Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Eigenvalues/CMakeLists.txt b/Eigen/src/Eigenvalues/CMakeLists.txt
new file mode 100644
index 0000000..193e026
--- /dev/null
+++ b/Eigen/src/Eigenvalues/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_EIGENVALUES_SRCS "*.h")
+
+INSTALL(FILES
+  ${Eigen_EIGENVALUES_SRCS}
+  DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigenvalues COMPONENT Devel
+  )
diff --git a/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/Eigen/src/Eigenvalues/ComplexEigenSolver.h
new file mode 100644
index 0000000..417c729
--- /dev/null
+++ b/Eigen/src/Eigenvalues/ComplexEigenSolver.h
@@ -0,0 +1,341 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Claire Maurice
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
+#define EIGEN_COMPLEX_EIGEN_SOLVER_H
+
+#include "./ComplexSchur.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class ComplexEigenSolver
+  *
+  * \brief Computes eigenvalues and eigenvectors of general complex matrices
+  *
+  * \tparam _MatrixType the type of the matrix of which we are
+  * computing the eigendecomposition; this is expected to be an
+  * instantiation of the Matrix class template.
+  *
+  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
+  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
+  * \f$.  If \f$ D \f$ is a diagonal matrix with the eigenvalues on
+  * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
+  * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
+  * almost always invertible, in which case we have \f$ A = V D V^{-1}
+  * \f$. This is called the eigendecomposition.
+  *
+  * The main function in this class is compute(), which computes the
+  * eigenvalues and eigenvectors of a given function. The
+  * documentation for that function contains an example showing the
+  * main features of the class.
+  *
+  * \sa class EigenSolver, class SelfAdjointEigenSolver
+  */
+template<typename _MatrixType> class ComplexEigenSolver
+{
+  public:
+
+    /** \brief Synonym for the template parameter \p _MatrixType. */
+    typedef _MatrixType MatrixType;
+
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+
+    /** \brief Scalar type for matrices of type #MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Complex scalar type for #MatrixType.
+      *
+      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+      * \c float or \c double) and just \c Scalar if #Scalar is
+      * complex.
+      */
+    typedef std::complex<RealScalar> ComplexScalar;
+
+    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+      *
+      * This is a column vector with entries of type #ComplexScalar.
+      * The length of the vector is the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
+
+    /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
+      *
+      * This is a square matrix with entries of type #ComplexScalar.
+      * The size is the same as the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
+
+    /** \brief Default constructor.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute().
+      */
+    ComplexEigenSolver()
+            : m_eivec(),
+              m_eivalues(),
+              m_schur(),
+              m_isInitialized(false),
+              m_eigenvectorsOk(false),
+              m_matX()
+    {}
+
+    /** \brief Default Constructor with memory preallocation
+      *
+      * Like the default constructor but with preallocation of the internal data
+      * according to the specified problem \a size.
+      * \sa ComplexEigenSolver()
+      */
+    ComplexEigenSolver(Index size)
+            : m_eivec(size, size),
+              m_eivalues(size),
+              m_schur(size),
+              m_isInitialized(false),
+              m_eigenvectorsOk(false),
+              m_matX(size, size)
+    {}
+
+    /** \brief Constructor; computes eigendecomposition of given matrix.
+      *
+      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are
+      *    computed.
+      *
+      * This constructor calls compute() to compute the eigendecomposition.
+      */
+      ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
+            : m_eivec(matrix.rows(),matrix.cols()),
+              m_eivalues(matrix.cols()),
+              m_schur(matrix.rows()),
+              m_isInitialized(false),
+              m_eigenvectorsOk(false),
+              m_matX(matrix.rows(),matrix.cols())
+    {
+      compute(matrix, computeEigenvectors);
+    }
+
+    /** \brief Returns the eigenvectors of given matrix.
+      *
+      * \returns  A const reference to the matrix whose columns are the eigenvectors.
+      *
+      * \pre Either the constructor
+      * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
+      * function compute(const MatrixType& matrix, bool) has been called before
+      * to compute the eigendecomposition of a matrix, and
+      * \p computeEigenvectors was set to true (the default).
+      *
+      * This function returns a matrix whose columns are the eigenvectors. Column
+      * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
+      * \f$ as returned by eigenvalues().  The eigenvectors are normalized to
+      * have (Euclidean) norm equal to one. The matrix returned by this
+      * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
+      * V^{-1} \f$, if it exists.
+      *
+      * Example: \include ComplexEigenSolver_eigenvectors.cpp
+      * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
+      */
+    const EigenvectorType& eigenvectors() const
+    {
+      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+      return m_eivec;
+    }
+
+    /** \brief Returns the eigenvalues of given matrix.
+      *
+      * \returns A const reference to the column vector containing the eigenvalues.
+      *
+      * \pre Either the constructor
+      * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
+      * function compute(const MatrixType& matrix, bool) has been called before
+      * to compute the eigendecomposition of a matrix.
+      *
+      * This function returns a column vector containing the
+      * eigenvalues. Eigenvalues are repeated according to their
+      * algebraic multiplicity, so there are as many eigenvalues as
+      * rows in the matrix. The eigenvalues are not sorted in any particular
+      * order.
+      *
+      * Example: \include ComplexEigenSolver_eigenvalues.cpp
+      * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
+      */
+    const EigenvalueType& eigenvalues() const
+    {
+      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+      return m_eivalues;
+    }
+
+    /** \brief Computes eigendecomposition of given matrix.
+      *
+      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are
+      *    computed.
+      * \returns    Reference to \c *this
+      *
+      * This function computes the eigenvalues of the complex matrix \p matrix.
+      * The eigenvalues() function can be used to retrieve them.  If
+      * \p computeEigenvectors is true, then the eigenvectors are also computed
+      * and can be retrieved by calling eigenvectors().
+      *
+      * The matrix is first reduced to Schur form using the
+      * ComplexSchur class. The Schur decomposition is then used to
+      * compute the eigenvalues and eigenvectors.
+      *
+      * The cost of the computation is dominated by the cost of the
+      * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
+      * is the size of the matrix.
+      *
+      * Example: \include ComplexEigenSolver_compute.cpp
+      * Output: \verbinclude ComplexEigenSolver_compute.out
+      */
+    ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
+
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
+      return m_schur.info();
+    }
+
+    /** \brief Sets the maximum number of iterations allowed. */
+    ComplexEigenSolver& setMaxIterations(Index maxIters)
+    {
+      m_schur.setMaxIterations(maxIters);
+      return *this;
+    }
+
+    /** \brief Returns the maximum number of iterations. */
+    Index getMaxIterations()
+    {
+      return m_schur.getMaxIterations();
+    }
+
+  protected:
+    
+    static void check_template_parameters()
+    {
+      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+    }
+    
+    EigenvectorType m_eivec;
+    EigenvalueType m_eivalues;
+    ComplexSchur<MatrixType> m_schur;
+    bool m_isInitialized;
+    bool m_eigenvectorsOk;
+    EigenvectorType m_matX;
+
+  private:
+    void doComputeEigenvectors(const RealScalar& matrixnorm);
+    void sortEigenvalues(bool computeEigenvectors);
+};
+
+
+template<typename MatrixType>
+ComplexEigenSolver<MatrixType>& 
+ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
+{
+  check_template_parameters();
+  
+  // this code is inspired from Jampack
+  eigen_assert(matrix.cols() == matrix.rows());
+
+  // Do a complex Schur decomposition, A = U T U^*
+  // The eigenvalues are on the diagonal of T.
+  m_schur.compute(matrix, computeEigenvectors);
+
+  if(m_schur.info() == Success)
+  {
+    m_eivalues = m_schur.matrixT().diagonal();
+    if(computeEigenvectors)
+      doComputeEigenvectors(matrix.norm());
+    sortEigenvalues(computeEigenvectors);
+  }
+
+  m_isInitialized = true;
+  m_eigenvectorsOk = computeEigenvectors;
+  return *this;
+}
+
+
+template<typename MatrixType>
+void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
+{
+  const Index n = m_eivalues.size();
+
+  // Compute X such that T = X D X^(-1), where D is the diagonal of T.
+  // The matrix X is unit triangular.
+  m_matX = EigenvectorType::Zero(n, n);
+  for(Index k=n-1 ; k>=0 ; k--)
+  {
+    m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
+    // Compute X(i,k) using the (i,k) entry of the equation X T = D X
+    for(Index i=k-1 ; i>=0 ; i--)
+    {
+      m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
+      if(k-i-1>0)
+        m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
+      ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
+      if(z==ComplexScalar(0))
+      {
+        // If the i-th and k-th eigenvalue are equal, then z equals 0.
+        // Use a small value instead, to prevent division by zero.
+        numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
+      }
+      m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
+    }
+  }
+
+  // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
+  m_eivec.noalias() = m_schur.matrixU() * m_matX;
+  // .. and normalize the eigenvectors
+  for(Index k=0 ; k<n ; k++)
+  {
+    m_eivec.col(k).normalize();
+  }
+}
+
+
+template<typename MatrixType>
+void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
+{
+  const Index n =  m_eivalues.size();
+  for (Index i=0; i<n; i++)
+  {
+    Index k;
+    m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
+    if (k != 0)
+    {
+      k += i;
+      std::swap(m_eivalues[k],m_eivalues[i]);
+      if(computeEigenvectors)
+	m_eivec.col(i).swap(m_eivec.col(k));
+    }
+  }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
diff --git a/Eigen/src/Eigenvalues/ComplexSchur.h b/Eigen/src/Eigenvalues/ComplexSchur.h
new file mode 100644
index 0000000..89e6cad
--- /dev/null
+++ b/Eigen/src/Eigenvalues/ComplexSchur.h
@@ -0,0 +1,456 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Claire Maurice
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_SCHUR_H
+#define EIGEN_COMPLEX_SCHUR_H
+
+#include "./HessenbergDecomposition.h"
+
+namespace Eigen { 
+
+namespace internal {
+template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class ComplexSchur
+  *
+  * \brief Performs a complex Schur decomposition of a real or complex square matrix
+  *
+  * \tparam _MatrixType the type of the matrix of which we are
+  * computing the Schur decomposition; this is expected to be an
+  * instantiation of the Matrix class template.
+  *
+  * Given a real or complex square matrix A, this class computes the
+  * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
+  * complex matrix, and T is a complex upper triangular matrix.  The
+  * diagonal of the matrix T corresponds to the eigenvalues of the
+  * matrix A.
+  *
+  * Call the function compute() to compute the Schur decomposition of
+  * a given matrix. Alternatively, you can use the 
+  * ComplexSchur(const MatrixType&, bool) constructor which computes
+  * the Schur decomposition at construction time. Once the
+  * decomposition is computed, you can use the matrixU() and matrixT()
+  * functions to retrieve the matrices U and V in the decomposition.
+  *
+  * \note This code is inspired from Jampack
+  *
+  * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
+  */
+template<typename _MatrixType> class ComplexSchur
+{
+  public:
+    typedef _MatrixType MatrixType;
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+
+    /** \brief Scalar type for matrices of type \p _MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Complex scalar type for \p _MatrixType. 
+      *
+      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+      * \c float or \c double) and just \c Scalar if #Scalar is
+      * complex.
+      */
+    typedef std::complex<RealScalar> ComplexScalar;
+
+    /** \brief Type for the matrices in the Schur decomposition.
+      *
+      * This is a square matrix with entries of type #ComplexScalar. 
+      * The size is the same as the size of \p _MatrixType.
+      */
+    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
+
+    /** \brief Default constructor.
+      *
+      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
+      *
+      * The default constructor is useful in cases in which the user
+      * intends to perform decompositions via compute().  The \p size
+      * parameter is only used as a hint. It is not an error to give a
+      * wrong \p size, but it may impair performance.
+      *
+      * \sa compute() for an example.
+      */
+    ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
+      : m_matT(size,size),
+        m_matU(size,size),
+        m_hess(size),
+        m_isInitialized(false),
+        m_matUisUptodate(false),
+        m_maxIters(-1)
+    {}
+
+    /** \brief Constructor; computes Schur decomposition of given matrix. 
+      * 
+      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
+      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
+      *
+      * This constructor calls compute() to compute the Schur decomposition.
+      *
+      * \sa matrixT() and matrixU() for examples.
+      */
+    ComplexSchur(const MatrixType& matrix, bool computeU = true)
+      : m_matT(matrix.rows(),matrix.cols()),
+        m_matU(matrix.rows(),matrix.cols()),
+        m_hess(matrix.rows()),
+        m_isInitialized(false),
+        m_matUisUptodate(false),
+        m_maxIters(-1)
+    {
+      compute(matrix, computeU);
+    }
+
+    /** \brief Returns the unitary matrix in the Schur decomposition. 
+      *
+      * \returns A const reference to the matrix U.
+      *
+      * It is assumed that either the constructor
+      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
+      * member function compute(const MatrixType& matrix, bool computeU)
+      * has been called before to compute the Schur decomposition of a
+      * matrix, and that \p computeU was set to true (the default
+      * value).
+      *
+      * Example: \include ComplexSchur_matrixU.cpp
+      * Output: \verbinclude ComplexSchur_matrixU.out
+      */
+    const ComplexMatrixType& matrixU() const
+    {
+      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
+      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
+      return m_matU;
+    }
+
+    /** \brief Returns the triangular matrix in the Schur decomposition. 
+      *
+      * \returns A const reference to the matrix T.
+      *
+      * It is assumed that either the constructor
+      * ComplexSchur(const MatrixType& matrix, bool computeU) or the
+      * member function compute(const MatrixType& matrix, bool computeU)
+      * has been called before to compute the Schur decomposition of a
+      * matrix.
+      *
+      * Note that this function returns a plain square matrix. If you want to reference
+      * only the upper triangular part, use:
+      * \code schur.matrixT().triangularView<Upper>() \endcode 
+      *
+      * Example: \include ComplexSchur_matrixT.cpp
+      * Output: \verbinclude ComplexSchur_matrixT.out
+      */
+    const ComplexMatrixType& matrixT() const
+    {
+      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
+      return m_matT;
+    }
+
+    /** \brief Computes Schur decomposition of given matrix. 
+      * 
+      * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed.
+      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
+
+      * \returns    Reference to \c *this
+      *
+      * The Schur decomposition is computed by first reducing the
+      * matrix to Hessenberg form using the class
+      * HessenbergDecomposition. The Hessenberg matrix is then reduced
+      * to triangular form by performing QR iterations with a single
+      * shift. The cost of computing the Schur decomposition depends
+      * on the number of iterations; as a rough guide, it may be taken
+      * on the number of iterations; as a rough guide, it may be taken
+      * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
+      * if \a computeU is false.
+      *
+      * Example: \include ComplexSchur_compute.cpp
+      * Output: \verbinclude ComplexSchur_compute.out
+      *
+      * \sa compute(const MatrixType&, bool, Index)
+      */
+    ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
+    
+    /** \brief Compute Schur decomposition from a given Hessenberg matrix
+     *  \param[in] matrixH Matrix in Hessenberg form H
+     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
+     *  \param computeU Computes the matriX U of the Schur vectors
+     * \return Reference to \c *this
+     * 
+     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
+     *  using either the class HessenbergDecomposition or another mean. 
+     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
+     *  When computeU is true, this routine computes the matrix U such that 
+     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
+     * 
+     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
+     * is not available, the user should give an identity matrix (Q.setIdentity())
+     * 
+     * \sa compute(const MatrixType&, bool)
+     */
+    template<typename HessMatrixType, typename OrthMatrixType>
+    ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true);
+
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
+      return m_info;
+    }
+
+    /** \brief Sets the maximum number of iterations allowed. 
+      *
+      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
+      * of the matrix.
+      */
+    ComplexSchur& setMaxIterations(Index maxIters)
+    {
+      m_maxIters = maxIters;
+      return *this;
+    }
+
+    /** \brief Returns the maximum number of iterations. */
+    Index getMaxIterations()
+    {
+      return m_maxIters;
+    }
+
+    /** \brief Maximum number of iterations per row.
+      *
+      * If not otherwise specified, the maximum number of iterations is this number times the size of the
+      * matrix. It is currently set to 30.
+      */
+    static const int m_maxIterationsPerRow = 30;
+
+  protected:
+    ComplexMatrixType m_matT, m_matU;
+    HessenbergDecomposition<MatrixType> m_hess;
+    ComputationInfo m_info;
+    bool m_isInitialized;
+    bool m_matUisUptodate;
+    Index m_maxIters;
+
+  private:  
+    bool subdiagonalEntryIsNeglegible(Index i);
+    ComplexScalar computeShift(Index iu, Index iter);
+    void reduceToTriangularForm(bool computeU);
+    friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
+};
+
+/** If m_matT(i+1,i) is neglegible in floating point arithmetic
+  * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
+  * return true, else return false. */
+template<typename MatrixType>
+inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
+{
+  RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
+  RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
+  if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
+  {
+    m_matT.coeffRef(i+1,i) = ComplexScalar(0);
+    return true;
+  }
+  return false;
+}
+
+
+/** Compute the shift in the current QR iteration. */
+template<typename MatrixType>
+typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
+{
+  using std::abs;
+  if (iter == 10 || iter == 20) 
+  {
+    // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
+    return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
+  }
+
+  // compute the shift as one of the eigenvalues of t, the 2x2
+  // diagonal block on the bottom of the active submatrix
+  Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
+  RealScalar normt = t.cwiseAbs().sum();
+  t /= normt;     // the normalization by sf is to avoid under/overflow
+
+  ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
+  ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
+  ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
+  ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
+  ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
+  ComplexScalar eival1 = (trace + disc) / RealScalar(2);
+  ComplexScalar eival2 = (trace - disc) / RealScalar(2);
+
+  if(numext::norm1(eival1) > numext::norm1(eival2))
+    eival2 = det / eival1;
+  else
+    eival1 = det / eival2;
+
+  // choose the eigenvalue closest to the bottom entry of the diagonal
+  if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
+    return normt * eival1;
+  else
+    return normt * eival2;
+}
+
+
+template<typename MatrixType>
+ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
+{
+  m_matUisUptodate = false;
+  eigen_assert(matrix.cols() == matrix.rows());
+
+  if(matrix.cols() == 1)
+  {
+    m_matT = matrix.template cast<ComplexScalar>();
+    if(computeU)  m_matU = ComplexMatrixType::Identity(1,1);
+    m_info = Success;
+    m_isInitialized = true;
+    m_matUisUptodate = computeU;
+    return *this;
+  }
+
+  internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
+  computeFromHessenberg(m_matT, m_matU, computeU);
+  return *this;
+}
+
+template<typename MatrixType>
+template<typename HessMatrixType, typename OrthMatrixType>
+ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
+{
+  m_matT = matrixH;
+  if(computeU)
+    m_matU = matrixQ;
+  reduceToTriangularForm(computeU);
+  return *this;
+}
+namespace internal {
+
+/* Reduce given matrix to Hessenberg form */
+template<typename MatrixType, bool IsComplex>
+struct complex_schur_reduce_to_hessenberg
+{
+  // this is the implementation for the case IsComplex = true
+  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
+  {
+    _this.m_hess.compute(matrix);
+    _this.m_matT = _this.m_hess.matrixH();
+    if(computeU)  _this.m_matU = _this.m_hess.matrixQ();
+  }
+};
+
+template<typename MatrixType>
+struct complex_schur_reduce_to_hessenberg<MatrixType, false>
+{
+  static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
+  {
+    typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
+
+    // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
+    _this.m_hess.compute(matrix);
+    _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
+    if(computeU)  
+    {
+      // This may cause an allocation which seems to be avoidable
+      MatrixType Q = _this.m_hess.matrixQ(); 
+      _this.m_matU = Q.template cast<ComplexScalar>();
+    }
+  }
+};
+
+} // end namespace internal
+
+// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
+template<typename MatrixType>
+void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
+{  
+  Index maxIters = m_maxIters;
+  if (maxIters == -1)
+    maxIters = m_maxIterationsPerRow * m_matT.rows();
+
+  // The matrix m_matT is divided in three parts. 
+  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
+  // Rows il,...,iu is the part we are working on (the active submatrix).
+  // Rows iu+1,...,end are already brought in triangular form.
+  Index iu = m_matT.cols() - 1;
+  Index il;
+  Index iter = 0; // number of iterations we are working on the (iu,iu) element
+  Index totalIter = 0; // number of iterations for whole matrix
+
+  while(true)
+  {
+    // find iu, the bottom row of the active submatrix
+    while(iu > 0)
+    {
+      if(!subdiagonalEntryIsNeglegible(iu-1)) break;
+      iter = 0;
+      --iu;
+    }
+
+    // if iu is zero then we are done; the whole matrix is triangularized
+    if(iu==0) break;
+
+    // if we spent too many iterations, we give up
+    iter++;
+    totalIter++;
+    if(totalIter > maxIters) break;
+
+    // find il, the top row of the active submatrix
+    il = iu-1;
+    while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
+    {
+      --il;
+    }
+
+    /* perform the QR step using Givens rotations. The first rotation
+       creates a bulge; the (il+2,il) element becomes nonzero. This
+       bulge is chased down to the bottom of the active submatrix. */
+
+    ComplexScalar shift = computeShift(iu, iter);
+    JacobiRotation<ComplexScalar> rot;
+    rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
+    m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
+    m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
+    if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
+
+    for(Index i=il+1 ; i<iu ; i++)
+    {
+      rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
+      m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
+      m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
+      m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
+      if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
+    }
+  }
+
+  if(totalIter <= maxIters)
+    m_info = Success;
+  else
+    m_info = NoConvergence;
+
+  m_isInitialized = true;
+  m_matUisUptodate = computeU;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_SCHUR_H
diff --git a/Eigen/src/Eigenvalues/ComplexSchur_MKL.h b/Eigen/src/Eigenvalues/ComplexSchur_MKL.h
new file mode 100644
index 0000000..91496ae
--- /dev/null
+++ b/Eigen/src/Eigenvalues/ComplexSchur_MKL.h
@@ -0,0 +1,94 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+   list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+   this list of conditions and the following disclaimer in the documentation
+   and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+   be used to endorse or promote products derived from this software without
+   specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ *   Content : Eigen bindings to Intel(R) MKL
+ *    Complex Schur needed to complex unsymmetrical eigenvalues/eigenvectors.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_COMPLEX_SCHUR_MKL_H
+#define EIGEN_COMPLEX_SCHUR_MKL_H
+
+#include "Eigen/src/Core/util/MKL_support.h"
+
+namespace Eigen { 
+
+/** \internal Specialization for the data types supported by MKL */
+
+#define EIGEN_MKL_SCHUR_COMPLEX(EIGTYPE, MKLTYPE, MKLPREFIX, MKLPREFIX_U, EIGCOLROW, MKLCOLROW) \
+template<> inline \
+ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
+ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
+{ \
+  typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
+  typedef MatrixType::Scalar Scalar; \
+  typedef MatrixType::RealScalar RealScalar; \
+  typedef std::complex<RealScalar> ComplexScalar; \
+\
+  eigen_assert(matrix.cols() == matrix.rows()); \
+\
+  m_matUisUptodate = false; \
+  if(matrix.cols() == 1) \
+  { \
+    m_matT = matrix.cast<ComplexScalar>(); \
+    if(computeU)  m_matU = ComplexMatrixType::Identity(1,1); \
+      m_info = Success; \
+      m_isInitialized = true; \
+      m_matUisUptodate = computeU; \
+      return *this; \
+  } \
+  lapack_int n = matrix.cols(), sdim, info; \
+  lapack_int lda = matrix.outerStride(); \
+  lapack_int matrix_order = MKLCOLROW; \
+  char jobvs, sort='N'; \
+  LAPACK_##MKLPREFIX_U##_SELECT1 select = 0; \
+  jobvs = (computeU) ? 'V' : 'N'; \
+  m_matU.resize(n, n); \
+  lapack_int ldvs  = m_matU.outerStride(); \
+  m_matT = matrix; \
+  Matrix<EIGTYPE, Dynamic, Dynamic> w; \
+  w.resize(n, 1);\
+  info = LAPACKE_##MKLPREFIX##gees( matrix_order, jobvs, sort, select, n, (MKLTYPE*)m_matT.data(), lda, &sdim, (MKLTYPE*)w.data(), (MKLTYPE*)m_matU.data(), ldvs ); \
+  if(info == 0) \
+    m_info = Success; \
+  else \
+    m_info = NoConvergence; \
+\
+  m_isInitialized = true; \
+  m_matUisUptodate = computeU; \
+  return *this; \
+\
+}
+
+EIGEN_MKL_SCHUR_COMPLEX(dcomplex, MKL_Complex16, z, Z, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_SCHUR_COMPLEX(scomplex, MKL_Complex8,  c, C, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_SCHUR_COMPLEX(dcomplex, MKL_Complex16, z, Z, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_MKL_SCHUR_COMPLEX(scomplex, MKL_Complex8,  c, C, RowMajor, LAPACK_ROW_MAJOR)
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_SCHUR_MKL_H
diff --git a/Eigen/src/Eigenvalues/EigenSolver.h b/Eigen/src/Eigenvalues/EigenSolver.h
new file mode 100644
index 0000000..20c59a7
--- /dev/null
+++ b/Eigen/src/Eigenvalues/EigenSolver.h
@@ -0,0 +1,607 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EIGENSOLVER_H
+#define EIGEN_EIGENSOLVER_H
+
+#include "./RealSchur.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class EigenSolver
+  *
+  * \brief Computes eigenvalues and eigenvectors of general matrices
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the
+  * eigendecomposition; this is expected to be an instantiation of the Matrix
+  * class template. Currently, only real matrices are supported.
+  *
+  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
+  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If
+  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
+  *
+  * The eigenvalues and eigenvectors of a matrix may be complex, even when the
+  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
+  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
+  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
+  * have blocks of the form
+  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
+  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These
+  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
+  * this variant of the eigendecomposition the pseudo-eigendecomposition.
+  *
+  * Call the function compute() to compute the eigenvalues and eigenvectors of
+  * a given matrix. Alternatively, you can use the 
+  * EigenSolver(const MatrixType&, bool) constructor which computes the
+  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+  * eigenvectors() functions. The pseudoEigenvalueMatrix() and
+  * pseudoEigenvectors() methods allow the construction of the
+  * pseudo-eigendecomposition.
+  *
+  * The documentation for EigenSolver(const MatrixType&, bool) contains an
+  * example of the typical use of this class.
+  *
+  * \note The implementation is adapted from
+  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+  * Their code is based on EISPACK.
+  *
+  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+  */
+template<typename _MatrixType> class EigenSolver
+{
+  public:
+
+    /** \brief Synonym for the template parameter \p _MatrixType. */
+    typedef _MatrixType MatrixType;
+
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+
+    /** \brief Scalar type for matrices of type #MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Complex scalar type for #MatrixType. 
+      *
+      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+      * \c float or \c double) and just \c Scalar if #Scalar is
+      * complex.
+      */
+    typedef std::complex<RealScalar> ComplexScalar;
+
+    /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 
+      *
+      * This is a column vector with entries of type #ComplexScalar.
+      * The length of the vector is the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+
+    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
+      *
+      * This is a square matrix with entries of type #ComplexScalar. 
+      * The size is the same as the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+    /** \brief Default constructor.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+      *
+      * \sa compute() for an example.
+      */
+ EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
+
+    /** \brief Default constructor with memory preallocation
+      *
+      * Like the default constructor but with preallocation of the internal data
+      * according to the specified problem \a size.
+      * \sa EigenSolver()
+      */
+    EigenSolver(Index size)
+      : m_eivec(size, size),
+        m_eivalues(size),
+        m_isInitialized(false),
+        m_eigenvectorsOk(false),
+        m_realSchur(size),
+        m_matT(size, size), 
+        m_tmp(size)
+    {}
+
+    /** \brief Constructor; computes eigendecomposition of given matrix. 
+      * 
+      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are
+      *    computed. 
+      *
+      * This constructor calls compute() to compute the eigenvalues
+      * and eigenvectors.
+      *
+      * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
+      * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
+      *
+      * \sa compute()
+      */
+    EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
+      : m_eivec(matrix.rows(), matrix.cols()),
+        m_eivalues(matrix.cols()),
+        m_isInitialized(false),
+        m_eigenvectorsOk(false),
+        m_realSchur(matrix.cols()),
+        m_matT(matrix.rows(), matrix.cols()), 
+        m_tmp(matrix.cols())
+    {
+      compute(matrix, computeEigenvectors);
+    }
+
+    /** \brief Returns the eigenvectors of given matrix. 
+      *
+      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
+      *
+      * \pre Either the constructor 
+      * EigenSolver(const MatrixType&,bool) or the member function
+      * compute(const MatrixType&, bool) has been called before, and
+      * \p computeEigenvectors was set to true (the default).
+      *
+      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
+      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
+      * matrix returned by this function is the matrix \f$ V \f$ in the
+      * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
+      *
+      * Example: \include EigenSolver_eigenvectors.cpp
+      * Output: \verbinclude EigenSolver_eigenvectors.out
+      *
+      * \sa eigenvalues(), pseudoEigenvectors()
+      */
+    EigenvectorsType eigenvectors() const;
+
+    /** \brief Returns the pseudo-eigenvectors of given matrix. 
+      *
+      * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors.
+      *
+      * \pre Either the constructor 
+      * EigenSolver(const MatrixType&,bool) or the member function
+      * compute(const MatrixType&, bool) has been called before, and
+      * \p computeEigenvectors was set to true (the default).
+      *
+      * The real matrix \f$ V \f$ returned by this function and the
+      * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
+      * satisfy \f$ AV = VD \f$.
+      *
+      * Example: \include EigenSolver_pseudoEigenvectors.cpp
+      * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
+      *
+      * \sa pseudoEigenvalueMatrix(), eigenvectors()
+      */
+    const MatrixType& pseudoEigenvectors() const
+    {
+      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+      return m_eivec;
+    }
+
+    /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
+      *
+      * \returns  A block-diagonal matrix.
+      *
+      * \pre Either the constructor 
+      * EigenSolver(const MatrixType&,bool) or the member function
+      * compute(const MatrixType&, bool) has been called before.
+      *
+      * The matrix \f$ D \f$ returned by this function is real and
+      * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
+      * blocks of the form
+      * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
+      * These blocks are not sorted in any particular order.
+      * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
+      * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
+      *
+      * \sa pseudoEigenvectors() for an example, eigenvalues()
+      */
+    MatrixType pseudoEigenvalueMatrix() const;
+
+    /** \brief Returns the eigenvalues of given matrix. 
+      *
+      * \returns A const reference to the column vector containing the eigenvalues.
+      *
+      * \pre Either the constructor 
+      * EigenSolver(const MatrixType&,bool) or the member function
+      * compute(const MatrixType&, bool) has been called before.
+      *
+      * The eigenvalues are repeated according to their algebraic multiplicity,
+      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
+      * are not sorted in any particular order.
+      *
+      * Example: \include EigenSolver_eigenvalues.cpp
+      * Output: \verbinclude EigenSolver_eigenvalues.out
+      *
+      * \sa eigenvectors(), pseudoEigenvalueMatrix(),
+      *     MatrixBase::eigenvalues()
+      */
+    const EigenvalueType& eigenvalues() const
+    {
+      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+      return m_eivalues;
+    }
+
+    /** \brief Computes eigendecomposition of given matrix. 
+      * 
+      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are
+      *    computed. 
+      * \returns    Reference to \c *this
+      *
+      * This function computes the eigenvalues of the real matrix \p matrix.
+      * The eigenvalues() function can be used to retrieve them.  If 
+      * \p computeEigenvectors is true, then the eigenvectors are also computed
+      * and can be retrieved by calling eigenvectors().
+      *
+      * The matrix is first reduced to real Schur form using the RealSchur
+      * class. The Schur decomposition is then used to compute the eigenvalues
+      * and eigenvectors.
+      *
+      * The cost of the computation is dominated by the cost of the
+      * Schur decomposition, which is very approximately \f$ 25n^3 \f$
+      * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors 
+      * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
+      *
+      * This method reuses of the allocated data in the EigenSolver object.
+      *
+      * Example: \include EigenSolver_compute.cpp
+      * Output: \verbinclude EigenSolver_compute.out
+      */
+    EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
+
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+      return m_realSchur.info();
+    }
+
+    /** \brief Sets the maximum number of iterations allowed. */
+    EigenSolver& setMaxIterations(Index maxIters)
+    {
+      m_realSchur.setMaxIterations(maxIters);
+      return *this;
+    }
+
+    /** \brief Returns the maximum number of iterations. */
+    Index getMaxIterations()
+    {
+      return m_realSchur.getMaxIterations();
+    }
+
+  private:
+    void doComputeEigenvectors();
+
+  protected:
+    
+    static void check_template_parameters()
+    {
+      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
+    }
+    
+    MatrixType m_eivec;
+    EigenvalueType m_eivalues;
+    bool m_isInitialized;
+    bool m_eigenvectorsOk;
+    RealSchur<MatrixType> m_realSchur;
+    MatrixType m_matT;
+
+    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+    ColumnVectorType m_tmp;
+};
+
+template<typename MatrixType>
+MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
+{
+  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+  Index n = m_eivalues.rows();
+  MatrixType matD = MatrixType::Zero(n,n);
+  for (Index i=0; i<n; ++i)
+  {
+    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i))))
+      matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
+    else
+    {
+      matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
+                                       -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
+      ++i;
+    }
+  }
+  return matD;
+}
+
+template<typename MatrixType>
+typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
+{
+  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+  Index n = m_eivec.cols();
+  EigenvectorsType matV(n,n);
+  for (Index j=0; j<n; ++j)
+  {
+    if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n)
+    {
+      // we have a real eigen value
+      matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
+      matV.col(j).normalize();
+    }
+    else
+    {
+      // we have a pair of complex eigen values
+      for (Index i=0; i<n; ++i)
+      {
+        matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
+        matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
+      }
+      matV.col(j).normalize();
+      matV.col(j+1).normalize();
+      ++j;
+    }
+  }
+  return matV;
+}
+
+template<typename MatrixType>
+EigenSolver<MatrixType>& 
+EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
+{
+  check_template_parameters();
+  
+  using std::sqrt;
+  using std::abs;
+  eigen_assert(matrix.cols() == matrix.rows());
+
+  // Reduce to real Schur form.
+  m_realSchur.compute(matrix, computeEigenvectors);
+
+  if (m_realSchur.info() == Success)
+  {
+    m_matT = m_realSchur.matrixT();
+    if (computeEigenvectors)
+      m_eivec = m_realSchur.matrixU();
+  
+    // Compute eigenvalues from matT
+    m_eivalues.resize(matrix.cols());
+    Index i = 0;
+    while (i < matrix.cols()) 
+    {
+      if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) 
+      {
+        m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
+        ++i;
+      }
+      else
+      {
+        Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
+        Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
+        m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
+        m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
+        i += 2;
+      }
+    }
+    
+    // Compute eigenvectors.
+    if (computeEigenvectors)
+      doComputeEigenvectors();
+  }
+
+  m_isInitialized = true;
+  m_eigenvectorsOk = computeEigenvectors;
+
+  return *this;
+}
+
+// Complex scalar division.
+template<typename Scalar>
+std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi)
+{
+  using std::abs;
+  Scalar r,d;
+  if (abs(yr) > abs(yi))
+  {
+      r = yi/yr;
+      d = yr + r*yi;
+      return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
+  }
+  else
+  {
+      r = yr/yi;
+      d = yi + r*yr;
+      return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
+  }
+}
+
+
+template<typename MatrixType>
+void EigenSolver<MatrixType>::doComputeEigenvectors()
+{
+  using std::abs;
+  const Index size = m_eivec.cols();
+  const Scalar eps = NumTraits<Scalar>::epsilon();
+
+  // inefficient! this is already computed in RealSchur
+  Scalar norm(0);
+  for (Index j = 0; j < size; ++j)
+  {
+    norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
+  }
+  
+  // Backsubstitute to find vectors of upper triangular form
+  if (norm == 0.0)
+  {
+    return;
+  }
+
+  for (Index n = size-1; n >= 0; n--)
+  {
+    Scalar p = m_eivalues.coeff(n).real();
+    Scalar q = m_eivalues.coeff(n).imag();
+
+    // Scalar vector
+    if (q == Scalar(0))
+    {
+      Scalar lastr(0), lastw(0);
+      Index l = n;
+
+      m_matT.coeffRef(n,n) = 1.0;
+      for (Index i = n-1; i >= 0; i--)
+      {
+        Scalar w = m_matT.coeff(i,i) - p;
+        Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
+
+        if (m_eivalues.coeff(i).imag() < 0.0)
+        {
+          lastw = w;
+          lastr = r;
+        }
+        else
+        {
+          l = i;
+          if (m_eivalues.coeff(i).imag() == 0.0)
+          {
+            if (w != 0.0)
+              m_matT.coeffRef(i,n) = -r / w;
+            else
+              m_matT.coeffRef(i,n) = -r / (eps * norm);
+          }
+          else // Solve real equations
+          {
+            Scalar x = m_matT.coeff(i,i+1);
+            Scalar y = m_matT.coeff(i+1,i);
+            Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
+            Scalar t = (x * lastr - lastw * r) / denom;
+            m_matT.coeffRef(i,n) = t;
+            if (abs(x) > abs(lastw))
+              m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
+            else
+              m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
+          }
+
+          // Overflow control
+          Scalar t = abs(m_matT.coeff(i,n));
+          if ((eps * t) * t > Scalar(1))
+            m_matT.col(n).tail(size-i) /= t;
+        }
+      }
+    }
+    else if (q < Scalar(0) && n > 0) // Complex vector
+    {
+      Scalar lastra(0), lastsa(0), lastw(0);
+      Index l = n-1;
+
+      // Last vector component imaginary so matrix is triangular
+      if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
+      {
+        m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
+        m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
+      }
+      else
+      {
+        std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
+        m_matT.coeffRef(n-1,n-1) = numext::real(cc);
+        m_matT.coeffRef(n-1,n) = numext::imag(cc);
+      }
+      m_matT.coeffRef(n,n-1) = 0.0;
+      m_matT.coeffRef(n,n) = 1.0;
+      for (Index i = n-2; i >= 0; i--)
+      {
+        Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
+        Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
+        Scalar w = m_matT.coeff(i,i) - p;
+
+        if (m_eivalues.coeff(i).imag() < 0.0)
+        {
+          lastw = w;
+          lastra = ra;
+          lastsa = sa;
+        }
+        else
+        {
+          l = i;
+          if (m_eivalues.coeff(i).imag() == RealScalar(0))
+          {
+            std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
+            m_matT.coeffRef(i,n-1) = numext::real(cc);
+            m_matT.coeffRef(i,n) = numext::imag(cc);
+          }
+          else
+          {
+            // Solve complex equations
+            Scalar x = m_matT.coeff(i,i+1);
+            Scalar y = m_matT.coeff(i+1,i);
+            Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
+            Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
+            if ((vr == 0.0) && (vi == 0.0))
+              vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
+
+            std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
+            m_matT.coeffRef(i,n-1) = numext::real(cc);
+            m_matT.coeffRef(i,n) = numext::imag(cc);
+            if (abs(x) > (abs(lastw) + abs(q)))
+            {
+              m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
+              m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
+            }
+            else
+            {
+              cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
+              m_matT.coeffRef(i+1,n-1) = numext::real(cc);
+              m_matT.coeffRef(i+1,n) = numext::imag(cc);
+            }
+          }
+
+          // Overflow control
+          using std::max;
+          Scalar t = (max)(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
+          if ((eps * t) * t > Scalar(1))
+            m_matT.block(i, n-1, size-i, 2) /= t;
+
+        }
+      }
+      
+      // We handled a pair of complex conjugate eigenvalues, so need to skip them both
+      n--;
+    }
+    else
+    {
+      eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
+    }
+  }
+
+  // Back transformation to get eigenvectors of original matrix
+  for (Index j = size-1; j >= 0; j--)
+  {
+    m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
+    m_eivec.col(j) = m_tmp;
+  }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_EIGENSOLVER_H
diff --git a/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
new file mode 100644
index 0000000..956e80d
--- /dev/null
+++ b/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
@@ -0,0 +1,350 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
+#define EIGEN_GENERALIZEDEIGENSOLVER_H
+
+#include "./RealQZ.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class GeneralizedEigenSolver
+  *
+  * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
+  *
+  * \tparam _MatrixType the type of the matrices of which we are computing the
+  * eigen-decomposition; this is expected to be an instantiation of the Matrix
+  * class template. Currently, only real matrices are supported.
+  *
+  * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
+  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If
+  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+  * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+  * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
+  *
+  * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
+  * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
+  * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
+  * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
+  * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
+  * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is
+  * called the left eigenvector.
+  *
+  * Call the function compute() to compute the generalized eigenvalues and eigenvectors of
+  * a given matrix pair. Alternatively, you can use the
+  * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
+  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+  * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+  * eigenvectors() functions.
+  *
+  * Here is an usage example of this class:
+  * Example: \include GeneralizedEigenSolver.cpp
+  * Output: \verbinclude GeneralizedEigenSolver.out
+  *
+  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+  */
+template<typename _MatrixType> class GeneralizedEigenSolver
+{
+  public:
+
+    /** \brief Synonym for the template parameter \p _MatrixType. */
+    typedef _MatrixType MatrixType;
+
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+
+    /** \brief Scalar type for matrices of type #MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Complex scalar type for #MatrixType. 
+      *
+      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+      * \c float or \c double) and just \c Scalar if #Scalar is
+      * complex.
+      */
+    typedef std::complex<RealScalar> ComplexScalar;
+
+    /** \brief Type for vector of real scalar values eigenvalues as returned by betas().
+      *
+      * This is a column vector with entries of type #Scalar.
+      * The length of the vector is the size of #MatrixType.
+      */
+    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
+
+    /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
+      *
+      * This is a column vector with entries of type #ComplexScalar.
+      * The length of the vector is the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
+
+    /** \brief Expression type for the eigenvalues as returned by eigenvalues().
+      */
+    typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
+
+    /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 
+      *
+      * This is a square matrix with entries of type #ComplexScalar. 
+      * The size is the same as the size of #MatrixType.
+      */
+    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+    /** \brief Default constructor.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+      *
+      * \sa compute() for an example.
+      */
+    GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
+
+    /** \brief Default constructor with memory preallocation
+      *
+      * Like the default constructor but with preallocation of the internal data
+      * according to the specified problem \a size.
+      * \sa GeneralizedEigenSolver()
+      */
+    GeneralizedEigenSolver(Index size)
+      : m_eivec(size, size),
+        m_alphas(size),
+        m_betas(size),
+        m_isInitialized(false),
+        m_eigenvectorsOk(false),
+        m_realQZ(size),
+        m_matS(size, size),
+        m_tmp(size)
+    {}
+
+    /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
+      * 
+      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are computed.
+      *
+      * This constructor calls compute() to compute the generalized eigenvalues
+      * and eigenvectors.
+      *
+      * \sa compute()
+      */
+    GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
+      : m_eivec(A.rows(), A.cols()),
+        m_alphas(A.cols()),
+        m_betas(A.cols()),
+        m_isInitialized(false),
+        m_eigenvectorsOk(false),
+        m_realQZ(A.cols()),
+        m_matS(A.rows(), A.cols()),
+        m_tmp(A.cols())
+    {
+      compute(A, B, computeEigenvectors);
+    }
+
+    /* \brief Returns the computed generalized eigenvectors.
+      *
+      * \returns  %Matrix whose columns are the (possibly complex) eigenvectors.
+      *
+      * \pre Either the constructor 
+      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
+      * compute(const MatrixType&, const MatrixType& bool) has been called before, and
+      * \p computeEigenvectors was set to true (the default).
+      *
+      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
+      * eigenvectors are normalized to have (Euclidean) norm equal to one. The
+      * matrix returned by this function is the matrix \f$ V \f$ in the
+      * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
+      *
+      * \sa eigenvalues()
+      */
+//    EigenvectorsType eigenvectors() const;
+
+    /** \brief Returns an expression of the computed generalized eigenvalues.
+      *
+      * \returns An expression of the column vector containing the eigenvalues.
+      *
+      * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
+      * Not that betas might contain zeros. It is therefore not recommended to use this function,
+      * but rather directly deal with the alphas and betas vectors.
+      *
+      * \pre Either the constructor 
+      * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
+      * compute(const MatrixType&,const MatrixType&,bool) has been called before.
+      *
+      * The eigenvalues are repeated according to their algebraic multiplicity,
+      * so there are as many eigenvalues as rows in the matrix. The eigenvalues 
+      * are not sorted in any particular order.
+      *
+      * \sa alphas(), betas(), eigenvectors()
+      */
+    EigenvalueType eigenvalues() const
+    {
+      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+      return EigenvalueType(m_alphas,m_betas);
+    }
+
+    /** \returns A const reference to the vectors containing the alpha values
+      *
+      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+      *
+      * \sa betas(), eigenvalues() */
+    ComplexVectorType alphas() const
+    {
+      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+      return m_alphas;
+    }
+
+    /** \returns A const reference to the vectors containing the beta values
+      *
+      * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
+      *
+      * \sa alphas(), eigenvalues() */
+    VectorType betas() const
+    {
+      eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+      return m_betas;
+    }
+
+    /** \brief Computes generalized eigendecomposition of given matrix.
+      * 
+      * \param[in]  A  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  B  Square matrix whose eigendecomposition is to be computed.
+      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
+      *    eigenvalues are computed; if false, only the eigenvalues are
+      *    computed. 
+      * \returns    Reference to \c *this
+      *
+      * This function computes the eigenvalues of the real matrix \p matrix.
+      * The eigenvalues() function can be used to retrieve them.  If 
+      * \p computeEigenvectors is true, then the eigenvectors are also computed
+      * and can be retrieved by calling eigenvectors().
+      *
+      * The matrix is first reduced to real generalized Schur form using the RealQZ
+      * class. The generalized Schur decomposition is then used to compute the eigenvalues
+      * and eigenvectors.
+      *
+      * The cost of the computation is dominated by the cost of the
+      * generalized Schur decomposition.
+      *
+      * This method reuses of the allocated data in the GeneralizedEigenSolver object.
+      */
+    GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
+
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+      return m_realQZ.info();
+    }
+
+    /** Sets the maximal number of iterations allowed.
+    */
+    GeneralizedEigenSolver& setMaxIterations(Index maxIters)
+    {
+      m_realQZ.setMaxIterations(maxIters);
+      return *this;
+    }
+
+  protected:
+    
+    static void check_template_parameters()
+    {
+      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+      EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
+    }
+    
+    MatrixType m_eivec;
+    ComplexVectorType m_alphas;
+    VectorType m_betas;
+    bool m_isInitialized;
+    bool m_eigenvectorsOk;
+    RealQZ<MatrixType> m_realQZ;
+    MatrixType m_matS;
+
+    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+    ColumnVectorType m_tmp;
+};
+
+//template<typename MatrixType>
+//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
+//{
+//  eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+//  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+//  Index n = m_eivec.cols();
+//  EigenvectorsType matV(n,n);
+//  // TODO
+//  return matV;
+//}
+
+template<typename MatrixType>
+GeneralizedEigenSolver<MatrixType>&
+GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
+{
+  check_template_parameters();
+  
+  using std::sqrt;
+  using std::abs;
+  eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
+
+  // Reduce to generalized real Schur form:
+  // A = Q S Z and B = Q T Z
+  m_realQZ.compute(A, B, computeEigenvectors);
+
+  if (m_realQZ.info() == Success)
+  {
+    m_matS = m_realQZ.matrixS();
+    if (computeEigenvectors)
+      m_eivec = m_realQZ.matrixZ().transpose();
+  
+    // Compute eigenvalues from matS
+    m_alphas.resize(A.cols());
+    m_betas.resize(A.cols());
+    Index i = 0;
+    while (i < A.cols())
+    {
+      if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
+      {
+        m_alphas.coeffRef(i) = m_matS.coeff(i, i);
+        m_betas.coeffRef(i)  = m_realQZ.matrixT().coeff(i,i);
+        ++i;
+      }
+      else
+      {
+        Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
+        Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
+        m_alphas.coeffRef(i)   = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
+        m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
+
+        m_betas.coeffRef(i)   = m_realQZ.matrixT().coeff(i,i);
+        m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
+        i += 2;
+      }
+    }
+  }
+
+  m_isInitialized = true;
+  m_eigenvectorsOk = false;//computeEigenvectors;
+
+  return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDEIGENSOLVER_H
diff --git a/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
new file mode 100644
index 0000000..07bf1ea
--- /dev/null
+++ b/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
@@ -0,0 +1,227 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
+#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
+
+#include "./Tridiagonalization.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class GeneralizedSelfAdjointEigenSolver
+  *
+  * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the
+  * eigendecomposition; this is expected to be an instantiation of the Matrix
+  * class template.
+  *
+  * This class solves the generalized eigenvalue problem
+  * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
+  * selfadjoint and the matrix \f$ B \f$ should be positive definite.
+  *
+  * Only the \b lower \b triangular \b part of the input matrix is referenced.
+  *
+  * Call the function compute() to compute the eigenvalues and eigenvectors of
+  * a given matrix. Alternatively, you can use the
+  * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+  * constructor which computes the eigenvalues and eigenvectors at construction time.
+  * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
+  * and eigenvectors() functions.
+  *
+  * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+  * contains an example of the typical use of this class.
+  *
+  * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
+  */
+template<typename _MatrixType>
+class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
+{
+    typedef SelfAdjointEigenSolver<_MatrixType> Base;
+  public:
+
+    typedef typename Base::Index Index;
+    typedef _MatrixType MatrixType;
+
+    /** \brief Default constructor for fixed-size matrices.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute(). This constructor
+      * can only be used if \p _MatrixType is a fixed-size matrix; use
+      * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
+      */
+    GeneralizedSelfAdjointEigenSolver() : Base() {}
+
+    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+      *
+      * \param [in]  size  Positive integer, size of the matrix whose
+      * eigenvalues and eigenvectors will be computed.
+      *
+      * This constructor is useful for dynamic-size matrices, when the user
+      * intends to perform decompositions via compute(). The \p size
+      * parameter is only used as a hint. It is not an error to give a wrong
+      * \p size, but it may impair performance.
+      *
+      * \sa compute() for an example
+      */
+    GeneralizedSelfAdjointEigenSolver(Index size)
+        : Base(size)
+    {}
+
+    /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
+      *
+      * \param[in]  matA  Selfadjoint matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  matB  Positive-definite matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
+      *                     Default is #ComputeEigenvectors|#Ax_lBx.
+      *
+      * This constructor calls compute(const MatrixType&, const MatrixType&, int)
+      * to compute the eigenvalues and (if requested) the eigenvectors of the
+      * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
+      * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
+      * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
+      * \f$ x^* B x = 1 \f$. The eigenvectors are computed if
+      * \a options contains ComputeEigenvectors.
+      *
+      * In addition, the two following variants can be solved via \p options:
+      * - \c ABx_lx: \f$ ABx = \lambda x \f$
+      * - \c BAx_lx: \f$ BAx = \lambda x \f$
+      *
+      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
+      *
+      * \sa compute(const MatrixType&, const MatrixType&, int)
+      */
+    GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
+                                      int options = ComputeEigenvectors|Ax_lBx)
+      : Base(matA.cols())
+    {
+      compute(matA, matB, options);
+    }
+
+    /** \brief Computes generalized eigendecomposition of given matrix pencil.
+      *
+      * \param[in]  matA  Selfadjoint matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  matB  Positive-definite matrix in matrix pencil.
+      *                   Only the lower triangular part of the matrix is referenced.
+      * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
+      *                     Default is #ComputeEigenvectors|#Ax_lBx.
+      *
+      * \returns    Reference to \c *this
+      *
+      * Accoring to \p options, this function computes eigenvalues and (if requested)
+      * the eigenvectors of one of the following three generalized eigenproblems:
+      * - \c Ax_lBx: \f$ Ax = \lambda B x \f$
+      * - \c ABx_lx: \f$ ABx = \lambda x \f$
+      * - \c BAx_lx: \f$ BAx = \lambda x \f$
+      * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
+      * matrix \f$ B \f$.
+      * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
+      *
+      * The eigenvalues() function can be used to retrieve
+      * the eigenvalues. If \p options contains ComputeEigenvectors, then the
+      * eigenvectors are also computed and can be retrieved by calling
+      * eigenvectors().
+      *
+      * The implementation uses LLT to compute the Cholesky decomposition
+      * \f$ B = LL^* \f$ and computes the classical eigendecomposition
+      * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
+      * and of \f$ L^{*} A L \f$ otherwise. This solves the
+      * generalized eigenproblem, because any solution of the generalized
+      * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
+      * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
+      * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
+      * can be made for the two other variants.
+      *
+      * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
+      *
+      * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
+      */
+    GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
+                                               int options = ComputeEigenvectors|Ax_lBx);
+
+  protected:
+
+};
+
+
+template<typename MatrixType>
+GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
+compute(const MatrixType& matA, const MatrixType& matB, int options)
+{
+  eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
+  eigen_assert((options&~(EigVecMask|GenEigMask))==0
+          && (options&EigVecMask)!=EigVecMask
+          && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
+           || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
+          && "invalid option parameter");
+
+  bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);
+
+  // Compute the cholesky decomposition of matB = L L' = U'U
+  LLT<MatrixType> cholB(matB);
+
+  int type = (options&GenEigMask);
+  if(type==0)
+    type = Ax_lBx;
+
+  if(type==Ax_lBx)
+  {
+    // compute C = inv(L) A inv(L')
+    MatrixType matC = matA.template selfadjointView<Lower>();
+    cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
+    cholB.matrixU().template solveInPlace<OnTheRight>(matC);
+
+    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );
+
+    // transform back the eigen vectors: evecs = inv(U) * evecs
+    if(computeEigVecs)
+      cholB.matrixU().solveInPlace(Base::m_eivec);
+  }
+  else if(type==ABx_lx)
+  {
+    // compute C = L' A L
+    MatrixType matC = matA.template selfadjointView<Lower>();
+    matC = matC * cholB.matrixL();
+    matC = cholB.matrixU() * matC;
+
+    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
+
+    // transform back the eigen vectors: evecs = inv(U) * evecs
+    if(computeEigVecs)
+      cholB.matrixU().solveInPlace(Base::m_eivec);
+  }
+  else if(type==BAx_lx)
+  {
+    // compute C = L' A L
+    MatrixType matC = matA.template selfadjointView<Lower>();
+    matC = matC * cholB.matrixL();
+    matC = cholB.matrixU() * matC;
+
+    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);
+
+    // transform back the eigen vectors: evecs = L * evecs
+    if(computeEigVecs)
+      Base::m_eivec = cholB.matrixL() * Base::m_eivec;
+  }
+
+  return *this;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
diff --git a/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/Eigen/src/Eigenvalues/HessenbergDecomposition.h
new file mode 100644
index 0000000..3db0c01
--- /dev/null
+++ b/Eigen/src/Eigenvalues/HessenbergDecomposition.h
@@ -0,0 +1,373 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
+#define EIGEN_HESSENBERGDECOMPOSITION_H
+
+namespace Eigen { 
+
+namespace internal {
+  
+template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
+template<typename MatrixType>
+struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
+{
+  typedef MatrixType ReturnType;
+};
+
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class HessenbergDecomposition
+  *
+  * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
+  *
+  * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In
+  * the real case, the Hessenberg decomposition consists of an orthogonal
+  * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H
+  * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its
+  * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the
+  * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition
+  * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is,
+  * \f$ Q^{-1} = Q^* \f$).
+  *
+  * Call the function compute() to compute the Hessenberg decomposition of a
+  * given matrix. Alternatively, you can use the
+  * HessenbergDecomposition(const MatrixType&) constructor which computes the
+  * Hessenberg decomposition at construction time. Once the decomposition is
+  * computed, you can use the matrixH() and matrixQ() functions to construct
+  * the matrices H and Q in the decomposition.
+  *
+  * The documentation for matrixH() contains an example of the typical use of
+  * this class.
+  *
+  * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module"
+  */
+template<typename _MatrixType> class HessenbergDecomposition
+{
+  public:
+
+    /** \brief Synonym for the template parameter \p _MatrixType. */
+    typedef _MatrixType MatrixType;
+
+    enum {
+      Size = MatrixType::RowsAtCompileTime,
+      SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
+      Options = MatrixType::Options,
+      MaxSize = MatrixType::MaxRowsAtCompileTime,
+      MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
+    };
+
+    /** \brief Scalar type for matrices of type #MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Type for vector of Householder coefficients.
+      *
+      * This is column vector with entries of type #Scalar. The length of the
+      * vector is one less than the size of #MatrixType, if it is a fixed-side
+      * type.
+      */
+    typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
+
+    /** \brief Return type of matrixQ() */
+    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
+    
+    typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;
+
+    /** \brief Default constructor; the decomposition will be computed later.
+      *
+      * \param [in] size  The size of the matrix whose Hessenberg decomposition will be computed.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute().  The \p size parameter is only
+      * used as a hint. It is not an error to give a wrong \p size, but it may
+      * impair performance.
+      *
+      * \sa compute() for an example.
+      */
+    HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size)
+      : m_matrix(size,size),
+        m_temp(size),
+        m_isInitialized(false)
+    {
+      if(size>1)
+        m_hCoeffs.resize(size-1);
+    }
+
+    /** \brief Constructor; computes Hessenberg decomposition of given matrix.
+      *
+      * \param[in]  matrix  Square matrix whose Hessenberg decomposition is to be computed.
+      *
+      * This constructor calls compute() to compute the Hessenberg
+      * decomposition.
+      *
+      * \sa matrixH() for an example.
+      */
+    HessenbergDecomposition(const MatrixType& matrix)
+      : m_matrix(matrix),
+        m_temp(matrix.rows()),
+        m_isInitialized(false)
+    {
+      if(matrix.rows()<2)
+      {
+        m_isInitialized = true;
+        return;
+      }
+      m_hCoeffs.resize(matrix.rows()-1,1);
+      _compute(m_matrix, m_hCoeffs, m_temp);
+      m_isInitialized = true;
+    }
+
+    /** \brief Computes Hessenberg decomposition of given matrix.
+      *
+      * \param[in]  matrix  Square matrix whose Hessenberg decomposition is to be computed.
+      * \returns    Reference to \c *this
+      *
+      * The Hessenberg decomposition is computed by bringing the columns of the
+      * matrix successively in the required form using Householder reflections
+      * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, <i>%Matrix
+      * Computations</i>). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$
+      * denotes the size of the given matrix.
+      *
+      * This method reuses of the allocated data in the HessenbergDecomposition
+      * object.
+      *
+      * Example: \include HessenbergDecomposition_compute.cpp
+      * Output: \verbinclude HessenbergDecomposition_compute.out
+      */
+    HessenbergDecomposition& compute(const MatrixType& matrix)
+    {
+      m_matrix = matrix;
+      if(matrix.rows()<2)
+      {
+        m_isInitialized = true;
+        return *this;
+      }
+      m_hCoeffs.resize(matrix.rows()-1,1);
+      _compute(m_matrix, m_hCoeffs, m_temp);
+      m_isInitialized = true;
+      return *this;
+    }
+
+    /** \brief Returns the Householder coefficients.
+      *
+      * \returns a const reference to the vector of Householder coefficients
+      *
+      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+      * or the member function compute(const MatrixType&) has been called
+      * before to compute the Hessenberg decomposition of a matrix.
+      *
+      * The Householder coefficients allow the reconstruction of the matrix
+      * \f$ Q \f$ in the Hessenberg decomposition from the packed data.
+      *
+      * \sa packedMatrix(), \ref Householder_Module "Householder module"
+      */
+    const CoeffVectorType& householderCoefficients() const
+    {
+      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+      return m_hCoeffs;
+    }
+
+    /** \brief Returns the internal representation of the decomposition
+      *
+      *	\returns a const reference to a matrix with the internal representation
+      *	         of the decomposition.
+      *
+      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+      * or the member function compute(const MatrixType&) has been called
+      * before to compute the Hessenberg decomposition of a matrix.
+      *
+      * The returned matrix contains the following information:
+      *  - the upper part and lower sub-diagonal represent the Hessenberg matrix H
+      *  - the rest of the lower part contains the Householder vectors that, combined with
+      *    Householder coefficients returned by householderCoefficients(),
+      *    allows to reconstruct the matrix Q as
+      *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+      *    Here, the matrices \f$ H_i \f$ are the Householder transformations
+      *       \f$ H_i = (I - h_i v_i v_i^T) \f$
+      *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
+      *    \f$ v_i \f$ is the Householder vector defined by
+      *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
+      *    with M the matrix returned by this function.
+      *
+      * See LAPACK for further details on this packed storage.
+      *
+      * Example: \include HessenbergDecomposition_packedMatrix.cpp
+      * Output: \verbinclude HessenbergDecomposition_packedMatrix.out
+      *
+      * \sa householderCoefficients()
+      */
+    const MatrixType& packedMatrix() const
+    {
+      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+      return m_matrix;
+    }
+
+    /** \brief Reconstructs the orthogonal matrix Q in the decomposition
+      *
+      * \returns object representing the matrix Q
+      *
+      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+      * or the member function compute(const MatrixType&) has been called
+      * before to compute the Hessenberg decomposition of a matrix.
+      *
+      * This function returns a light-weight object of template class
+      * HouseholderSequence. You can either apply it directly to a matrix or
+      * you can convert it to a matrix of type #MatrixType.
+      *
+      * \sa matrixH() for an example, class HouseholderSequence
+      */
+    HouseholderSequenceType matrixQ() const
+    {
+      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+      return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
+             .setLength(m_matrix.rows() - 1)
+             .setShift(1);
+    }
+
+    /** \brief Constructs the Hessenberg matrix H in the decomposition
+      *
+      * \returns expression object representing the matrix H
+      *
+      * \pre Either the constructor HessenbergDecomposition(const MatrixType&)
+      * or the member function compute(const MatrixType&) has been called
+      * before to compute the Hessenberg decomposition of a matrix.
+      *
+      * The object returned by this function constructs the Hessenberg matrix H
+      * when it is assigned to a matrix or otherwise evaluated. The matrix H is
+      * constructed from the packed matrix as returned by packedMatrix(): The
+      * upper part (including the subdiagonal) of the packed matrix contains
+      * the matrix H. It may sometimes be better to directly use the packed
+      * matrix instead of constructing the matrix H.
+      *
+      * Example: \include HessenbergDecomposition_matrixH.cpp
+      * Output: \verbinclude HessenbergDecomposition_matrixH.out
+      *
+      * \sa matrixQ(), packedMatrix()
+      */
+    MatrixHReturnType matrixH() const
+    {
+      eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
+      return MatrixHReturnType(*this);
+    }
+
+  private:
+
+    typedef Matrix<Scalar, 1, Size, Options | RowMajor, 1, MaxSize> VectorType;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
+
+  protected:
+    MatrixType m_matrix;
+    CoeffVectorType m_hCoeffs;
+    VectorType m_temp;
+    bool m_isInitialized;
+};
+
+/** \internal
+  * Performs a tridiagonal decomposition of \a matA in place.
+  *
+  * \param matA the input selfadjoint matrix
+  * \param hCoeffs returned Householder coefficients
+  *
+  * The result is written in the lower triangular part of \a matA.
+  *
+  * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1.
+  *
+  * \sa packedMatrix()
+  */
+template<typename MatrixType>
+void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp)
+{
+  eigen_assert(matA.rows()==matA.cols());
+  Index n = matA.rows();
+  temp.resize(n);
+  for (Index i = 0; i<n-1; ++i)
+  {
+    // let's consider the vector v = i-th column starting at position i+1
+    Index remainingSize = n-i-1;
+    RealScalar beta;
+    Scalar h;
+    matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
+    matA.col(i).coeffRef(i+1) = beta;
+    hCoeffs.coeffRef(i) = h;
+
+    // Apply similarity transformation to remaining columns,
+    // i.e., compute A = H A H'
+
+    // A = H A
+    matA.bottomRightCorner(remainingSize, remainingSize)
+        .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0));
+
+    // A = A H'
+    matA.rightCols(remainingSize)
+        .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.coeffRef(0));
+  }
+}
+
+namespace internal {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \brief Expression type for return value of HessenbergDecomposition::matrixH()
+  *
+  * \tparam MatrixType type of matrix in the Hessenberg decomposition
+  *
+  * Objects of this type represent the Hessenberg matrix in the Hessenberg
+  * decomposition of some matrix. The object holds a reference to the
+  * HessenbergDecomposition class until the it is assigned or evaluated for
+  * some other reason (the reference should remain valid during the life time
+  * of this object). This class is the return type of
+  * HessenbergDecomposition::matrixH(); there is probably no other use for this
+  * class.
+  */
+template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType
+: public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
+{
+    typedef typename MatrixType::Index Index;
+  public:
+    /** \brief Constructor.
+      *
+      * \param[in] hess  Hessenberg decomposition
+      */
+    HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { }
+
+    /** \brief Hessenberg matrix in decomposition.
+      *
+      * \param[out] result  Hessenberg matrix in decomposition \p hess which
+      *                     was passed to the constructor
+      */
+    template <typename ResultType>
+    inline void evalTo(ResultType& result) const
+    {
+      result = m_hess.packedMatrix();
+      Index n = result.rows();
+      if (n>2)
+        result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
+    }
+
+    Index rows() const { return m_hess.packedMatrix().rows(); }
+    Index cols() const { return m_hess.packedMatrix().cols(); }
+
+  protected:
+    const HessenbergDecomposition<MatrixType>& m_hess;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_HESSENBERGDECOMPOSITION_H
diff --git a/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
new file mode 100644
index 0000000..4fec8af
--- /dev/null
+++ b/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h
@@ -0,0 +1,160 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIXBASEEIGENVALUES_H
+#define EIGEN_MATRIXBASEEIGENVALUES_H
+
+namespace Eigen { 
+
+namespace internal {
+
+template<typename Derived, bool IsComplex>
+struct eigenvalues_selector
+{
+  // this is the implementation for the case IsComplex = true
+  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
+  run(const MatrixBase<Derived>& m)
+  {
+    typedef typename Derived::PlainObject PlainObject;
+    PlainObject m_eval(m);
+    return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
+  }
+};
+
+template<typename Derived>
+struct eigenvalues_selector<Derived, false>
+{
+  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
+  run(const MatrixBase<Derived>& m)
+  {
+    typedef typename Derived::PlainObject PlainObject;
+    PlainObject m_eval(m);
+    return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
+  }
+};
+
+} // end namespace internal
+
+/** \brief Computes the eigenvalues of a matrix 
+  * \returns Column vector containing the eigenvalues.
+  *
+  * \eigenvalues_module
+  * This function computes the eigenvalues with the help of the EigenSolver
+  * class (for real matrices) or the ComplexEigenSolver class (for complex
+  * matrices). 
+  *
+  * The eigenvalues are repeated according to their algebraic multiplicity,
+  * so there are as many eigenvalues as rows in the matrix.
+  *
+  * The SelfAdjointView class provides a better algorithm for selfadjoint
+  * matrices.
+  *
+  * Example: \include MatrixBase_eigenvalues.cpp
+  * Output: \verbinclude MatrixBase_eigenvalues.out
+  *
+  * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
+  *     SelfAdjointView::eigenvalues()
+  */
+template<typename Derived>
+inline typename MatrixBase<Derived>::EigenvaluesReturnType
+MatrixBase<Derived>::eigenvalues() const
+{
+  typedef typename internal::traits<Derived>::Scalar Scalar;
+  return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
+}
+
+/** \brief Computes the eigenvalues of a matrix
+  * \returns Column vector containing the eigenvalues.
+  *
+  * \eigenvalues_module
+  * This function computes the eigenvalues with the help of the
+  * SelfAdjointEigenSolver class.  The eigenvalues are repeated according to
+  * their algebraic multiplicity, so there are as many eigenvalues as rows in
+  * the matrix.
+  *
+  * Example: \include SelfAdjointView_eigenvalues.cpp
+  * Output: \verbinclude SelfAdjointView_eigenvalues.out
+  *
+  * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues()
+  */
+template<typename MatrixType, unsigned int UpLo> 
+inline typename SelfAdjointView<MatrixType, UpLo>::EigenvaluesReturnType
+SelfAdjointView<MatrixType, UpLo>::eigenvalues() const
+{
+  typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
+  PlainObject thisAsMatrix(*this);
+  return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
+}
+
+
+
+/** \brief Computes the L2 operator norm
+  * \returns Operator norm of the matrix.
+  *
+  * \eigenvalues_module
+  * This function computes the L2 operator norm of a matrix, which is also
+  * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be
+  * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f]
+  * where the maximum is over all vectors and the norm on the right is the
+  * Euclidean vector norm. The norm equals the largest singular value, which is
+  * the square root of the largest eigenvalue of the positive semi-definite
+  * matrix \f$ A^*A \f$.
+  *
+  * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed
+  * by SelfAdjointView::eigenvalues(), to compute the operator norm of a
+  * matrix.  The SelfAdjointView class provides a better algorithm for
+  * selfadjoint matrices.
+  *
+  * Example: \include MatrixBase_operatorNorm.cpp
+  * Output: \verbinclude MatrixBase_operatorNorm.out
+  *
+  * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
+  */
+template<typename Derived>
+inline typename MatrixBase<Derived>::RealScalar
+MatrixBase<Derived>::operatorNorm() const
+{
+  using std::sqrt;
+  typename Derived::PlainObject m_eval(derived());
+  // FIXME if it is really guaranteed that the eigenvalues are already sorted,
+  // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
+  return sqrt((m_eval*m_eval.adjoint())
+                 .eval()
+		 .template selfadjointView<Lower>()
+		 .eigenvalues()
+		 .maxCoeff()
+		 );
+}
+
+/** \brief Computes the L2 operator norm
+  * \returns Operator norm of the matrix.
+  *
+  * \eigenvalues_module
+  * This function computes the L2 operator norm of a self-adjoint matrix. For a
+  * self-adjoint matrix, the operator norm is the largest eigenvalue.
+  *
+  * The current implementation uses the eigenvalues of the matrix, as computed
+  * by eigenvalues(), to compute the operator norm of the matrix.
+  *
+  * Example: \include SelfAdjointView_operatorNorm.cpp
+  * Output: \verbinclude SelfAdjointView_operatorNorm.out
+  *
+  * \sa eigenvalues(), MatrixBase::operatorNorm()
+  */
+template<typename MatrixType, unsigned int UpLo>
+inline typename SelfAdjointView<MatrixType, UpLo>::RealScalar
+SelfAdjointView<MatrixType, UpLo>::operatorNorm() const
+{
+  return eigenvalues().cwiseAbs().maxCoeff();
+}
+
+} // end namespace Eigen
+
+#endif
diff --git a/Eigen/src/Eigenvalues/RealQZ.h b/Eigen/src/Eigenvalues/RealQZ.h
new file mode 100644
index 0000000..aa3833e
--- /dev/null
+++ b/Eigen/src/Eigenvalues/RealQZ.h
@@ -0,0 +1,624 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REAL_QZ_H
+#define EIGEN_REAL_QZ_H
+
+namespace Eigen {
+
+  /** \eigenvalues_module \ingroup Eigenvalues_Module
+   *
+   *
+   * \class RealQZ
+   *
+   * \brief Performs a real QZ decomposition of a pair of square matrices
+   *
+   * \tparam _MatrixType the type of the matrix of which we are computing the
+   * real QZ decomposition; this is expected to be an instantiation of the
+   * Matrix class template.
+   *
+   * Given a real square matrices A and B, this class computes the real QZ
+   * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
+   * real orthogonal matrixes, T is upper-triangular matrix, and S is upper
+   * quasi-triangular matrix. An orthogonal matrix is a matrix whose
+   * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
+   * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
+   * blocks and 2-by-2 blocks where further reduction is impossible due to
+   * complex eigenvalues. 
+   *
+   * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
+   * 1x1 and 2x2 blocks on the diagonals of S and T.
+   *
+   * Call the function compute() to compute the real QZ decomposition of a
+   * given pair of matrices. Alternatively, you can use the 
+   * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
+   * constructor which computes the real QZ decomposition at construction
+   * time. Once the decomposition is computed, you can use the matrixS(),
+   * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
+   * S, T, Q and Z in the decomposition. If computeQZ==false, some time
+   * is saved by not computing matrices Q and Z.
+   *
+   * Example: \include RealQZ_compute.cpp
+   * Output: \include RealQZ_compute.out
+   *
+   * \note The implementation is based on the algorithm in "Matrix Computations"
+   * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
+   * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
+   *
+   * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
+   */
+
+  template<typename _MatrixType> class RealQZ
+  {
+    public:
+      typedef _MatrixType MatrixType;
+      enum {
+        RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+        ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+        Options = MatrixType::Options,
+        MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+        MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+      };
+      typedef typename MatrixType::Scalar Scalar;
+      typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+      typedef typename MatrixType::Index Index;
+
+      typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+      typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+
+      /** \brief Default constructor.
+       *
+       * \param [in] size  Positive integer, size of the matrix whose QZ decomposition will be computed.
+       *
+       * The default constructor is useful in cases in which the user intends to
+       * perform decompositions via compute().  The \p size parameter is only
+       * used as a hint. It is not an error to give a wrong \p size, but it may
+       * impair performance.
+       *
+       * \sa compute() for an example.
+       */
+      RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : 
+        m_S(size, size),
+        m_T(size, size),
+        m_Q(size, size),
+        m_Z(size, size),
+        m_workspace(size*2),
+        m_maxIters(400),
+        m_isInitialized(false)
+        { }
+
+      /** \brief Constructor; computes real QZ decomposition of given matrices
+       * 
+       * \param[in]  A          Matrix A.
+       * \param[in]  B          Matrix B.
+       * \param[in]  computeQZ  If false, A and Z are not computed.
+       *
+       * This constructor calls compute() to compute the QZ decomposition.
+       */
+      RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
+        m_S(A.rows(),A.cols()),
+        m_T(A.rows(),A.cols()),
+        m_Q(A.rows(),A.cols()),
+        m_Z(A.rows(),A.cols()),
+        m_workspace(A.rows()*2),
+        m_maxIters(400),
+        m_isInitialized(false) {
+          compute(A, B, computeQZ);
+        }
+
+      /** \brief Returns matrix Q in the QZ decomposition. 
+       *
+       * \returns A const reference to the matrix Q.
+       */
+      const MatrixType& matrixQ() const {
+        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+        eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
+        return m_Q;
+      }
+
+      /** \brief Returns matrix Z in the QZ decomposition. 
+       *
+       * \returns A const reference to the matrix Z.
+       */
+      const MatrixType& matrixZ() const {
+        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+        eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
+        return m_Z;
+      }
+
+      /** \brief Returns matrix S in the QZ decomposition. 
+       *
+       * \returns A const reference to the matrix S.
+       */
+      const MatrixType& matrixS() const {
+        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+        return m_S;
+      }
+
+      /** \brief Returns matrix S in the QZ decomposition. 
+       *
+       * \returns A const reference to the matrix S.
+       */
+      const MatrixType& matrixT() const {
+        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+        return m_T;
+      }
+
+      /** \brief Computes QZ decomposition of given matrix. 
+       * 
+       * \param[in]  A          Matrix A.
+       * \param[in]  B          Matrix B.
+       * \param[in]  computeQZ  If false, A and Z are not computed.
+       * \returns    Reference to \c *this
+       */
+      RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
+
+      /** \brief Reports whether previous computation was successful.
+       *
+       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+       */
+      ComputationInfo info() const
+      {
+        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+        return m_info;
+      }
+
+      /** \brief Returns number of performed QR-like iterations.
+      */
+      Index iterations() const
+      {
+        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
+        return m_global_iter;
+      }
+
+      /** Sets the maximal number of iterations allowed to converge to one eigenvalue
+       * or decouple the problem.
+      */
+      RealQZ& setMaxIterations(Index maxIters)
+      {
+        m_maxIters = maxIters;
+        return *this;
+      }
+
+    private:
+
+      MatrixType m_S, m_T, m_Q, m_Z;
+      Matrix<Scalar,Dynamic,1> m_workspace;
+      ComputationInfo m_info;
+      Index m_maxIters;
+      bool m_isInitialized;
+      bool m_computeQZ;
+      Scalar m_normOfT, m_normOfS;
+      Index m_global_iter;
+
+      typedef Matrix<Scalar,3,1> Vector3s;
+      typedef Matrix<Scalar,2,1> Vector2s;
+      typedef Matrix<Scalar,2,2> Matrix2s;
+      typedef JacobiRotation<Scalar> JRs;
+
+      void hessenbergTriangular();
+      void computeNorms();
+      Index findSmallSubdiagEntry(Index iu);
+      Index findSmallDiagEntry(Index f, Index l);
+      void splitOffTwoRows(Index i);
+      void pushDownZero(Index z, Index f, Index l);
+      void step(Index f, Index l, Index iter);
+
+  }; // RealQZ
+
+  /** \internal Reduces S and T to upper Hessenberg - triangular form */
+  template<typename MatrixType>
+    void RealQZ<MatrixType>::hessenbergTriangular()
+    {
+
+      const Index dim = m_S.cols();
+
+      // perform QR decomposition of T, overwrite T with R, save Q
+      HouseholderQR<MatrixType> qrT(m_T);
+      m_T = qrT.matrixQR();
+      m_T.template triangularView<StrictlyLower>().setZero();
+      m_Q = qrT.householderQ();
+      // overwrite S with Q* S
+      m_S.applyOnTheLeft(m_Q.adjoint());
+      // init Z as Identity
+      if (m_computeQZ)
+        m_Z = MatrixType::Identity(dim,dim);
+      // reduce S to upper Hessenberg with Givens rotations
+      for (Index j=0; j<=dim-3; j++) {
+        for (Index i=dim-1; i>=j+2; i--) {
+          JRs G;
+          // kill S(i,j)
+          if(m_S.coeff(i,j) != 0)
+          {
+            G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
+            m_S.coeffRef(i,j) = Scalar(0.0);
+            m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
+            m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
+            // update Q
+            if (m_computeQZ)
+              m_Q.applyOnTheRight(i-1,i,G);
+          }
+          // kill T(i,i-1)
+          if(m_T.coeff(i,i-1)!=Scalar(0))
+          {
+            G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
+            m_T.coeffRef(i,i-1) = Scalar(0.0);
+            m_S.applyOnTheRight(i,i-1,G);
+            m_T.topRows(i).applyOnTheRight(i,i-1,G);
+            // update Z
+            if (m_computeQZ)
+              m_Z.applyOnTheLeft(i,i-1,G.adjoint());
+          }
+        }
+      }
+    }
+
+  /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
+  template<typename MatrixType>
+    inline void RealQZ<MatrixType>::computeNorms()
+    {
+      const Index size = m_S.cols();
+      m_normOfS = Scalar(0.0);
+      m_normOfT = Scalar(0.0);
+      for (Index j = 0; j < size; ++j)
+      {
+        m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
+        m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
+      }
+    }
+
+
+  /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
+  template<typename MatrixType>
+    inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
+    {
+      using std::abs;
+      Index res = iu;
+      while (res > 0)
+      {
+        Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
+        if (s == Scalar(0.0))
+          s = m_normOfS;
+        if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
+          break;
+        res--;
+      }
+      return res;
+    }
+
+  /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1)  */
+  template<typename MatrixType>
+    inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
+    {
+      using std::abs;
+      Index res = l;
+      while (res >= f) {
+        if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
+          break;
+        res--;
+      }
+      return res;
+    }
+
+  /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
+  template<typename MatrixType>
+    inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
+    {
+      using std::abs;
+      using std::sqrt;
+      const Index dim=m_S.cols();
+      if (abs(m_S.coeff(i+1,i))==Scalar(0))
+        return;
+      Index z = findSmallDiagEntry(i,i+1);
+      if (z==i-1)
+      {
+        // block of (S T^{-1})
+        Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
+          template solve<OnTheRight>(m_S.template block<2,2>(i,i));
+        Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
+        Scalar q = p*p + STi(1,0)*STi(0,1);
+        if (q>=0) {
+          Scalar z = sqrt(q);
+          // one QR-like iteration for ABi - lambda I
+          // is enough - when we know exact eigenvalue in advance,
+          // convergence is immediate
+          JRs G;
+          if (p>=0)
+            G.makeGivens(p + z, STi(1,0));
+          else
+            G.makeGivens(p - z, STi(1,0));
+          m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
+          m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
+          // update Q
+          if (m_computeQZ)
+            m_Q.applyOnTheRight(i,i+1,G);
+
+          G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
+          m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
+          m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
+          // update Z
+          if (m_computeQZ)
+            m_Z.applyOnTheLeft(i+1,i,G.adjoint());
+
+          m_S.coeffRef(i+1,i) = Scalar(0.0);
+          m_T.coeffRef(i+1,i) = Scalar(0.0);
+        }
+      }
+      else
+      {
+        pushDownZero(z,i,i+1);
+      }
+    }
+
+  /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
+  template<typename MatrixType>
+    inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
+    {
+      JRs G;
+      const Index dim = m_S.cols();
+      for (Index zz=z; zz<l; zz++)
+      {
+        // push 0 down
+        Index firstColS = zz>f ? (zz-1) : zz;
+        G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
+        m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
+        m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
+        m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
+        // update Q
+        if (m_computeQZ)
+          m_Q.applyOnTheRight(zz,zz+1,G);
+        // kill S(zz+1, zz-1)
+        if (zz>f)
+        {
+          G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
+          m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
+          m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
+          m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
+          // update Z
+          if (m_computeQZ)
+            m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
+        }
+      }
+      // finally kill S(l,l-1)
+      G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
+      m_S.applyOnTheRight(l,l-1,G);
+      m_T.applyOnTheRight(l,l-1,G);
+      m_S.coeffRef(l,l-1)=Scalar(0.0);
+      // update Z
+      if (m_computeQZ)
+        m_Z.applyOnTheLeft(l,l-1,G.adjoint());
+    }
+
+  /** \internal QR-like iterative step for block f..l */
+  template<typename MatrixType>
+    inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
+    {
+      using std::abs;
+      const Index dim = m_S.cols();
+
+      // x, y, z
+      Scalar x, y, z;
+      if (iter==10)
+      {
+        // Wilkinson ad hoc shift
+        const Scalar
+          a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
+          a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
+          b12=m_T.coeff(f+0,f+1),
+          b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
+          b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
+          a87=m_S.coeff(l-1,l-2),
+          a98=m_S.coeff(l-0,l-1),
+          b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
+          b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
+        Scalar ss = abs(a87*b77i) + abs(a98*b88i),
+               lpl = Scalar(1.5)*ss,
+               ll = ss*ss;
+        x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
+          - a11*a21*b12*b11i*b11i*b22i;
+        y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i 
+          - a21*a21*b12*b11i*b11i*b22i;
+        z = a21*a32*b11i*b22i;
+      }
+      else if (iter==16)
+      {
+        // another exceptional shift
+        x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
+          (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
+        y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
+        z = 0;
+      }
+      else if (iter>23 && !(iter%8))
+      {
+        // extremely exceptional shift
+        x = internal::random<Scalar>(-1.0,1.0);
+        y = internal::random<Scalar>(-1.0,1.0);
+        z = internal::random<Scalar>(-1.0,1.0);
+      }
+      else
+      {
+        // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
+        // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
+        // U and V are 2x2 bottom right sub matrices of A and B. Thus:
+        //  = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
+        //  = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
+        // Since we are only interested in having x, y, z with a correct ratio, we have:
+        const Scalar
+          a11 = m_S.coeff(f,f),     a12 = m_S.coeff(f,f+1),
+          a21 = m_S.coeff(f+1,f),   a22 = m_S.coeff(f+1,f+1),
+                                    a32 = m_S.coeff(f+2,f+1),
+
+          a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
+          a98 = m_S.coeff(l,l-1),   a99 = m_S.coeff(l,l),
+
+          b11 = m_T.coeff(f,f),     b12 = m_T.coeff(f,f+1),
+                                    b22 = m_T.coeff(f+1,f+1),
+
+          b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
+                                    b99 = m_T.coeff(l,l);
+
+        x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
+          + a12/b22 - (a11/b11)*(b12/b22);
+        y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
+        z = a32/b22;
+      }
+
+      JRs G;
+
+      for (Index k=f; k<=l-2; k++)
+      {
+        // variables for Householder reflections
+        Vector2s essential2;
+        Scalar tau, beta;
+
+        Vector3s hr(x,y,z);
+
+        // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
+        hr.makeHouseholderInPlace(tau, beta);
+        essential2 = hr.template bottomRows<2>();
+        Index fc=(std::max)(k-1,Index(0));  // first col to update
+        m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
+        m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
+        if (m_computeQZ)
+          m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
+        if (k>f)
+          m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
+
+        // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
+        hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
+        hr.makeHouseholderInPlace(tau, beta);
+        essential2 = hr.template bottomRows<2>();
+        {
+          Index lr = (std::min)(k+4,dim); // last row to update
+          Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
+          // S
+          tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
+          tmp += m_S.col(k+2).head(lr);
+          m_S.col(k+2).head(lr) -= tau*tmp;
+          m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
+          // T
+          tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
+          tmp += m_T.col(k+2).head(lr);
+          m_T.col(k+2).head(lr) -= tau*tmp;
+          m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
+        }
+        if (m_computeQZ)
+        {
+          // Z
+          Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
+          tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
+          tmp += m_Z.row(k+2);
+          m_Z.row(k+2) -= tau*tmp;
+          m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
+        }
+        m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
+
+        // Z_{k2} to annihilate T(k+1,k)
+        G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
+        m_S.applyOnTheRight(k+1,k,G);
+        m_T.applyOnTheRight(k+1,k,G);
+        // update Z
+        if (m_computeQZ)
+          m_Z.applyOnTheLeft(k+1,k,G.adjoint());
+        m_T.coeffRef(k+1,k) = Scalar(0.0);
+
+        // update x,y,z
+        x = m_S.coeff(k+1,k);
+        y = m_S.coeff(k+2,k);
+        if (k < l-2)
+          z = m_S.coeff(k+3,k);
+      } // loop over k
+
+      // Q_{n-1} to annihilate y = S(l,l-2)
+      G.makeGivens(x,y);
+      m_S.applyOnTheLeft(l-1,l,G.adjoint());
+      m_T.applyOnTheLeft(l-1,l,G.adjoint());
+      if (m_computeQZ)
+        m_Q.applyOnTheRight(l-1,l,G);
+      m_S.coeffRef(l,l-2) = Scalar(0.0);
+
+      // Z_{n-1} to annihilate T(l,l-1)
+      G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
+      m_S.applyOnTheRight(l,l-1,G);
+      m_T.applyOnTheRight(l,l-1,G);
+      if (m_computeQZ)
+        m_Z.applyOnTheLeft(l,l-1,G.adjoint());
+      m_T.coeffRef(l,l-1) = Scalar(0.0);
+    }
+
+
+  template<typename MatrixType>
+    RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
+    {
+
+      const Index dim = A_in.cols();
+
+      eigen_assert (A_in.rows()==dim && A_in.cols()==dim 
+          && B_in.rows()==dim && B_in.cols()==dim 
+          && "Need square matrices of the same dimension");
+
+      m_isInitialized = true;
+      m_computeQZ = computeQZ;
+      m_S = A_in; m_T = B_in;
+      m_workspace.resize(dim*2);
+      m_global_iter = 0;
+
+      // entrance point: hessenberg triangular decomposition
+      hessenbergTriangular();
+      // compute L1 vector norms of T, S into m_normOfS, m_normOfT
+      computeNorms();
+
+      Index l = dim-1, 
+            f, 
+            local_iter = 0;
+
+      while (l>0 && local_iter<m_maxIters)
+      {
+        f = findSmallSubdiagEntry(l);
+        // now rows and columns f..l (including) decouple from the rest of the problem
+        if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
+        if (f == l) // One root found
+        {
+          l--;
+          local_iter = 0;
+        }
+        else if (f == l-1) // Two roots found
+        {
+          splitOffTwoRows(f);
+          l -= 2;
+          local_iter = 0;
+        }
+        else // No convergence yet
+        {
+          // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
+          Index z = findSmallDiagEntry(f,l);
+          if (z>=f)
+          {
+            // zero found
+            pushDownZero(z,f,l);
+          }
+          else
+          {
+            // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg 
+            // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
+            // apply a QR-like iteration to rows and columns f..l.
+            step(f,l, local_iter);
+            local_iter++;
+            m_global_iter++;
+          }
+        }
+      }
+      // check if we converged before reaching iterations limit
+      m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
+      return *this;
+    } // end compute
+
+} // end namespace Eigen
+
+#endif //EIGEN_REAL_QZ
diff --git a/Eigen/src/Eigenvalues/RealSchur.h b/Eigen/src/Eigenvalues/RealSchur.h
new file mode 100644
index 0000000..16d3875
--- /dev/null
+++ b/Eigen/src/Eigenvalues/RealSchur.h
@@ -0,0 +1,525 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REAL_SCHUR_H
+#define EIGEN_REAL_SCHUR_H
+
+#include "./HessenbergDecomposition.h"
+
+namespace Eigen { 
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class RealSchur
+  *
+  * \brief Performs a real Schur decomposition of a square matrix
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the
+  * real Schur decomposition; this is expected to be an instantiation of the
+  * Matrix class template.
+  *
+  * Given a real square matrix A, this class computes the real Schur
+  * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
+  * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
+  * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
+  * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
+  * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
+  * blocks on the diagonal of T are the same as the eigenvalues of the matrix
+  * A, and thus the real Schur decomposition is used in EigenSolver to compute
+  * the eigendecomposition of a matrix.
+  *
+  * Call the function compute() to compute the real Schur decomposition of a
+  * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
+  * constructor which computes the real Schur decomposition at construction
+  * time. Once the decomposition is computed, you can use the matrixU() and
+  * matrixT() functions to retrieve the matrices U and T in the decomposition.
+  *
+  * The documentation of RealSchur(const MatrixType&, bool) contains an example
+  * of the typical use of this class.
+  *
+  * \note The implementation is adapted from
+  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+  * Their code is based on EISPACK.
+  *
+  * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
+  */
+template<typename _MatrixType> class RealSchur
+{
+  public:
+    typedef _MatrixType MatrixType;
+    enum {
+      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+    typedef typename MatrixType::Scalar Scalar;
+    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+    typedef typename MatrixType::Index Index;
+
+    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+    typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+
+    /** \brief Default constructor.
+      *
+      * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute().  The \p size parameter is only
+      * used as a hint. It is not an error to give a wrong \p size, but it may
+      * impair performance.
+      *
+      * \sa compute() for an example.
+      */
+    RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
+            : m_matT(size, size),
+              m_matU(size, size),
+              m_workspaceVector(size),
+              m_hess(size),
+              m_isInitialized(false),
+              m_matUisUptodate(false),
+              m_maxIters(-1)
+    { }
+
+    /** \brief Constructor; computes real Schur decomposition of given matrix. 
+      * 
+      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
+      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
+      *
+      * This constructor calls compute() to compute the Schur decomposition.
+      *
+      * Example: \include RealSchur_RealSchur_MatrixType.cpp
+      * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
+      */
+    RealSchur(const MatrixType& matrix, bool computeU = true)
+            : m_matT(matrix.rows(),matrix.cols()),
+              m_matU(matrix.rows(),matrix.cols()),
+              m_workspaceVector(matrix.rows()),
+              m_hess(matrix.rows()),
+              m_isInitialized(false),
+              m_matUisUptodate(false),
+              m_maxIters(-1)
+    {
+      compute(matrix, computeU);
+    }
+
+    /** \brief Returns the orthogonal matrix in the Schur decomposition. 
+      *
+      * \returns A const reference to the matrix U.
+      *
+      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
+      * member function compute(const MatrixType&, bool) has been called before
+      * to compute the Schur decomposition of a matrix, and \p computeU was set
+      * to true (the default value).
+      *
+      * \sa RealSchur(const MatrixType&, bool) for an example
+      */
+    const MatrixType& matrixU() const
+    {
+      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+      eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
+      return m_matU;
+    }
+
+    /** \brief Returns the quasi-triangular matrix in the Schur decomposition. 
+      *
+      * \returns A const reference to the matrix T.
+      *
+      * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
+      * member function compute(const MatrixType&, bool) has been called before
+      * to compute the Schur decomposition of a matrix.
+      *
+      * \sa RealSchur(const MatrixType&, bool) for an example
+      */
+    const MatrixType& matrixT() const
+    {
+      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+      return m_matT;
+    }
+  
+    /** \brief Computes Schur decomposition of given matrix. 
+      * 
+      * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed.
+      * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed.
+      * \returns    Reference to \c *this
+      *
+      * The Schur decomposition is computed by first reducing the matrix to
+      * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
+      * matrix is then reduced to triangular form by performing Francis QR
+      * iterations with implicit double shift. The cost of computing the Schur
+      * decomposition depends on the number of iterations; as a rough guide, it
+      * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
+      * \f$10n^3\f$ flops if \a computeU is false.
+      *
+      * Example: \include RealSchur_compute.cpp
+      * Output: \verbinclude RealSchur_compute.out
+      *
+      * \sa compute(const MatrixType&, bool, Index)
+      */
+    RealSchur& compute(const MatrixType& matrix, bool computeU = true);
+
+    /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
+     *  \param[in] matrixH Matrix in Hessenberg form H
+     *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
+     *  \param computeU Computes the matriX U of the Schur vectors
+     * \return Reference to \c *this
+     * 
+     *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH
+     *  using either the class HessenbergDecomposition or another mean. 
+     *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H
+     *  When computeU is true, this routine computes the matrix U such that 
+     *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
+     * 
+     * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
+     * is not available, the user should give an identity matrix (Q.setIdentity())
+     * 
+     * \sa compute(const MatrixType&, bool)
+     */
+    template<typename HessMatrixType, typename OrthMatrixType>
+    RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU);
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+      return m_info;
+    }
+
+    /** \brief Sets the maximum number of iterations allowed. 
+      *
+      * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
+      * of the matrix.
+      */
+    RealSchur& setMaxIterations(Index maxIters)
+    {
+      m_maxIters = maxIters;
+      return *this;
+    }
+
+    /** \brief Returns the maximum number of iterations. */
+    Index getMaxIterations()
+    {
+      return m_maxIters;
+    }
+
+    /** \brief Maximum number of iterations per row.
+      *
+      * If not otherwise specified, the maximum number of iterations is this number times the size of the
+      * matrix. It is currently set to 40.
+      */
+    static const int m_maxIterationsPerRow = 40;
+
+  private:
+    
+    MatrixType m_matT;
+    MatrixType m_matU;
+    ColumnVectorType m_workspaceVector;
+    HessenbergDecomposition<MatrixType> m_hess;
+    ComputationInfo m_info;
+    bool m_isInitialized;
+    bool m_matUisUptodate;
+    Index m_maxIters;
+
+    typedef Matrix<Scalar,3,1> Vector3s;
+
+    Scalar computeNormOfT();
+    Index findSmallSubdiagEntry(Index iu);
+    void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
+    void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
+    void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
+    void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
+};
+
+
+template<typename MatrixType>
+RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
+{
+  eigen_assert(matrix.cols() == matrix.rows());
+  Index maxIters = m_maxIters;
+  if (maxIters == -1)
+    maxIters = m_maxIterationsPerRow * matrix.rows();
+
+  // Step 1. Reduce to Hessenberg form
+  m_hess.compute(matrix);
+
+  // Step 2. Reduce to real Schur form  
+  computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
+  
+  return *this;
+}
+template<typename MatrixType>
+template<typename HessMatrixType, typename OrthMatrixType>
+RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU)
+{  
+  m_matT = matrixH; 
+  if(computeU)
+    m_matU = matrixQ;
+  
+  Index maxIters = m_maxIters;
+  if (maxIters == -1)
+    maxIters = m_maxIterationsPerRow * matrixH.rows();
+  m_workspaceVector.resize(m_matT.cols());
+  Scalar* workspace = &m_workspaceVector.coeffRef(0);
+
+  // The matrix m_matT is divided in three parts. 
+  // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. 
+  // Rows il,...,iu is the part we are working on (the active window).
+  // Rows iu+1,...,end are already brought in triangular form.
+  Index iu = m_matT.cols() - 1;
+  Index iter = 0;      // iteration count for current eigenvalue
+  Index totalIter = 0; // iteration count for whole matrix
+  Scalar exshift(0);   // sum of exceptional shifts
+  Scalar norm = computeNormOfT();
+
+  if(norm!=0)
+  {
+    while (iu >= 0)
+    {
+      Index il = findSmallSubdiagEntry(iu);
+
+      // Check for convergence
+      if (il == iu) // One root found
+      {
+        m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
+        if (iu > 0)
+          m_matT.coeffRef(iu, iu-1) = Scalar(0);
+        iu--;
+        iter = 0;
+      }
+      else if (il == iu-1) // Two roots found
+      {
+        splitOffTwoRows(iu, computeU, exshift);
+        iu -= 2;
+        iter = 0;
+      }
+      else // No convergence yet
+      {
+        // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
+        Vector3s firstHouseholderVector(0,0,0), shiftInfo;
+        computeShift(iu, iter, exshift, shiftInfo);
+        iter = iter + 1;
+        totalIter = totalIter + 1;
+        if (totalIter > maxIters) break;
+        Index im;
+        initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
+        performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
+      }
+    }
+  }
+  if(totalIter <= maxIters)
+    m_info = Success;
+  else
+    m_info = NoConvergence;
+
+  m_isInitialized = true;
+  m_matUisUptodate = computeU;
+  return *this;
+}
+
+/** \internal Computes and returns vector L1 norm of T */
+template<typename MatrixType>
+inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
+{
+  const Index size = m_matT.cols();
+  // FIXME to be efficient the following would requires a triangular reduxion code
+  // Scalar norm = m_matT.upper().cwiseAbs().sum() 
+  //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
+  Scalar norm(0);
+  for (Index j = 0; j < size; ++j)
+    norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
+  return norm;
+}
+
+/** \internal Look for single small sub-diagonal element and returns its index */
+template<typename MatrixType>
+inline typename MatrixType::Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
+{
+  using std::abs;
+  Index res = iu;
+  while (res > 0)
+  {
+    Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
+    if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
+      break;
+    res--;
+  }
+  return res;
+}
+
+/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
+{
+  using std::sqrt;
+  using std::abs;
+  const Index size = m_matT.cols();
+
+  // The eigenvalues of the 2x2 matrix [a b; c d] are 
+  // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
+  Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
+  Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);   // q = tr^2 / 4 - det = discr/4
+  m_matT.coeffRef(iu,iu) += exshift;
+  m_matT.coeffRef(iu-1,iu-1) += exshift;
+
+  if (q >= Scalar(0)) // Two real eigenvalues
+  {
+    Scalar z = sqrt(abs(q));
+    JacobiRotation<Scalar> rot;
+    if (p >= Scalar(0))
+      rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
+    else
+      rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
+
+    m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
+    m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
+    m_matT.coeffRef(iu, iu-1) = Scalar(0); 
+    if (computeU)
+      m_matU.applyOnTheRight(iu-1, iu, rot);
+  }
+
+  if (iu > 1) 
+    m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
+}
+
+/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
+{
+  using std::sqrt;
+  using std::abs;
+  shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
+  shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
+  shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
+
+  // Wilkinson's original ad hoc shift
+  if (iter == 10)
+  {
+    exshift += shiftInfo.coeff(0);
+    for (Index i = 0; i <= iu; ++i)
+      m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
+    Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
+    shiftInfo.coeffRef(0) = Scalar(0.75) * s;
+    shiftInfo.coeffRef(1) = Scalar(0.75) * s;
+    shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
+  }
+
+  // MATLAB's new ad hoc shift
+  if (iter == 30)
+  {
+    Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+    s = s * s + shiftInfo.coeff(2);
+    if (s > Scalar(0))
+    {
+      s = sqrt(s);
+      if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
+        s = -s;
+      s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+      s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
+      exshift += s;
+      for (Index i = 0; i <= iu; ++i)
+        m_matT.coeffRef(i,i) -= s;
+      shiftInfo.setConstant(Scalar(0.964));
+    }
+  }
+}
+
+/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
+{
+  using std::abs;
+  Vector3s& v = firstHouseholderVector; // alias to save typing
+
+  for (im = iu-2; im >= il; --im)
+  {
+    const Scalar Tmm = m_matT.coeff(im,im);
+    const Scalar r = shiftInfo.coeff(0) - Tmm;
+    const Scalar s = shiftInfo.coeff(1) - Tmm;
+    v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
+    v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
+    v.coeffRef(2) = m_matT.coeff(im+2,im+1);
+    if (im == il) {
+      break;
+    }
+    const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
+    const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
+    if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
+      break;
+  }
+}
+
+/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
+{
+  eigen_assert(im >= il);
+  eigen_assert(im <= iu-2);
+
+  const Index size = m_matT.cols();
+
+  for (Index k = im; k <= iu-2; ++k)
+  {
+    bool firstIteration = (k == im);
+
+    Vector3s v;
+    if (firstIteration)
+      v = firstHouseholderVector;
+    else
+      v = m_matT.template block<3,1>(k,k-1);
+
+    Scalar tau, beta;
+    Matrix<Scalar, 2, 1> ess;
+    v.makeHouseholder(ess, tau, beta);
+    
+    if (beta != Scalar(0)) // if v is not zero
+    {
+      if (firstIteration && k > il)
+        m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
+      else if (!firstIteration)
+        m_matT.coeffRef(k,k-1) = beta;
+
+      // These Householder transformations form the O(n^3) part of the algorithm
+      m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
+      m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
+      if (computeU)
+        m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
+    }
+  }
+
+  Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
+  Scalar tau, beta;
+  Matrix<Scalar, 1, 1> ess;
+  v.makeHouseholder(ess, tau, beta);
+
+  if (beta != Scalar(0)) // if v is not zero
+  {
+    m_matT.coeffRef(iu-1, iu-2) = beta;
+    m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
+    m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
+    if (computeU)
+      m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
+  }
+
+  // clean up pollution due to round-off errors
+  for (Index i = im+2; i <= iu; ++i)
+  {
+    m_matT.coeffRef(i,i-2) = Scalar(0);
+    if (i > im+2)
+      m_matT.coeffRef(i,i-3) = Scalar(0);
+  }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_REAL_SCHUR_H
diff --git a/Eigen/src/Eigenvalues/RealSchur_MKL.h b/Eigen/src/Eigenvalues/RealSchur_MKL.h
new file mode 100644
index 0000000..ad97364
--- /dev/null
+++ b/Eigen/src/Eigenvalues/RealSchur_MKL.h
@@ -0,0 +1,83 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+   list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+   this list of conditions and the following disclaimer in the documentation
+   and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+   be used to endorse or promote products derived from this software without
+   specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ *   Content : Eigen bindings to Intel(R) MKL
+ *    Real Schur needed to real unsymmetrical eigenvalues/eigenvectors.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_REAL_SCHUR_MKL_H
+#define EIGEN_REAL_SCHUR_MKL_H
+
+#include "Eigen/src/Core/util/MKL_support.h"
+
+namespace Eigen { 
+
+/** \internal Specialization for the data types supported by MKL */
+
+#define EIGEN_MKL_SCHUR_REAL(EIGTYPE, MKLTYPE, MKLPREFIX, MKLPREFIX_U, EIGCOLROW, MKLCOLROW) \
+template<> inline \
+RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
+RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
+{ \
+  typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
+  typedef MatrixType::Scalar Scalar; \
+  typedef MatrixType::RealScalar RealScalar; \
+\
+  eigen_assert(matrix.cols() == matrix.rows()); \
+\
+  lapack_int n = matrix.cols(), sdim, info; \
+  lapack_int lda = matrix.outerStride(); \
+  lapack_int matrix_order = MKLCOLROW; \
+  char jobvs, sort='N'; \
+  LAPACK_##MKLPREFIX_U##_SELECT2 select = 0; \
+  jobvs = (computeU) ? 'V' : 'N'; \
+  m_matU.resize(n, n); \
+  lapack_int ldvs  = m_matU.outerStride(); \
+  m_matT = matrix; \
+  Matrix<EIGTYPE, Dynamic, Dynamic> wr, wi; \
+  wr.resize(n, 1); wi.resize(n, 1); \
+  info = LAPACKE_##MKLPREFIX##gees( matrix_order, jobvs, sort, select, n, (MKLTYPE*)m_matT.data(), lda, &sdim, (MKLTYPE*)wr.data(), (MKLTYPE*)wi.data(), (MKLTYPE*)m_matU.data(), ldvs ); \
+  if(info == 0) \
+    m_info = Success; \
+  else \
+    m_info = NoConvergence; \
+\
+  m_isInitialized = true; \
+  m_matUisUptodate = computeU; \
+  return *this; \
+\
+}
+
+EIGEN_MKL_SCHUR_REAL(double,   double, d, D, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_SCHUR_REAL(float,    float,  s, S, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_SCHUR_REAL(double,   double, d, D, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_MKL_SCHUR_REAL(float,    float,  s, S, RowMajor, LAPACK_ROW_MAJOR)
+
+} // end namespace Eigen
+
+#endif // EIGEN_REAL_SCHUR_MKL_H
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
new file mode 100644
index 0000000..c2e76c8
--- /dev/null
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -0,0 +1,798 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
+#define EIGEN_SELFADJOINTEIGENSOLVER_H
+
+#include "./Tridiagonalization.h"
+
+namespace Eigen { 
+
+template<typename _MatrixType>
+class GeneralizedSelfAdjointEigenSolver;
+
+namespace internal {
+template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class SelfAdjointEigenSolver
+  *
+  * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the
+  * eigendecomposition; this is expected to be an instantiation of the Matrix
+  * class template.
+  *
+  * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
+  * matrices, this means that the matrix is symmetric: it equals its
+  * transpose. This class computes the eigenvalues and eigenvectors of a
+  * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
+  * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a
+  * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
+  * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
+  * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
+  * matrices, the matrix \f$ V \f$ is always invertible). This is called the
+  * eigendecomposition.
+  *
+  * The algorithm exploits the fact that the matrix is selfadjoint, making it
+  * faster and more accurate than the general purpose eigenvalue algorithms
+  * implemented in EigenSolver and ComplexEigenSolver.
+  *
+  * Only the \b lower \b triangular \b part of the input matrix is referenced.
+  *
+  * Call the function compute() to compute the eigenvalues and eigenvectors of
+  * a given matrix. Alternatively, you can use the
+  * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
+  * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
+  * and eigenvectors are computed, they can be retrieved with the eigenvalues()
+  * and eigenvectors() functions.
+  *
+  * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
+  * contains an example of the typical use of this class.
+  *
+  * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
+  * the likes, see the class GeneralizedSelfAdjointEigenSolver.
+  *
+  * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
+  */
+template<typename _MatrixType> class SelfAdjointEigenSolver
+{
+  public:
+
+    typedef _MatrixType MatrixType;
+    enum {
+      Size = MatrixType::RowsAtCompileTime,
+      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+      Options = MatrixType::Options,
+      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+    };
+    
+    /** \brief Scalar type for matrices of type \p _MatrixType. */
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::Index Index;
+
+    /** \brief Real scalar type for \p _MatrixType.
+      *
+      * This is just \c Scalar if #Scalar is real (e.g., \c float or
+      * \c double), and the type of the real part of \c Scalar if #Scalar is
+      * complex.
+      */
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    
+    friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
+
+    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+      *
+      * This is a column vector with entries of type #RealScalar.
+      * The length of the vector is the size of \p _MatrixType.
+      */
+    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
+    typedef Tridiagonalization<MatrixType> TridiagonalizationType;
+
+    /** \brief Default constructor for fixed-size matrices.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute(). This constructor
+      * can only be used if \p _MatrixType is a fixed-size matrix; use
+      * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
+      *
+      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
+      */
+    SelfAdjointEigenSolver()
+        : m_eivec(),
+          m_eivalues(),
+          m_subdiag(),
+          m_isInitialized(false)
+    { }
+
+    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+      *
+      * \param [in]  size  Positive integer, size of the matrix whose
+      * eigenvalues and eigenvectors will be computed.
+      *
+      * This constructor is useful for dynamic-size matrices, when the user
+      * intends to perform decompositions via compute(). The \p size
+      * parameter is only used as a hint. It is not an error to give a wrong
+      * \p size, but it may impair performance.
+      *
+      * \sa compute() for an example
+      */
+    SelfAdjointEigenSolver(Index size)
+        : m_eivec(size, size),
+          m_eivalues(size),
+          m_subdiag(size > 1 ? size - 1 : 1),
+          m_isInitialized(false)
+    {}
+
+    /** \brief Constructor; computes eigendecomposition of given matrix.
+      *
+      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
+      *    be computed. Only the lower triangular part of the matrix is referenced.
+      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+      *
+      * This constructor calls compute(const MatrixType&, int) to compute the
+      * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
+      * \p options equals #ComputeEigenvectors.
+      *
+      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
+      *
+      * \sa compute(const MatrixType&, int)
+      */
+    SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
+      : m_eivec(matrix.rows(), matrix.cols()),
+        m_eivalues(matrix.cols()),
+        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
+        m_isInitialized(false)
+    {
+      compute(matrix, options);
+    }
+
+    /** \brief Computes eigendecomposition of given matrix.
+      *
+      * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to
+      *    be computed. Only the lower triangular part of the matrix is referenced.
+      * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+      * \returns    Reference to \c *this
+      *
+      * This function computes the eigenvalues of \p matrix.  The eigenvalues()
+      * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
+      * then the eigenvectors are also computed and can be retrieved by
+      * calling eigenvectors().
+      *
+      * This implementation uses a symmetric QR algorithm. The matrix is first
+      * reduced to tridiagonal form using the Tridiagonalization class. The
+      * tridiagonal matrix is then brought to diagonal form with implicit
+      * symmetric QR steps with Wilkinson shift. Details can be found in
+      * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
+      *
+      * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
+      * are required and \f$ 4n^3/3 \f$ if they are not required.
+      *
+      * This method reuses the memory in the SelfAdjointEigenSolver object that
+      * was allocated when the object was constructed, if the size of the
+      * matrix does not change.
+      *
+      * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
+      *
+      * \sa SelfAdjointEigenSolver(const MatrixType&, int)
+      */
+    SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
+    
+    /** \brief Computes eigendecomposition of given matrix using a direct algorithm
+      *
+      * This is a variant of compute(const MatrixType&, int options) which
+      * directly solves the underlying polynomial equation.
+      * 
+      * Currently only 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
+      * 
+      * This method is usually significantly faster than the QR algorithm
+      * but it might also be less accurate. It is also worth noting that
+      * for 3x3 matrices it involves trigonometric operations which are
+      * not necessarily available for all scalar types.
+      *
+      * \sa compute(const MatrixType&, int options)
+      */
+    SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
+
+    /** \brief Returns the eigenvectors of given matrix.
+      *
+      * \returns  A const reference to the matrix whose columns are the eigenvectors.
+      *
+      * \pre The eigenvectors have been computed before.
+      *
+      * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+      * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
+      * eigenvectors are normalized to have (Euclidean) norm equal to one. If
+      * this object was used to solve the eigenproblem for the selfadjoint
+      * matrix \f$ A \f$, then the matrix returned by this function is the
+      * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
+      *
+      * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
+      *
+      * \sa eigenvalues()
+      */
+    const MatrixType& eigenvectors() const
+    {
+      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+      return m_eivec;
+    }
+
+    /** \brief Returns the eigenvalues of given matrix.
+      *
+      * \returns A const reference to the column vector containing the eigenvalues.
+      *
+      * \pre The eigenvalues have been computed before.
+      *
+      * The eigenvalues are repeated according to their algebraic multiplicity,
+      * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+      * are sorted in increasing order.
+      *
+      * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
+      *
+      * \sa eigenvectors(), MatrixBase::eigenvalues()
+      */
+    const RealVectorType& eigenvalues() const
+    {
+      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+      return m_eivalues;
+    }
+
+    /** \brief Computes the positive-definite square root of the matrix.
+      *
+      * \returns the positive-definite square root of the matrix
+      *
+      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+      * have been computed before.
+      *
+      * The square root of a positive-definite matrix \f$ A \f$ is the
+      * positive-definite matrix whose square equals \f$ A \f$. This function
+      * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
+      * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
+      *
+      * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
+      *
+      * \sa operatorInverseSqrt(),
+      *     \ref MatrixFunctions_Module "MatrixFunctions Module"
+      */
+    MatrixType operatorSqrt() const
+    {
+      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+      return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+    }
+
+    /** \brief Computes the inverse square root of the matrix.
+      *
+      * \returns the inverse positive-definite square root of the matrix
+      *
+      * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+      * have been computed before.
+      *
+      * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
+      * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
+      * cheaper than first computing the square root with operatorSqrt() and
+      * then its inverse with MatrixBase::inverse().
+      *
+      * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
+      * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
+      *
+      * \sa operatorSqrt(), MatrixBase::inverse(),
+      *     \ref MatrixFunctions_Module "MatrixFunctions Module"
+      */
+    MatrixType operatorInverseSqrt() const
+    {
+      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+      return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+    }
+
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+      return m_info;
+    }
+
+    /** \brief Maximum number of iterations.
+      *
+      * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
+      * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
+      */
+    static const int m_maxIterations = 30;
+
+    #ifdef EIGEN2_SUPPORT
+    SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
+      : m_eivec(matrix.rows(), matrix.cols()),
+        m_eivalues(matrix.cols()),
+        m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
+        m_isInitialized(false)
+    {
+      compute(matrix, computeEigenvectors);
+    }
+    
+    SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
+        : m_eivec(matA.cols(), matA.cols()),
+          m_eivalues(matA.cols()),
+          m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
+          m_isInitialized(false)
+    {
+      static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
+    }
+    
+    void compute(const MatrixType& matrix, bool computeEigenvectors)
+    {
+      compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
+    }
+
+    void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
+    {
+      compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
+    }
+    #endif // EIGEN2_SUPPORT
+
+  protected:
+    static void check_template_parameters()
+    {
+      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+    }
+    
+    MatrixType m_eivec;
+    RealVectorType m_eivalues;
+    typename TridiagonalizationType::SubDiagonalType m_subdiag;
+    ComputationInfo m_info;
+    bool m_isInitialized;
+    bool m_eigenvectorsOk;
+};
+
+/** \internal
+  *
+  * \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  * Performs a QR step on a tridiagonal symmetric matrix represented as a
+  * pair of two vectors \a diag and \a subdiag.
+  *
+  * \param matA the input selfadjoint matrix
+  * \param hCoeffs returned Householder coefficients
+  *
+  * For compilation efficiency reasons, this procedure does not use eigen expression
+  * for its arguments.
+  *
+  * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
+  * "implicit symmetric QR step with Wilkinson shift"
+  */
+namespace internal {
+template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
+static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
+}
+
+template<typename MatrixType>
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::compute(const MatrixType& matrix, int options)
+{
+  check_template_parameters();
+  
+  using std::abs;
+  eigen_assert(matrix.cols() == matrix.rows());
+  eigen_assert((options&~(EigVecMask|GenEigMask))==0
+          && (options&EigVecMask)!=EigVecMask
+          && "invalid option parameter");
+  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+  Index n = matrix.cols();
+  m_eivalues.resize(n,1);
+
+  if(n==1)
+  {
+    m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0));
+    if(computeEigenvectors)
+      m_eivec.setOnes(n,n);
+    m_info = Success;
+    m_isInitialized = true;
+    m_eigenvectorsOk = computeEigenvectors;
+    return *this;
+  }
+
+  // declare some aliases
+  RealVectorType& diag = m_eivalues;
+  MatrixType& mat = m_eivec;
+
+  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
+  mat = matrix.template triangularView<Lower>();
+  RealScalar scale = mat.cwiseAbs().maxCoeff();
+  if(scale==RealScalar(0)) scale = RealScalar(1);
+  mat.template triangularView<Lower>() /= scale;
+  m_subdiag.resize(n-1);
+  internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
+  
+  Index end = n-1;
+  Index start = 0;
+  Index iter = 0; // total number of iterations
+
+  while (end>0)
+  {
+    for (Index i = start; i<end; ++i)
+      if (internal::isMuchSmallerThan(abs(m_subdiag[i]),(abs(diag[i])+abs(diag[i+1]))))
+        m_subdiag[i] = 0;
+
+    // find the largest unreduced block
+    while (end>0 && m_subdiag[end-1]==0)
+    {
+      end--;
+    }
+    if (end<=0)
+      break;
+
+    // if we spent too many iterations, we give up
+    iter++;
+    if(iter > m_maxIterations * n) break;
+
+    start = end - 1;
+    while (start>0 && m_subdiag[start-1]!=0)
+      start--;
+
+    internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
+  }
+
+  if (iter <= m_maxIterations * n)
+    m_info = Success;
+  else
+    m_info = NoConvergence;
+
+  // Sort eigenvalues and corresponding vectors.
+  // TODO make the sort optional ?
+  // TODO use a better sort algorithm !!
+  if (m_info == Success)
+  {
+    for (Index i = 0; i < n-1; ++i)
+    {
+      Index k;
+      m_eivalues.segment(i,n-i).minCoeff(&k);
+      if (k > 0)
+      {
+        std::swap(m_eivalues[i], m_eivalues[k+i]);
+        if(computeEigenvectors)
+          m_eivec.col(i).swap(m_eivec.col(k+i));
+      }
+    }
+  }
+  
+  // scale back the eigen values
+  m_eivalues *= scale;
+
+  m_isInitialized = true;
+  m_eigenvectorsOk = computeEigenvectors;
+  return *this;
+}
+
+
+namespace internal {
+  
+template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
+{
+  static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
+  { eig.compute(A,options); }
+};
+
+template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
+{
+  typedef typename SolverType::MatrixType MatrixType;
+  typedef typename SolverType::RealVectorType VectorType;
+  typedef typename SolverType::Scalar Scalar;
+  typedef typename MatrixType::Index Index;
+  
+  /** \internal
+   * Computes the roots of the characteristic polynomial of \a m.
+   * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
+   */
+  static inline void computeRoots(const MatrixType& m, VectorType& roots)
+  {
+    using std::sqrt;
+    using std::atan2;
+    using std::cos;
+    using std::sin;
+    const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
+    const Scalar s_sqrt3 = sqrt(Scalar(3.0));
+
+    // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
+    // eigenvalues are the roots to this equation, all guaranteed to be
+    // real-valued, because the matrix is symmetric.
+    Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
+    Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
+    Scalar c2 = m(0,0) + m(1,1) + m(2,2);
+
+    // Construct the parameters used in classifying the roots of the equation
+    // and in solving the equation for the roots in closed form.
+    Scalar c2_over_3 = c2*s_inv3;
+    Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
+    if(a_over_3<Scalar(0))
+      a_over_3 = Scalar(0);
+
+    Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
+
+    Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
+    if(q<Scalar(0))
+      q = Scalar(0);
+
+    // Compute the eigenvalues by solving for the roots of the polynomial.
+    Scalar rho = sqrt(a_over_3);
+    Scalar theta = atan2(sqrt(q),half_b)*s_inv3;  // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
+    Scalar cos_theta = cos(theta);
+    Scalar sin_theta = sin(theta);
+    // roots are already sorted, since cos is monotonically decreasing on [0, pi]
+    roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
+    roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
+    roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
+  }
+
+  static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
+  {
+    using std::abs;
+    Index i0;
+    // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
+    mat.diagonal().cwiseAbs().maxCoeff(&i0);
+    // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
+    // so let's save it:
+    representative = mat.col(i0);
+    Scalar n0, n1;
+    VectorType c0, c1;
+    n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
+    n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
+    if(n0>n1) res = c0/std::sqrt(n0);
+    else      res = c1/std::sqrt(n1);
+
+    return true;
+  }
+
+  static inline void run(SolverType& solver, const MatrixType& mat, int options)
+  {
+    eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
+    eigen_assert((options&~(EigVecMask|GenEigMask))==0
+            && (options&EigVecMask)!=EigVecMask
+            && "invalid option parameter");
+    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+    
+    MatrixType& eivecs = solver.m_eivec;
+    VectorType& eivals = solver.m_eivalues;
+  
+    // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+    Scalar shift = mat.trace() / Scalar(3);
+    // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
+    MatrixType scaledMat = mat.template selfadjointView<Lower>();
+    scaledMat.diagonal().array() -= shift;
+    Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+    if(scale > 0) scaledMat /= scale;   // TODO for scale==0 we could save the remaining operations
+
+    // compute the eigenvalues
+    computeRoots(scaledMat,eivals);
+
+    // compute the eigenvectors
+    if(computeEigenvectors)
+    {
+      if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
+      {
+        // All three eigenvalues are numerically the same
+        eivecs.setIdentity();
+      }
+      else
+      {
+        MatrixType tmp;
+        tmp = scaledMat;
+
+        // Compute the eigenvector of the most distinct eigenvalue
+        Scalar d0 = eivals(2) - eivals(1);
+        Scalar d1 = eivals(1) - eivals(0);
+        Index k(0), l(2);
+        if(d0 > d1)
+        {
+          std::swap(k,l);
+          d0 = d1;
+        }
+
+        // Compute the eigenvector of index k
+        {
+          tmp.diagonal().array () -= eivals(k);
+          // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
+          extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
+        }
+
+        // Compute eigenvector of index l
+        if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
+        {
+          // If d0 is too small, then the two other eigenvalues are numerically the same,
+          // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
+          eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
+          eivecs.col(l).normalize();
+        }
+        else
+        {
+          tmp = scaledMat;
+          tmp.diagonal().array () -= eivals(l);
+
+          VectorType dummy;
+          extract_kernel(tmp, eivecs.col(l), dummy);
+        }
+
+        // Compute last eigenvector from the other two
+        eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
+      }
+    }
+
+    // Rescale back to the original size.
+    eivals *= scale;
+    eivals.array() += shift;
+    
+    solver.m_info = Success;
+    solver.m_isInitialized = true;
+    solver.m_eigenvectorsOk = computeEigenvectors;
+  }
+};
+
+// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
+template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
+{
+  typedef typename SolverType::MatrixType MatrixType;
+  typedef typename SolverType::RealVectorType VectorType;
+  typedef typename SolverType::Scalar Scalar;
+  
+  static inline void computeRoots(const MatrixType& m, VectorType& roots)
+  {
+    using std::sqrt;
+    const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
+    const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
+    roots(0) = t1 - t0;
+    roots(1) = t1 + t0;
+  }
+  
+  static inline void run(SolverType& solver, const MatrixType& mat, int options)
+  {
+    using std::sqrt;
+    using std::abs;
+
+    eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
+    eigen_assert((options&~(EigVecMask|GenEigMask))==0
+            && (options&EigVecMask)!=EigVecMask
+            && "invalid option parameter");
+    bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
+    
+    MatrixType& eivecs = solver.m_eivec;
+    VectorType& eivals = solver.m_eivalues;
+  
+    // map the matrix coefficients to [-1:1] to avoid over- and underflow.
+    Scalar scale = mat.cwiseAbs().maxCoeff();
+    scale = (std::max)(scale,Scalar(1));
+    MatrixType scaledMat = mat / scale;
+    
+    // Compute the eigenvalues
+    computeRoots(scaledMat,eivals);
+    
+    // compute the eigen vectors
+    if(computeEigenvectors)
+    {
+      if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
+      {
+        eivecs.setIdentity();
+      }
+      else
+      {
+        scaledMat.diagonal().array () -= eivals(1);
+        Scalar a2 = numext::abs2(scaledMat(0,0));
+        Scalar c2 = numext::abs2(scaledMat(1,1));
+        Scalar b2 = numext::abs2(scaledMat(1,0));
+        if(a2>c2)
+        {
+          eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
+          eivecs.col(1) /= sqrt(a2+b2);
+        }
+        else
+        {
+          eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
+          eivecs.col(1) /= sqrt(c2+b2);
+        }
+
+        eivecs.col(0) << eivecs.col(1).unitOrthogonal();
+      }
+    }
+    
+    // Rescale back to the original size.
+    eivals *= scale;
+    
+    solver.m_info = Success;
+    solver.m_isInitialized = true;
+    solver.m_eigenvectorsOk = computeEigenvectors;
+  }
+};
+
+}
+
+template<typename MatrixType>
+SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
+::computeDirect(const MatrixType& matrix, int options)
+{
+  internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
+  return *this;
+}
+
+namespace internal {
+template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
+static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
+{
+  using std::abs;
+  RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
+  RealScalar e = subdiag[end-1];
+  // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
+  // underflow thus leading to inf/NaN values when using the following commented code:
+//   RealScalar e2 = numext::abs2(subdiag[end-1]);
+//   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
+  // This explain the following, somewhat more complicated, version:
+  RealScalar mu = diag[end];
+  if(td==0)
+    mu -= abs(e);
+  else
+  {
+    RealScalar e2 = numext::abs2(subdiag[end-1]);
+    RealScalar h = numext::hypot(td,e);
+    if(e2==0)  mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
+    else       mu -= e2 / (td + (td>0 ? h : -h));
+  }
+  
+  RealScalar x = diag[start] - mu;
+  RealScalar z = subdiag[start];
+  for (Index k = start; k < end; ++k)
+  {
+    JacobiRotation<RealScalar> rot;
+    rot.makeGivens(x, z);
+
+    // do T = G' T G
+    RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
+    RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
+
+    diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
+    diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
+    subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
+    
+
+    if (k > start)
+      subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
+
+    x = subdiag[k];
+
+    if (k < end - 1)
+    {
+      z = -rot.s() * subdiag[k+1];
+      subdiag[k + 1] = rot.c() * subdiag[k+1];
+    }
+    
+    // apply the givens rotation to the unit matrix Q = Q * G
+    if (matrixQ)
+    {
+      // FIXME if StorageOrder == RowMajor this operation is not very efficient
+      Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
+      q.applyOnTheRight(k,k+1,rot);
+    }
+  }
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h
new file mode 100644
index 0000000..17c0dad
--- /dev/null
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h
@@ -0,0 +1,92 @@
+/*
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without modification,
+ are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice, this
+   list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright notice,
+   this list of conditions and the following disclaimer in the documentation
+   and/or other materials provided with the distribution.
+ * Neither the name of Intel Corporation nor the names of its contributors may
+   be used to endorse or promote products derived from this software without
+   specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+ ********************************************************************************
+ *   Content : Eigen bindings to Intel(R) MKL
+ *    Self-adjoint eigenvalues/eigenvectors.
+ ********************************************************************************
+*/
+
+#ifndef EIGEN_SAEIGENSOLVER_MKL_H
+#define EIGEN_SAEIGENSOLVER_MKL_H
+
+#include "Eigen/src/Core/util/MKL_support.h"
+
+namespace Eigen { 
+
+/** \internal Specialization for the data types supported by MKL */
+
+#define EIGEN_MKL_EIG_SELFADJ(EIGTYPE, MKLTYPE, MKLRTYPE, MKLNAME, EIGCOLROW, MKLCOLROW ) \
+template<> inline \
+SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
+SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, int options) \
+{ \
+  eigen_assert(matrix.cols() == matrix.rows()); \
+  eigen_assert((options&~(EigVecMask|GenEigMask))==0 \
+          && (options&EigVecMask)!=EigVecMask \
+          && "invalid option parameter"); \
+  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
+  lapack_int n = matrix.cols(), lda, matrix_order, info; \
+  m_eivalues.resize(n,1); \
+  m_subdiag.resize(n-1); \
+  m_eivec = matrix; \
+\
+  if(n==1) \
+  { \
+    m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0)); \
+    if(computeEigenvectors) m_eivec.setOnes(n,n); \
+    m_info = Success; \
+    m_isInitialized = true; \
+    m_eigenvectorsOk = computeEigenvectors; \
+    return *this; \
+  } \
+\
+  lda = matrix.outerStride(); \
+  matrix_order=MKLCOLROW; \
+  char jobz, uplo='L'/*, range='A'*/; \
+  jobz = computeEigenvectors ? 'V' : 'N'; \
+\
+  info = LAPACKE_##MKLNAME( matrix_order, jobz, uplo, n, (MKLTYPE*)m_eivec.data(), lda, (MKLRTYPE*)m_eivalues.data() ); \
+  m_info = (info==0) ? Success : NoConvergence; \
+  m_isInitialized = true; \
+  m_eigenvectorsOk = computeEigenvectors; \
+  return *this; \
+}
+
+
+EIGEN_MKL_EIG_SELFADJ(double,   double,        double, dsyev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_EIG_SELFADJ(float,    float,         float,  ssyev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8,  float,  cheev, ColMajor, LAPACK_COL_MAJOR)
+
+EIGEN_MKL_EIG_SELFADJ(double,   double,        double, dsyev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_MKL_EIG_SELFADJ(float,    float,         float,  ssyev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8,  float,  cheev, RowMajor, LAPACK_ROW_MAJOR)
+
+} // end namespace Eigen
+
+#endif // EIGEN_SAEIGENSOLVER_H
diff --git a/Eigen/src/Eigenvalues/Tridiagonalization.h b/Eigen/src/Eigenvalues/Tridiagonalization.h
new file mode 100644
index 0000000..192278d
--- /dev/null
+++ b/Eigen/src/Eigenvalues/Tridiagonalization.h
@@ -0,0 +1,557 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TRIDIAGONALIZATION_H
+#define EIGEN_TRIDIAGONALIZATION_H
+
+namespace Eigen { 
+
+namespace internal {
+  
+template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
+template<typename MatrixType>
+struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
+{
+  typedef typename MatrixType::PlainObject ReturnType;
+};
+
+template<typename MatrixType, typename CoeffVectorType>
+void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
+}
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  *
+  * \class Tridiagonalization
+  *
+  * \brief Tridiagonal decomposition of a selfadjoint matrix
+  *
+  * \tparam _MatrixType the type of the matrix of which we are computing the
+  * tridiagonal decomposition; this is expected to be an instantiation of the
+  * Matrix class template.
+  *
+  * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
+  * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
+  *
+  * A tridiagonal matrix is a matrix which has nonzero elements only on the
+  * main diagonal and the first diagonal below and above it. The Hessenberg
+  * decomposition of a selfadjoint matrix is in fact a tridiagonal
+  * decomposition. This class is used in SelfAdjointEigenSolver to compute the
+  * eigenvalues and eigenvectors of a selfadjoint matrix.
+  *
+  * Call the function compute() to compute the tridiagonal decomposition of a
+  * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
+  * constructor which computes the tridiagonal Schur decomposition at
+  * construction time. Once the decomposition is computed, you can use the
+  * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
+  * decomposition.
+  *
+  * The documentation of Tridiagonalization(const MatrixType&) contains an
+  * example of the typical use of this class.
+  *
+  * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
+  */
+template<typename _MatrixType> class Tridiagonalization
+{
+  public:
+
+    /** \brief Synonym for the template parameter \p _MatrixType. */
+    typedef _MatrixType MatrixType;
+
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef typename MatrixType::Index Index;
+
+    enum {
+      Size = MatrixType::RowsAtCompileTime,
+      SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
+      Options = MatrixType::Options,
+      MaxSize = MatrixType::MaxRowsAtCompileTime,
+      MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
+    };
+
+    typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
+    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
+    typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
+    typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
+    typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
+
+    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
+              typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
+              const Diagonal<const MatrixType>
+            >::type DiagonalReturnType;
+
+    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
+              typename internal::add_const_on_value_type<typename Diagonal<
+                Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type,
+              const Diagonal<
+                Block<const MatrixType,SizeMinusOne,SizeMinusOne> >
+            >::type SubDiagonalReturnType;
+
+    /** \brief Return type of matrixQ() */
+    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
+
+    /** \brief Default constructor.
+      *
+      * \param [in]  size  Positive integer, size of the matrix whose tridiagonal
+      * decomposition will be computed.
+      *
+      * The default constructor is useful in cases in which the user intends to
+      * perform decompositions via compute().  The \p size parameter is only
+      * used as a hint. It is not an error to give a wrong \p size, but it may
+      * impair performance.
+      *
+      * \sa compute() for an example.
+      */
+    Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
+      : m_matrix(size,size),
+        m_hCoeffs(size > 1 ? size-1 : 1),
+        m_isInitialized(false)
+    {}
+
+    /** \brief Constructor; computes tridiagonal decomposition of given matrix.
+      *
+      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
+      * is to be computed.
+      *
+      * This constructor calls compute() to compute the tridiagonal decomposition.
+      *
+      * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
+      * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
+      */
+    Tridiagonalization(const MatrixType& matrix)
+      : m_matrix(matrix),
+        m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
+        m_isInitialized(false)
+    {
+      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
+      m_isInitialized = true;
+    }
+
+    /** \brief Computes tridiagonal decomposition of given matrix.
+      *
+      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
+      * is to be computed.
+      * \returns    Reference to \c *this
+      *
+      * The tridiagonal decomposition is computed by bringing the columns of
+      * the matrix successively in the required form using Householder
+      * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
+      * the size of the given matrix.
+      *
+      * This method reuses of the allocated data in the Tridiagonalization
+      * object, if the size of the matrix does not change.
+      *
+      * Example: \include Tridiagonalization_compute.cpp
+      * Output: \verbinclude Tridiagonalization_compute.out
+      */
+    Tridiagonalization& compute(const MatrixType& matrix)
+    {
+      m_matrix = matrix;
+      m_hCoeffs.resize(matrix.rows()-1, 1);
+      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
+      m_isInitialized = true;
+      return *this;
+    }
+
+    /** \brief Returns the Householder coefficients.
+      *
+      * \returns a const reference to the vector of Householder coefficients
+      *
+      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+      * the member function compute(const MatrixType&) has been called before
+      * to compute the tridiagonal decomposition of a matrix.
+      *
+      * The Householder coefficients allow the reconstruction of the matrix
+      * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
+      *
+      * Example: \include Tridiagonalization_householderCoefficients.cpp
+      * Output: \verbinclude Tridiagonalization_householderCoefficients.out
+      *
+      * \sa packedMatrix(), \ref Householder_Module "Householder module"
+      */
+    inline CoeffVectorType householderCoefficients() const
+    {
+      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+      return m_hCoeffs;
+    }
+
+    /** \brief Returns the internal representation of the decomposition
+      *
+      *	\returns a const reference to a matrix with the internal representation
+      *	         of the decomposition.
+      *
+      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+      * the member function compute(const MatrixType&) has been called before
+      * to compute the tridiagonal decomposition of a matrix.
+      *
+      * The returned matrix contains the following information:
+      *  - the strict upper triangular part is equal to the input matrix A.
+      *  - the diagonal and lower sub-diagonal represent the real tridiagonal
+      *    symmetric matrix T.
+      *  - the rest of the lower part contains the Householder vectors that,
+      *    combined with Householder coefficients returned by
+      *    householderCoefficients(), allows to reconstruct the matrix Q as
+      *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+      *    Here, the matrices \f$ H_i \f$ are the Householder transformations
+      *       \f$ H_i = (I - h_i v_i v_i^T) \f$
+      *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
+      *    \f$ v_i \f$ is the Householder vector defined by
+      *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
+      *    with M the matrix returned by this function.
+      *
+      * See LAPACK for further details on this packed storage.
+      *
+      * Example: \include Tridiagonalization_packedMatrix.cpp
+      * Output: \verbinclude Tridiagonalization_packedMatrix.out
+      *
+      * \sa householderCoefficients()
+      */
+    inline const MatrixType& packedMatrix() const
+    {
+      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+      return m_matrix;
+    }
+
+    /** \brief Returns the unitary matrix Q in the decomposition
+      *
+      * \returns object representing the matrix Q
+      *
+      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+      * the member function compute(const MatrixType&) has been called before
+      * to compute the tridiagonal decomposition of a matrix.
+      *
+      * This function returns a light-weight object of template class
+      * HouseholderSequence. You can either apply it directly to a matrix or
+      * you can convert it to a matrix of type #MatrixType.
+      *
+      * \sa Tridiagonalization(const MatrixType&) for an example,
+      *     matrixT(), class HouseholderSequence
+      */
+    HouseholderSequenceType matrixQ() const
+    {
+      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+      return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
+             .setLength(m_matrix.rows() - 1)
+             .setShift(1);
+    }
+
+    /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
+      *
+      * \returns expression object representing the matrix T
+      *
+      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+      * the member function compute(const MatrixType&) has been called before
+      * to compute the tridiagonal decomposition of a matrix.
+      *
+      * Currently, this function can be used to extract the matrix T from internal
+      * data and copy it to a dense matrix object. In most cases, it may be
+      * sufficient to directly use the packed matrix or the vector expressions
+      * returned by diagonal() and subDiagonal() instead of creating a new
+      * dense copy matrix with this function.
+      *
+      * \sa Tridiagonalization(const MatrixType&) for an example,
+      * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
+      */
+    MatrixTReturnType matrixT() const
+    {
+      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+      return MatrixTReturnType(m_matrix.real());
+    }
+
+    /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
+      *
+      * \returns expression representing the diagonal of T
+      *
+      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+      * the member function compute(const MatrixType&) has been called before
+      * to compute the tridiagonal decomposition of a matrix.
+      *
+      * Example: \include Tridiagonalization_diagonal.cpp
+      * Output: \verbinclude Tridiagonalization_diagonal.out
+      *
+      * \sa matrixT(), subDiagonal()
+      */
+    DiagonalReturnType diagonal() const;
+
+    /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
+      *
+      * \returns expression representing the subdiagonal of T
+      *
+      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+      * the member function compute(const MatrixType&) has been called before
+      * to compute the tridiagonal decomposition of a matrix.
+      *
+      * \sa diagonal() for an example, matrixT()
+      */
+    SubDiagonalReturnType subDiagonal() const;
+
+  protected:
+
+    MatrixType m_matrix;
+    CoeffVectorType m_hCoeffs;
+    bool m_isInitialized;
+};
+
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::DiagonalReturnType
+Tridiagonalization<MatrixType>::diagonal() const
+{
+  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+  return m_matrix.diagonal();
+}
+
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
+Tridiagonalization<MatrixType>::subDiagonal() const
+{
+  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
+  Index n = m_matrix.rows();
+  return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
+}
+
+namespace internal {
+
+/** \internal
+  * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
+  *
+  * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
+  *                     On output, the strict upper part is left unchanged, and the lower triangular part
+  *                     represents the T and Q matrices in packed format has detailed below.
+  * \param[out]    hCoeffs returned Householder coefficients (see below)
+  *
+  * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
+  * and lower sub-diagonal of the matrix \a matA.
+  * The unitary matrix Q is represented in a compact way as a product of
+  * Householder reflectors \f$ H_i \f$ such that:
+  *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+  * The Householder reflectors are defined as
+  *       \f$ H_i = (I - h_i v_i v_i^T) \f$
+  * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
+  * \f$ v_i \f$ is the Householder vector defined by
+  *       \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
+  *
+  * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
+  *
+  * \sa Tridiagonalization::packedMatrix()
+  */
+template<typename MatrixType, typename CoeffVectorType>
+void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
+{
+  using numext::conj;
+  typedef typename MatrixType::Index Index;
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::RealScalar RealScalar;
+  Index n = matA.rows();
+  eigen_assert(n==matA.cols());
+  eigen_assert(n==hCoeffs.size()+1 || n==1);
+  
+  for (Index i = 0; i<n-1; ++i)
+  {
+    Index remainingSize = n-i-1;
+    RealScalar beta;
+    Scalar h;
+    matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
+
+    // Apply similarity transformation to remaining columns,
+    // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
+    matA.col(i).coeffRef(i+1) = 1;
+
+    hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
+                                  * (conj(h) * matA.col(i).tail(remainingSize)));
+
+    hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
+
+    matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
+      .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
+
+    matA.col(i).coeffRef(i+1) = beta;
+    hCoeffs.coeffRef(i) = h;
+  }
+}
+
+// forward declaration, implementation at the end of this file
+template<typename MatrixType,
+         int Size=MatrixType::ColsAtCompileTime,
+         bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
+struct tridiagonalization_inplace_selector;
+
+/** \brief Performs a full tridiagonalization in place
+  *
+  * \param[in,out]  mat  On input, the selfadjoint matrix whose tridiagonal
+  *    decomposition is to be computed. Only the lower triangular part referenced.
+  *    The rest is left unchanged. On output, the orthogonal matrix Q
+  *    in the decomposition if \p extractQ is true.
+  * \param[out]  diag  The diagonal of the tridiagonal matrix T in the
+  *    decomposition.
+  * \param[out]  subdiag  The subdiagonal of the tridiagonal matrix T in
+  *    the decomposition.
+  * \param[in]  extractQ  If true, the orthogonal matrix Q in the
+  *    decomposition is computed and stored in \p mat.
+  *
+  * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
+  * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
+  * symmetric tridiagonal matrix.
+  *
+  * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
+  * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
+  * part of the matrix \p mat is destroyed.
+  *
+  * The vectors \p diag and \p subdiag are not resized. The function
+  * assumes that they are already of the correct size. The length of the
+  * vector \p diag should equal the number of rows in \p mat, and the
+  * length of the vector \p subdiag should be one left.
+  *
+  * This implementation contains an optimized path for 3-by-3 matrices
+  * which is especially useful for plane fitting.
+  *
+  * \note Currently, it requires two temporary vectors to hold the intermediate
+  * Householder coefficients, and to reconstruct the matrix Q from the Householder
+  * reflectors.
+  *
+  * Example (this uses the same matrix as the example in
+  *    Tridiagonalization::Tridiagonalization(const MatrixType&)):
+  *    \include Tridiagonalization_decomposeInPlace.cpp
+  * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
+  *
+  * \sa class Tridiagonalization
+  */
+template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
+void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+{
+  eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
+  tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
+}
+
+/** \internal
+  * General full tridiagonalization
+  */
+template<typename MatrixType, int Size, bool IsComplex>
+struct tridiagonalization_inplace_selector
+{
+  typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
+  typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
+  typedef typename MatrixType::Index Index;
+  template<typename DiagonalType, typename SubDiagonalType>
+  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+  {
+    CoeffVectorType hCoeffs(mat.cols()-1);
+    tridiagonalization_inplace(mat,hCoeffs);
+    diag = mat.diagonal().real();
+    subdiag = mat.template diagonal<-1>().real();
+    if(extractQ)
+      mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
+            .setLength(mat.rows() - 1)
+            .setShift(1);
+  }
+};
+
+/** \internal
+  * Specialization for 3x3 real matrices.
+  * Especially useful for plane fitting.
+  */
+template<typename MatrixType>
+struct tridiagonalization_inplace_selector<MatrixType,3,false>
+{
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::RealScalar RealScalar;
+
+  template<typename DiagonalType, typename SubDiagonalType>
+  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+  {
+    using std::sqrt;
+    diag[0] = mat(0,0);
+    RealScalar v1norm2 = numext::abs2(mat(2,0));
+    if(v1norm2 == RealScalar(0))
+    {
+      diag[1] = mat(1,1);
+      diag[2] = mat(2,2);
+      subdiag[0] = mat(1,0);
+      subdiag[1] = mat(2,1);
+      if (extractQ)
+        mat.setIdentity();
+    }
+    else
+    {
+      RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
+      RealScalar invBeta = RealScalar(1)/beta;
+      Scalar m01 = mat(1,0) * invBeta;
+      Scalar m02 = mat(2,0) * invBeta;
+      Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
+      diag[1] = mat(1,1) + m02*q;
+      diag[2] = mat(2,2) - m02*q;
+      subdiag[0] = beta;
+      subdiag[1] = mat(2,1) - m01 * q;
+      if (extractQ)
+      {
+        mat << 1,   0,    0,
+               0, m01,  m02,
+               0, m02, -m01;
+      }
+    }
+  }
+};
+
+/** \internal
+  * Trivial specialization for 1x1 matrices
+  */
+template<typename MatrixType, bool IsComplex>
+struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
+{
+  typedef typename MatrixType::Scalar Scalar;
+
+  template<typename DiagonalType, typename SubDiagonalType>
+  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
+  {
+    diag(0,0) = numext::real(mat(0,0));
+    if(extractQ)
+      mat(0,0) = Scalar(1);
+  }
+};
+
+/** \internal
+  * \eigenvalues_module \ingroup Eigenvalues_Module
+  *
+  * \brief Expression type for return value of Tridiagonalization::matrixT()
+  *
+  * \tparam MatrixType type of underlying dense matrix
+  */
+template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
+: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
+{
+    typedef typename MatrixType::Index Index;
+  public:
+    /** \brief Constructor.
+      *
+      * \param[in] mat The underlying dense matrix
+      */
+    TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
+
+    template <typename ResultType>
+    inline void evalTo(ResultType& result) const
+    {
+      result.setZero();
+      result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
+      result.diagonal() = m_matrix.diagonal();
+      result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
+    }
+
+    Index rows() const { return m_matrix.rows(); }
+    Index cols() const { return m_matrix.cols(); }
+
+  protected:
+    typename MatrixType::Nested m_matrix;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TRIDIAGONALIZATION_H