Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
new file mode 100644
index 0000000..4fec8af
--- /dev/null
+++ b/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
@@ -0,0 +1,160 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
+#define EIGEN_MATRIXBASEEIGENVALUES_H
+
+namespace Eigen { 
+
+namespace internal {
+
+template<typename Derived, bool IsComplex>
+struct eigenvalues_selector
+{
+  // this is the implementation for the case IsComplex = true
+  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
+  run(const MatrixBase<Derived>& m)
+  {
+    typedef typename Derived::PlainObject PlainObject;
+    PlainObject m_eval(m);
+    return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
+  }
+};
+
+template<typename Derived>
+struct eigenvalues_selector<Derived, false>
+{
+  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
+  run(const MatrixBase<Derived>& m)
+  {
+    typedef typename Derived::PlainObject PlainObject;
+    PlainObject m_eval(m);
+    return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
+  }
+};
+
+} // end namespace internal
+
+/** \brief Computes the eigenvalues of a matrix 
+  * \returns Column vector containing the eigenvalues.
+  *
+  * \eigenvalues_module
+  * This function computes the eigenvalues with the help of the EigenSolver
+  * class (for real matrices) or the ComplexEigenSolver class (for complex
+  * matrices). 
+  *
+  * The eigenvalues are repeated according to their algebraic multiplicity,
+  * so there are as many eigenvalues as rows in the matrix.
+  *
+  * The SelfAdjointView class provides a better algorithm for selfadjoint
+  * matrices.
+  *
+  * Example: \include MatrixBase_eigenvalues.cpp
+  * Output: \verbinclude MatrixBase_eigenvalues.out
+  *
+  * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
+  *     SelfAdjointView::eigenvalues()
+  */
+template<typename Derived>
+inline typename MatrixBase<Derived>::EigenvaluesReturnType
+MatrixBase<Derived>::eigenvalues() const
+{
+  typedef typename internal::traits<Derived>::Scalar Scalar;
+  return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
+}
+
+/** \brief Computes the eigenvalues of a matrix
+  * \returns Column vector containing the eigenvalues.
+  *
+  * \eigenvalues_module
+  * This function computes the eigenvalues with the help of the
+  * SelfAdjointEigenSolver class.  The eigenvalues are repeated according to
+  * their algebraic multiplicity, so there are as many eigenvalues as rows in
+  * the matrix.
+  *
+  * Example: \include SelfAdjointView_eigenvalues.cpp
+  * Output: \verbinclude SelfAdjointView_eigenvalues.out
+  *
+  * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
+  */
+template<typename MatrixType, unsigned int UpLo> 
+inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
+SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
+{
+  typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
+  PlainObject thisAsMatrix(*this);
+  return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
+}
+
+
+
+/** \brief Computes the L2 operator norm
+  * \returns Operator norm of the matrix.
+  *
+  * \eigenvalues_module
+  * This function computes the L2 operator norm of a matrix, which is also
+  * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
+  * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
+  * where the maximum is over all vectors and the norm on the right is the
+  * Euclidean vector norm. The norm equals the largest singular value, which is
+  * the square root of the largest eigenvalue of the positive semi-definite
+  * matrix \f$ A^*A \f$.
+  *
+  * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
+  * by SelfAdjointView::eigenvalues(), to compute the operator norm of a
+  * matrix.  The SelfAdjointView class provides a better algorithm for
+  * selfadjoint matrices.
+  *
+  * Example: \include MatrixBase_operatorNorm.cpp
+  * Output: \verbinclude MatrixBase_operatorNorm.out
+  *
+  * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
+  */
+template<typename Derived>
+inline typename MatrixBase<Derived>::RealScalar
+MatrixBase<Derived>::operatorNorm() const
+{
+  using std::sqrt;
+  typename Derived::PlainObject m_eval(derived());
+  // FIXME if it is really guaranteed that the eigenvalues are already sorted,
+  // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
+  return sqrt((m_eval*m_eval.adjoint())
+                 .eval()
+		 .template selfadjointView<Lower>()
+		 .eigenvalues()
+		 .maxCoeff()
+		 );
+}
+
+/** \brief Computes the L2 operator norm
+  * \returns Operator norm of the matrix.
+  *
+  * \eigenvalues_module
+  * This function computes the L2 operator norm of a self-adjoint matrix. For a
+  * self-adjoint matrix, the operator norm is the largest eigenvalue.
+  *
+  * The current implementation uses the eigenvalues of the matrix, as computed
+  * by eigenvalues(), to compute the operator norm of the matrix.
+  *
+  * Example: \include SelfAdjointView_operatorNorm.cpp
+  * Output: \verbinclude SelfAdjointView_operatorNorm.out
+  *
+  * \sa eigenvalues(), MatrixBase::operatorNorm()
+  */
+template<typename MatrixType, unsigned int UpLo>
+inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
+SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
+{
+  return eigenvalues().cwiseAbs().maxCoeff();
+}
+
+} // end namespace Eigen
+
+#endif