This constructor is a shortcut for the default constructor followed
+    * by a call to compute().
+    * 
+    * \warning this class stores a reference to the matrix A as well as some
+    * precomputed values that depend on it. Therefore, if \a A is changed
+    * this class becomes invalid. Call compute() to update it with the new
+    * matrix A, or modify a copy of A.
+    */
+  BiCGSTAB(const MatrixType& A) : Base(A) {}
+
+  ~BiCGSTAB() {}
+  
+  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+    * \a x0 as an initial solution.
+    *
+    * \sa compute()
+    */
+  template<typename Rhs,typename Guess>
+  inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
+  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+  {
+    eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
+    eigen_assert(Base::rows()==b.rows()
+              && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
+    return internal::solve_retval_with_guess
+            <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
+  }
+  
+  /** \internal */
+  template<typename Rhs,typename Dest>
+  void _solveWithGuess(const Rhs& b, Dest& x) const
+  {    
+    bool failed = false;
+    for(int j=0; j<b.cols(); ++j)
+    {
+      m_iterations = Base::maxIterations();
+      m_error = Base::m_tolerance;
+      
+      typename Dest::ColXpr xj(x,j);
+      if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
+        failed = true;
+    }
+    m_info = failed ? NumericalIssue
+           : m_error <= Base::m_tolerance ? Success
+           : NoConvergence;
+    m_isInitialized = true;
+  }
+
+  /** \internal */
+  template<typename Rhs,typename Dest>
+  void _solve(const Rhs& b, Dest& x) const
+  {
+//     x.setZero();
+  x = b;
+    _solveWithGuess(b,x);
+  }
+
+protected:
+
+};
+
+
+namespace internal {
+
+  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
+struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
+  : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
+{
+  typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_BICGSTAB_H
diff --git a/Eigen/src/IterativeLinearSolvers/CMakeLists.txt b/Eigen/src/IterativeLinearSolvers/CMakeLists.txt
new file mode 100644
index 0000000..59ccc00
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_IterativeLinearSolvers_SRCS "*.h")
+
+INSTALL(FILES
+  ${Eigen_IterativeLinearSolvers_SRCS}
+  DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/IterativeLinearSolvers COMPONENT Devel
+  )
diff --git a/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
new file mode 100644
index 0000000..8ba4a8d
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
@@ -0,0 +1,255 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CONJUGATE_GRADIENT_H
+#define EIGEN_CONJUGATE_GRADIENT_H
+
+namespace Eigen { 
+
+namespace internal {
+
+/** \internal Low-level conjugate gradient algorithm
+  * \param mat The matrix A
+  * \param rhs The right hand side vector b
+  * \param x On input and initial solution, on output the computed solution.
+  * \param precond A preconditioner being able to efficiently solve for an
+  *                approximation of Ax=b (regardless of b)
+  * \param iters On input the max number of iteration, on output the number of performed iterations.
+  * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+  */
+template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+EIGEN_DONT_INLINE
+void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
+                        const Preconditioner& precond, int& iters,
+                        typename Dest::RealScalar& tol_error)
+{
+  using std::sqrt;
+  using std::abs;
+  typedef typename Dest::RealScalar RealScalar;
+  typedef typename Dest::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,1> VectorType;
+  
+  RealScalar tol = tol_error;
+  int maxIters = iters;
+  
+  int n = mat.cols();
+
+  VectorType residual = rhs - mat * x; //initial residual
+
+  RealScalar rhsNorm2 = rhs.squaredNorm();
+  if(rhsNorm2 == 0) 
+  {
+    x.setZero();
+    iters = 0;
+    tol_error = 0;
+    return;
+  }
+  RealScalar threshold = tol*tol*rhsNorm2;
+  RealScalar residualNorm2 = residual.squaredNorm();
+  if (residualNorm2 < threshold)
+  {
+    iters = 0;
+    tol_error = sqrt(residualNorm2 / rhsNorm2);
+    return;
+  }
+  
+  VectorType p(n);
+  p = precond.solve(residual);      //initial search direction
+
+  VectorType z(n), tmp(n);
+  RealScalar absNew = numext::real(residual.dot(p));  // the square of the absolute value of r scaled by invM
+  int i = 0;
+  while(i < maxIters)
+  {
+    tmp.noalias() = mat * p;              // the bottleneck of the algorithm
+
+    Scalar alpha = absNew / p.dot(tmp);   // the amount we travel on dir
+    x += alpha * p;                       // update solution
+    residual -= alpha * tmp;              // update residue
+    
+    residualNorm2 = residual.squaredNorm();
+    if(residualNorm2 < threshold)
+      break;
+    
+    z = precond.solve(residual);          // approximately solve for "A z = residual"
+
+    RealScalar absOld = absNew;
+    absNew = numext::real(residual.dot(z));     // update the absolute value of r
+    RealScalar beta = absNew / absOld;            // calculate the Gram-Schmidt value used to create the new search direction
+    p = z + beta * p;                             // update search direction
+    i++;
+  }
+  tol_error = sqrt(residualNorm2 / rhsNorm2);
+  iters = i;
+}
+
+}
+
+template< typename _MatrixType, int _UpLo=Lower,
+          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class ConjugateGradient;
+
+namespace internal {
+
+template< typename _MatrixType, int _UpLo, typename _Preconditioner>
+struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
+{
+  typedef _MatrixType MatrixType;
+  typedef _Preconditioner Preconditioner;
+};
+
+}
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief A conjugate gradient solver for sparse self-adjoint problems
+  *
+  * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
+  * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
+  *
+  * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix.
+  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower,
+  *               Upper, or Lower|Upper in which the full matrix entries will be considered. Default is Lower.
+  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+  *
+  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+  * and NumTraits<Scalar>::epsilon() for the tolerance.
+  * 
+  * This class can be used as the direct solver classes. Here is a typical usage example:
+  * \code
+  * int n = 10000;
+  * VectorXd x(n), b(n);
+  * SparseMatrix<double> A(n,n);
+  * // fill A and b
+  * ConjugateGradient<SparseMatrix<double> > cg;
+  * cg.compute(A);
+  * x = cg.solve(b);
+  * std::cout << "#iterations:     " << cg.iterations() << std::endl;
+  * std::cout << "estimated error: " << cg.error()      << std::endl;
+  * // update b, and solve again
+  * x = cg.solve(b);
+  * \endcode
+  * 
+  * By default the iterations start with x=0 as an initial guess of the solution.
+  * One can control the start using the solveWithGuess() method.
+  * 
+  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+  */
+template< typename _MatrixType, int _UpLo, typename _Preconditioner>
+class ConjugateGradient : public IterativeSolverBase<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
+{
+  typedef IterativeSolverBase<ConjugateGradient> Base;
+  using Base::mp_matrix;
+  using Base::m_error;
+  using Base::m_iterations;
+  using Base::m_info;
+  using Base::m_isInitialized;
+public:
+  typedef _MatrixType MatrixType;
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::Index Index;
+  typedef typename MatrixType::RealScalar RealScalar;
+  typedef _Preconditioner Preconditioner;
+
+  enum {
+    UpLo = _UpLo
+  };
+
+public:
+
+  /** Default constructor. */
+  ConjugateGradient() : Base() {}
+
+  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+    * 
+    * This constructor is a shortcut for the default constructor followed
+    * by a call to compute().
+    * 
+    * \warning this class stores a reference to the matrix A as well as some
+    * precomputed values that depend on it. Therefore, if \a A is changed
+    * this class becomes invalid. Call compute() to update it with the new
+    * matrix A, or modify a copy of A.
+    */
+  ConjugateGradient(const MatrixType& A) : Base(A) {}
+
+  ~ConjugateGradient() {}
+  
+  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+    * \a x0 as an initial solution.
+    *
+    * \sa compute()
+    */
+  template<typename Rhs,typename Guess>
+  inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
+  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+  {
+    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+    eigen_assert(Base::rows()==b.rows()
+              && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
+    return internal::solve_retval_with_guess
+            <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
+  }
+
+  /** \internal */
+  template<typename Rhs,typename Dest>
+  void _solveWithGuess(const Rhs& b, Dest& x) const
+  {
+    typedef typename internal::conditional<UpLo==(Lower|Upper),
+                                           const MatrixType&,
+                                           SparseSelfAdjointView<const MatrixType, UpLo>
+                                          >::type MatrixWrapperType;
+    m_iterations = Base::maxIterations();
+    m_error = Base::m_tolerance;
+
+    for(int j=0; j<b.cols(); ++j)
+    {
+      m_iterations = Base::maxIterations();
+      m_error = Base::m_tolerance;
+
+      typename Dest::ColXpr xj(x,j);
+      internal::conjugate_gradient(MatrixWrapperType(*mp_matrix), b.col(j), xj, Base::m_preconditioner, m_iterations, m_error);
+    }
+
+    m_isInitialized = true;
+    m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
+  }
+  
+  /** \internal */
+  template<typename Rhs,typename Dest>
+  void _solve(const Rhs& b, Dest& x) const
+  {
+    x.setZero();
+    _solveWithGuess(b,x);
+  }
+
+protected:
+
+};
+
+
+namespace internal {
+
+template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
+struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
+  : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
+{
+  typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_CONJUGATE_GRADIENT_H
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
new file mode 100644
index 0000000..4c169aa
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -0,0 +1,469 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_LUT_H
+#define EIGEN_INCOMPLETE_LUT_H
+
+
+namespace Eigen { 
+
+namespace internal {
+    
+/** \internal
+  * Compute a quick-sort split of a vector 
+  * On output, the vector row is permuted such that its elements satisfy
+  * abs(row(i)) >= abs(row(ncut)) if i<ncut
+  * abs(row(i)) <= abs(row(ncut)) if i>ncut 
+  * \param row The vector of values
+  * \param ind The array of index for the elements in @p row
+  * \param ncut  The number of largest elements to keep
+  **/ 
+template <typename VectorV, typename VectorI, typename Index>
+Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
+{
+  typedef typename VectorV::RealScalar RealScalar;
+  using std::swap;
+  using std::abs;
+  Index mid;
+  Index n = row.size(); /* length of the vector */
+  Index first, last ;
+  
+  ncut--; /* to fit the zero-based indices */
+  first = 0; 
+  last = n-1; 
+  if (ncut < first || ncut > last ) return 0;
+  
+  do {
+    mid = first; 
+    RealScalar abskey = abs(row(mid)); 
+    for (Index j = first + 1; j <= last; j++) {
+      if ( abs(row(j)) > abskey) {
+        ++mid;
+        swap(row(mid), row(j));
+        swap(ind(mid), ind(j));
+      }
+    }
+    /* Interchange for the pivot element */
+    swap(row(mid), row(first));
+    swap(ind(mid), ind(first));
+    
+    if (mid > ncut) last = mid - 1;
+    else if (mid < ncut ) first = mid + 1; 
+  } while (mid != ncut );
+  
+  return 0; /* mid is equal to ncut */ 
+}
+
+}// end namespace internal
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \class IncompleteLUT
+  * \brief Incomplete LU factorization with dual-threshold strategy
+  *
+  * During the numerical factorization, two dropping rules are used :
+  *  1) any element whose magnitude is less than some tolerance is dropped.
+  *    This tolerance is obtained by multiplying the input tolerance @p droptol 
+  *    by the average magnitude of all the original elements in the current row.
+  *  2) After the elimination of the row, only the @p fill largest elements in 
+  *    the L part and the @p fill largest elements in the U part are kept 
+  *    (in addition to the diagonal element ). Note that @p fill is computed from 
+  *    the input parameter @p fillfactor which is used the ratio to control the fill_in 
+  *    relatively to the initial number of nonzero elements.
+  * 
+  * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
+  * and when @p fill=n/2 with @p droptol being different to zero. 
+  * 
+  * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, 
+  *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
+  * 
+  * NOTE : The following implementation is derived from the ILUT implementation
+  * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota 
+  *  released under the terms of the GNU LGPL: 
+  *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
+  * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
+  * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
+  *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
+  * alternatively, on GMANE:
+  *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
+  */
+template <typename _Scalar>
+class IncompleteLUT : internal::noncopyable
+{
+    typedef _Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef Matrix<Scalar,Dynamic,1> Vector;
+    typedef SparseMatrix<Scalar,RowMajor> FactorType;
+    typedef SparseMatrix<Scalar,ColMajor> PermutType;
+    typedef typename FactorType::Index Index;
+
+  public:
+    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+    
+    IncompleteLUT()
+      : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
+        m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
+    {}
+    
+    template<typename MatrixType>
+    IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
+      : m_droptol(droptol),m_fillfactor(fillfactor),
+        m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
+    {
+      eigen_assert(fillfactor != 0);
+      compute(mat); 
+    }
+    
+    Index rows() const { return m_lu.rows(); }
+    
+    Index cols() const { return m_lu.cols(); }
+
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful,
+      *          \c NumericalIssue if the matrix.appears to be negative.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
+      return m_info;
+    }
+    
+    template<typename MatrixType>
+    void analyzePattern(const MatrixType& amat);
+    
+    template<typename MatrixType>
+    void factorize(const MatrixType& amat);
+    
+    /**
+      * Compute an incomplete LU factorization with dual threshold on the matrix mat
+      * No pivoting is done in this version
+      * 
+      **/
+    template<typename MatrixType>
+    IncompleteLUT<Scalar>& compute(const MatrixType& amat)
+    {
+      analyzePattern(amat); 
+      factorize(amat);
+      return *this;
+    }
+
+    void setDroptol(const RealScalar& droptol); 
+    void setFillfactor(int fillfactor); 
+    
+    template<typename Rhs, typename Dest>
+    void _solve(const Rhs& b, Dest& x) const
+    {
+      x = m_Pinv * b;  
+      x = m_lu.template triangularView<UnitLower>().solve(x);
+      x = m_lu.template triangularView<Upper>().solve(x);
+      x = m_P * x; 
+    }
+
+    template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
+     solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
+      eigen_assert(cols()==b.rows()
+                && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
+    }
+
+protected:
+
+    /** keeps off-diagonal entries; drops diagonal entries */
+    struct keep_diag {
+      inline bool operator() (const Index& row, const Index& col, const Scalar&) const
+      {
+        return row!=col;
+      }
+    };
+
+protected:
+
+    FactorType m_lu;
+    RealScalar m_droptol;
+    int m_fillfactor;
+    bool m_analysisIsOk;
+    bool m_factorizationIsOk;
+    bool m_isInitialized;
+    ComputationInfo m_info;
+    PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
+    PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
+};
+
+/**
+ * Set control parameter droptol
+ *  \param droptol   Drop any element whose magnitude is less than this tolerance 
+ **/ 
+template<typename Scalar>
+void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
+{
+  this->m_droptol = droptol;   
+}
+
+/**
+ * Set control parameter fillfactor
+ * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row. 
+ **/ 
+template<typename Scalar>
+void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
+{
+  this->m_fillfactor = fillfactor;   
+}
+
+template <typename Scalar>
+template<typename _MatrixType>
+void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
+{
+  // Compute the Fill-reducing permutation
+  SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
+  SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
+  // Symmetrize the pattern
+  // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
+  //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
+  SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
+  AtA.prune(keep_diag());
+  internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
+
+  m_Pinv  = m_P.inverse(); // ... and the inverse permutation
+
+  m_analysisIsOk = true;
+  m_factorizationIsOk = false;
+  m_isInitialized = false;
+}
+
+template <typename Scalar>
+template<typename _MatrixType>
+void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
+{
+  using std::sqrt;
+  using std::swap;
+  using std::abs;
+
+  eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
+  Index n = amat.cols();  // Size of the matrix
+  m_lu.resize(n,n);
+  // Declare Working vectors and variables
+  Vector u(n) ;     // real values of the row -- maximum size is n --
+  VectorXi ju(n);   // column position of the values in u -- maximum size  is n
+  VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
+
+  // Apply the fill-reducing permutation
+  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
+  SparseMatrix<Scalar,RowMajor, Index> mat;
+  mat = amat.twistedBy(m_Pinv);
+
+  // Initialization
+  jr.fill(-1);
+  ju.fill(0);
+  u.fill(0);
+
+  // number of largest elements to keep in each row:
+  Index fill_in =   static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
+  if (fill_in > n) fill_in = n;
+
+  // number of largest nonzero elements to keep in the L and the U part of the current row:
+  Index nnzL = fill_in/2;
+  Index nnzU = nnzL;
+  m_lu.reserve(n * (nnzL + nnzU + 1));
+
+  // global loop over the rows of the sparse matrix
+  for (Index ii = 0; ii < n; ii++)
+  {
+    // 1 - copy the lower and the upper part of the row i of mat in the working vector u
+
+    Index sizeu = 1; // number of nonzero elements in the upper part of the current row
+    Index sizel = 0; // number of nonzero elements in the lower part of the current row
+    ju(ii)    = ii;
+    u(ii)     = 0;
+    jr(ii)    = ii;
+    RealScalar rownorm = 0;
+
+    typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
+    for (; j_it; ++j_it)
+    {
+      Index k = j_it.index();
+      if (k < ii)
+      {
+        // copy the lower part
+        ju(sizel) = k;
+        u(sizel) = j_it.value();
+        jr(k) = sizel;
+        ++sizel;
+      }
+      else if (k == ii)
+      {
+        u(ii) = j_it.value();
+      }
+      else
+      {
+        // copy the upper part
+        Index jpos = ii + sizeu;
+        ju(jpos) = k;
+        u(jpos) = j_it.value();
+        jr(k) = jpos;
+        ++sizeu;
+      }
+      rownorm += numext::abs2(j_it.value());
+    }
+
+    // 2 - detect possible zero row
+    if(rownorm==0)
+    {
+      m_info = NumericalIssue;
+      return;
+    }
+    // Take the 2-norm of the current row as a relative tolerance
+    rownorm = sqrt(rownorm);
+
+    // 3 - eliminate the previous nonzero rows
+    Index jj = 0;
+    Index len = 0;
+    while (jj < sizel)
+    {
+      // In order to eliminate in the correct order,
+      // we must select first the smallest column index among  ju(jj:sizel)
+      Index k;
+      Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
+      k += jj;
+      if (minrow != ju(jj))
+      {
+        // swap the two locations
+        Index j = ju(jj);
+        swap(ju(jj), ju(k));
+        jr(minrow) = jj;   jr(j) = k;
+        swap(u(jj), u(k));
+      }
+      // Reset this location
+      jr(minrow) = -1;
+
+      // Start elimination
+      typename FactorType::InnerIterator ki_it(m_lu, minrow);
+      while (ki_it && ki_it.index() < minrow) ++ki_it;
+      eigen_internal_assert(ki_it && ki_it.col()==minrow);
+      Scalar fact = u(jj) / ki_it.value();
+
+      // drop too small elements
+      if(abs(fact) <= m_droptol)
+      {
+        jj++;
+        continue;
+      }
+
+      // linear combination of the current row ii and the row minrow
+      ++ki_it;
+      for (; ki_it; ++ki_it)
+      {
+        Scalar prod = fact * ki_it.value();
+        Index j       = ki_it.index();
+        Index jpos    = jr(j);
+        if (jpos == -1) // fill-in element
+        {
+          Index newpos;
+          if (j >= ii) // dealing with the upper part
+          {
+            newpos = ii + sizeu;
+            sizeu++;
+            eigen_internal_assert(sizeu<=n);
+          }
+          else // dealing with the lower part
+          {
+            newpos = sizel;
+            sizel++;
+            eigen_internal_assert(sizel<=ii);
+          }
+          ju(newpos) = j;
+          u(newpos) = -prod;
+          jr(j) = newpos;
+        }
+        else
+          u(jpos) -= prod;
+      }
+      // store the pivot element
+      u(len) = fact;
+      ju(len) = minrow;
+      ++len;
+
+      jj++;
+    } // end of the elimination on the row ii
+
+    // reset the upper part of the pointer jr to zero
+    for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
+
+    // 4 - partially sort and insert the elements in the m_lu matrix
+
+    // sort the L-part of the row
+    sizel = len;
+    len = (std::min)(sizel, nnzL);
+    typename Vector::SegmentReturnType ul(u.segment(0, sizel));
+    typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
+    internal::QuickSplit(ul, jul, len);
+
+    // store the largest m_fill elements of the L part
+    m_lu.startVec(ii);
+    for(Index k = 0; k < len; k++)
+      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
+
+    // store the diagonal element
+    // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
+    if (u(ii) == Scalar(0))
+      u(ii) = sqrt(m_droptol) * rownorm;
+    m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
+
+    // sort the U-part of the row
+    // apply the dropping rule first
+    len = 0;
+    for(Index k = 1; k < sizeu; k++)
+    {
+      if(abs(u(ii+k)) > m_droptol * rownorm )
+      {
+        ++len;
+        u(ii + len)  = u(ii + k);
+        ju(ii + len) = ju(ii + k);
+      }
+    }
+    sizeu = len + 1; // +1 to take into account the diagonal element
+    len = (std::min)(sizeu, nnzU);
+    typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
+    typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
+    internal::QuickSplit(uu, juu, len);
+
+    // store the largest elements of the U part
+    for(Index k = ii + 1; k < ii + len; k++)
+      m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
+  }
+
+  m_lu.finalize();
+  m_lu.makeCompressed();
+
+  m_factorizationIsOk = true;
+  m_isInitialized = m_factorizationIsOk;
+  m_info = Success;
+}
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
+  : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
+{
+  typedef IncompleteLUT<_MatrixType> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_INCOMPLETE_LUT_H
diff --git a/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
new file mode 100644
index 0000000..2036922
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
@@ -0,0 +1,254 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
+#define EIGEN_ITERATIVE_SOLVER_BASE_H
+
+namespace Eigen { 
+
+/** \ingroup IterativeLinearSolvers_Module
+  * \brief Base class for linear iterative solvers
+  *
+  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+  */
+template< typename Derived>
+class IterativeSolverBase : internal::noncopyable
+{
+public:
+  typedef typename internal::traits<Derived>::MatrixType MatrixType;
+  typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::Index Index;
+  typedef typename MatrixType::RealScalar RealScalar;
+
+public:
+
+  Derived& derived() { return *static_cast<Derived*>(this); }
+  const Derived& derived() const { return *static_cast<const Derived*>(this); }
+
+  /** Default constructor. */
+  IterativeSolverBase()
+    : mp_matrix(0)
+  {
+    init();
+  }
+
+  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+    * 
+    * This constructor is a shortcut for the default constructor followed
+    * by a call to compute().
+    * 
+    * \warning this class stores a reference to the matrix A as well as some
+    * precomputed values that depend on it. Therefore, if \a A is changed
+    * this class becomes invalid. Call compute() to update it with the new
+    * matrix A, or modify a copy of A.
+    */
+  IterativeSolverBase(const MatrixType& A)
+  {
+    init();
+    compute(A);
+  }
+
+  ~IterativeSolverBase() {}
+  
+  /** Initializes the iterative solver for the sparcity pattern of the matrix \a A for further solving \c Ax=b problems.
+    *
+    * Currently, this function mostly call analyzePattern on the preconditioner. In the future
+    * we might, for instance, implement column reodering for faster matrix vector products.
+    */
+  Derived& analyzePattern(const MatrixType& A)
+  {
+    m_preconditioner.analyzePattern(A);
+    m_isInitialized = true;
+    m_analysisIsOk = true;
+    m_info = Success;
+    return derived();
+  }
+  
+  /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
+    *
+    * Currently, this function mostly call factorize on the preconditioner.
+    *
+    * \warning this class stores a reference to the matrix A as well as some
+    * precomputed values that depend on it. Therefore, if \a A is changed
+    * this class becomes invalid. Call compute() to update it with the new
+    * matrix A, or modify a copy of A.
+    */
+  Derived& factorize(const MatrixType& A)
+  {
+    eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); 
+    mp_matrix = &A;
+    m_preconditioner.factorize(A);
+    m_factorizationIsOk = true;
+    m_info = Success;
+    return derived();
+  }
+
+  /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
+    *
+    * Currently, this function mostly initialized/compute the preconditioner. In the future
+    * we might, for instance, implement column reodering for faster matrix vector products.
+    *
+    * \warning this class stores a reference to the matrix A as well as some
+    * precomputed values that depend on it. Therefore, if \a A is changed
+    * this class becomes invalid. Call compute() to update it with the new
+    * matrix A, or modify a copy of A.
+    */
+  Derived& compute(const MatrixType& A)
+  {
+    mp_matrix = &A;
+    m_preconditioner.compute(A);
+    m_isInitialized = true;
+    m_analysisIsOk = true;
+    m_factorizationIsOk = true;
+    m_info = Success;
+    return derived();
+  }
+
+  /** \internal */
+  Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; }
+  /** \internal */
+  Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; }
+
+  /** \returns the tolerance threshold used by the stopping criteria */
+  RealScalar tolerance() const { return m_tolerance; }
+  
+  /** Sets the tolerance threshold used by the stopping criteria */
+  Derived& setTolerance(const RealScalar& tolerance)
+  {
+    m_tolerance = tolerance;
+    return derived();
+  }
+
+  /** \returns a read-write reference to the preconditioner for custom configuration. */
+  Preconditioner& preconditioner() { return m_preconditioner; }
+  
+  /** \returns a read-only reference to the preconditioner. */
+  const Preconditioner& preconditioner() const { return m_preconditioner; }
+
+  /** \returns the max number of iterations */
+  int maxIterations() const
+  {
+    return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations;
+  }
+  
+  /** Sets the max number of iterations */
+  Derived& setMaxIterations(int maxIters)
+  {
+    m_maxIterations = maxIters;
+    return derived();
+  }
+
+  /** \returns the number of iterations performed during the last solve */
+  int iterations() const
+  {
+    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+    return m_iterations;
+  }
+
+  /** \returns the tolerance error reached during the last solve */
+  RealScalar error() const
+  {
+    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+    return m_error;
+  }
+
+  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+    *
+    * \sa compute()
+    */
+  template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
+  solve(const MatrixBase<Rhs>& b) const
+  {
+    eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
+    eigen_assert(rows()==b.rows()
+              && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
+    return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
+  }
+  
+  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+    *
+    * \sa compute()
+    */
+  template<typename Rhs>
+  inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs>
+  solve(const SparseMatrixBase<Rhs>& b) const
+  {
+    eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
+    eigen_assert(rows()==b.rows()
+              && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
+    return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived());
+  }
+
+  /** \returns Success if the iterations converged, and NoConvergence otherwise. */
+  ComputationInfo info() const
+  {
+    eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
+    return m_info;
+  }
+  
+  /** \internal */
+  template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
+  void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
+  {
+    eigen_assert(rows()==b.rows());
+    
+    int rhsCols = b.cols();
+    int size = b.rows();
+    Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
+    Eigen::Matrix<DestScalar,Dynamic,1> tx(size);
+    for(int k=0; k<rhsCols; ++k)
+    {
+      tb = b.col(k);
+      tx = derived().solve(tb);
+      dest.col(k) = tx.sparseView(0);
+    }
+  }
+
+protected:
+  void init()
+  {
+    m_isInitialized = false;
+    m_analysisIsOk = false;
+    m_factorizationIsOk = false;
+    m_maxIterations = -1;
+    m_tolerance = NumTraits<Scalar>::epsilon();
+  }
+  const MatrixType* mp_matrix;
+  Preconditioner m_preconditioner;
+
+  int m_maxIterations;
+  RealScalar m_tolerance;
+  
+  mutable RealScalar m_error;
+  mutable int m_iterations;
+  mutable ComputationInfo m_info;
+  mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk;
+};
+
+namespace internal {
+ 
+template<typename Derived, typename Rhs>
+struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs>
+  : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs>
+{
+  typedef IterativeSolverBase<Derived> Dec;
+  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec().derived()._solve_sparse(rhs(),dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_ITERATIVE_SOLVER_BASE_H