| #include "y2022/localizer/localizer.h" |
| |
| #include "absl/flags/flag.h" |
| |
| #include "aos/json_to_flatbuffer.h" |
| #include "frc971/control_loops/c2d.h" |
| #include "frc971/wpilib/imu_batch_generated.h" |
| #include "y2022/constants.h" |
| |
| ABSL_FLAG(bool, ignore_accelerometer, false, |
| "If set, ignores the accelerometer readings."); |
| |
| namespace frc971::controls { |
| |
| namespace { |
| constexpr double kG = 9.80665; |
| static constexpr std::chrono::microseconds kNominalDt = ImuWatcher::kNominalDt; |
| // Field position of the target (the 2022 target is conveniently in the middle |
| // of the field....). |
| constexpr double kVisionTargetX = 0.0; |
| constexpr double kVisionTargetY = 0.0; |
| |
| // Minimum confidence to require to use a target match. |
| constexpr double kMinTargetEstimateConfidence = 0.75; |
| |
| template <int N> |
| Eigen::Matrix<double, N, 1> MakeState(std::vector<double> values) { |
| CHECK_EQ(static_cast<size_t>(N), values.size()); |
| Eigen::Matrix<double, N, 1> vector; |
| for (int ii = 0; ii < N; ++ii) { |
| vector(ii, 0) = values[ii]; |
| } |
| return vector; |
| } |
| } // namespace |
| |
| ModelBasedLocalizer::ModelBasedLocalizer( |
| const control_loops::drivetrain::DrivetrainConfig<double> &dt_config) |
| : dt_config_(dt_config), |
| velocity_drivetrain_coefficients_( |
| dt_config.make_hybrid_drivetrain_velocity_loop() |
| .plant() |
| .coefficients()), |
| down_estimator_(dt_config) { |
| statistics_.rejection_counts.fill(0); |
| CHECK_EQ(branches_.capacity(), |
| static_cast<size_t>(std::chrono::seconds(1) / kNominalDt / |
| kBranchPeriod)); |
| if (dt_config_.is_simulated) { |
| down_estimator_.assume_perfect_gravity(); |
| } |
| A_continuous_accel_.setZero(); |
| A_continuous_model_.setZero(); |
| B_continuous_accel_.setZero(); |
| B_continuous_model_.setZero(); |
| |
| A_continuous_accel_(kX, kVelocityX) = 1.0; |
| A_continuous_accel_(kY, kVelocityY) = 1.0; |
| |
| const double diameter = 2.0 * dt_config_.robot_radius; |
| |
| A_continuous_model_(kTheta, kLeftVelocity) = -1.0 / diameter; |
| A_continuous_model_(kTheta, kRightVelocity) = 1.0 / diameter; |
| A_continuous_model_(kLeftEncoder, kLeftVelocity) = 1.0; |
| A_continuous_model_(kRightEncoder, kRightVelocity) = 1.0; |
| const auto &vel_coefs = velocity_drivetrain_coefficients_; |
| A_continuous_model_(kLeftVelocity, kLeftVelocity) = |
| vel_coefs.A_continuous(0, 0); |
| A_continuous_model_(kLeftVelocity, kRightVelocity) = |
| vel_coefs.A_continuous(0, 1); |
| A_continuous_model_(kRightVelocity, kLeftVelocity) = |
| vel_coefs.A_continuous(1, 0); |
| A_continuous_model_(kRightVelocity, kRightVelocity) = |
| vel_coefs.A_continuous(1, 1); |
| |
| A_continuous_model_(kLeftVelocity, kLeftVoltageError) = |
| 1 * vel_coefs.B_continuous(0, 0); |
| A_continuous_model_(kLeftVelocity, kRightVoltageError) = |
| 1 * vel_coefs.B_continuous(0, 1); |
| A_continuous_model_(kRightVelocity, kLeftVoltageError) = |
| 1 * vel_coefs.B_continuous(1, 0); |
| A_continuous_model_(kRightVelocity, kRightVoltageError) = |
| 1 * vel_coefs.B_continuous(1, 1); |
| |
| B_continuous_model_.block<1, 2>(kLeftVelocity, kLeftVoltage) = |
| vel_coefs.B_continuous.row(0); |
| B_continuous_model_.block<1, 2>(kRightVelocity, kLeftVoltage) = |
| vel_coefs.B_continuous.row(1); |
| |
| B_continuous_accel_(kVelocityX, kAccelX) = 1.0; |
| B_continuous_accel_(kVelocityY, kAccelY) = 1.0; |
| B_continuous_accel_(kTheta, kThetaRate) = 1.0; |
| |
| Q_continuous_model_.setZero(); |
| Q_continuous_model_.diagonal() << 1e-2, 1e-2, 1e-8, 1e-2, 1e-0, 1e-0, 1e-2, |
| 1e-0, 1e-0; |
| |
| Q_continuous_accel_.setZero(); |
| Q_continuous_accel_.diagonal() << 1e-2, 1e-2, 1e-20, 1e-4, 1e-4; |
| |
| P_model_ = Q_continuous_model_ * aos::time::DurationInSeconds(kNominalDt); |
| |
| // We can precalculate the discretizations of the accel model because it is |
| // actually LTI. |
| |
| DiscretizeQAFast(Q_continuous_accel_, A_continuous_accel_, kNominalDt, |
| &Q_discrete_accel_, &A_discrete_accel_); |
| P_accel_ = Q_discrete_accel_; |
| |
| led_outputs_.fill(LedOutput::ON); |
| } |
| |
| Eigen::Matrix<double, ModelBasedLocalizer::kNModelStates, |
| ModelBasedLocalizer::kNModelStates> |
| ModelBasedLocalizer::AModel( |
| const ModelBasedLocalizer::ModelState &state) const { |
| Eigen::Matrix<double, kNModelStates, kNModelStates> A = A_continuous_model_; |
| const double theta = state(kTheta); |
| const double stheta = std::sin(theta); |
| const double ctheta = std::cos(theta); |
| const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0; |
| A(kX, kTheta) = -stheta * velocity; |
| A(kX, kLeftVelocity) = ctheta / 2.0; |
| A(kX, kRightVelocity) = ctheta / 2.0; |
| A(kY, kTheta) = ctheta * velocity; |
| A(kY, kLeftVelocity) = stheta / 2.0; |
| A(kY, kRightVelocity) = stheta / 2.0; |
| return A; |
| } |
| |
| Eigen::Matrix<double, ModelBasedLocalizer::kNAccelStates, |
| ModelBasedLocalizer::kNAccelStates> |
| ModelBasedLocalizer::AAccel() const { |
| return A_continuous_accel_; |
| } |
| |
| ModelBasedLocalizer::ModelState ModelBasedLocalizer::DiffModel( |
| const ModelBasedLocalizer::ModelState &state, |
| const ModelBasedLocalizer::ModelInput &U) const { |
| ModelState x_dot = AModel(state) * state + B_continuous_model_ * U; |
| const double theta = state(kTheta); |
| const double stheta = std::sin(theta); |
| const double ctheta = std::cos(theta); |
| const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0; |
| x_dot(kX) = ctheta * velocity; |
| x_dot(kY) = stheta * velocity; |
| return x_dot; |
| } |
| |
| ModelBasedLocalizer::AccelState ModelBasedLocalizer::DiffAccel( |
| const ModelBasedLocalizer::AccelState &state, |
| const ModelBasedLocalizer::AccelInput &U) const { |
| return AAccel() * state + B_continuous_accel_ * U; |
| } |
| |
| ModelBasedLocalizer::ModelState ModelBasedLocalizer::UpdateModel( |
| const ModelBasedLocalizer::ModelState &model, |
| const ModelBasedLocalizer::ModelInput &input, |
| const aos::monotonic_clock::duration dt) const { |
| return control_loops::RungeKutta( |
| std::bind(&ModelBasedLocalizer::DiffModel, this, std::placeholders::_1, |
| input), |
| model, aos::time::DurationInSeconds(dt)); |
| } |
| |
| ModelBasedLocalizer::AccelState ModelBasedLocalizer::UpdateAccel( |
| const ModelBasedLocalizer::AccelState &accel, |
| const ModelBasedLocalizer::AccelInput &input, |
| const aos::monotonic_clock::duration dt) const { |
| return control_loops::RungeKutta( |
| std::bind(&ModelBasedLocalizer::DiffAccel, this, std::placeholders::_1, |
| input), |
| accel, aos::time::DurationInSeconds(dt)); |
| } |
| |
| ModelBasedLocalizer::AccelState ModelBasedLocalizer::AccelStateForModelState( |
| const ModelBasedLocalizer::ModelState &state) const { |
| const double robot_speed = |
| (state(kLeftVelocity) + state(kRightVelocity)) / 2.0; |
| const double lat_speed = (AModel(state) * state)(kTheta)*long_offset_; |
| const double velocity_x = std::cos(state(kTheta)) * robot_speed - |
| std::sin(state(kTheta)) * lat_speed; |
| const double velocity_y = std::sin(state(kTheta)) * robot_speed + |
| std::cos(state(kTheta)) * lat_speed; |
| return (AccelState() << state(0), state(1), state(2), velocity_x, velocity_y) |
| .finished(); |
| } |
| |
| ModelBasedLocalizer::ModelState ModelBasedLocalizer::ModelStateForAccelState( |
| const ModelBasedLocalizer::AccelState &state, |
| const Eigen::Vector2d &encoders, const double yaw_rate) const { |
| const double robot_speed = state(kVelocityX) * std::cos(state(kTheta)) + |
| state(kVelocityY) * std::sin(state(kTheta)); |
| const double radius = dt_config_.robot_radius; |
| const double left_velocity = robot_speed - yaw_rate * radius; |
| const double right_velocity = robot_speed + yaw_rate * radius; |
| return (ModelState() << state(0), state(1), state(2), encoders(0), |
| left_velocity, 0.0, encoders(1), right_velocity, 0.0) |
| .finished(); |
| } |
| |
| double ModelBasedLocalizer::ModelDivergence( |
| const ModelBasedLocalizer::CombinedState &state, |
| const ModelBasedLocalizer::AccelInput &accel_inputs, |
| const Eigen::Vector2d &filtered_accel, |
| const ModelBasedLocalizer::ModelInput &model_inputs) { |
| // Convert the model state into the acceleration-based state-space and check |
| // the distance between the two (should really be a weighted norm, but all the |
| // numbers are on ~the same scale). |
| // TODO(james): Maybe weight lateral velocity divergence different than |
| // longitudinal? Seems like we tend to get false-positives currently when in |
| // sharp turns. |
| // TODO(james): For off-center gyros, maybe reduce noise when turning? |
| VLOG(2) << "divergence: " |
| << (state.accel_state - AccelStateForModelState(state.model_state)) |
| .transpose(); |
| const AccelState diff_accel = DiffAccel(state.accel_state, accel_inputs); |
| const ModelState diff_model = DiffModel(state.model_state, model_inputs); |
| const double model_lng_velocity = |
| (state.model_state(kLeftVelocity) + state.model_state(kRightVelocity)) / |
| 2.0; |
| const double model_lng_accel = |
| (diff_model(kLeftVelocity) + diff_model(kRightVelocity)) / 2.0 - |
| diff_model(kTheta) * diff_model(kTheta) * long_offset_; |
| const double model_lat_accel = diff_model(kTheta) * model_lng_velocity; |
| const Eigen::Vector2d robot_frame_accel(model_lng_accel, model_lat_accel); |
| const Eigen::Vector2d model_accel = |
| Eigen::AngleAxisd(state.model_state(kTheta), Eigen::Vector3d::UnitZ()) |
| .toRotationMatrix() |
| .block<2, 2>(0, 0) * |
| robot_frame_accel; |
| const double accel_diff = (model_accel - filtered_accel).norm(); |
| const double theta_rate_diff = |
| std::abs(diff_accel(kTheta) - diff_model(kTheta)); |
| |
| const Eigen::Vector2d accel_vel = state.accel_state.bottomRows<2>(); |
| Eigen::Vector2d model_vel = |
| AccelStateForModelState(state.model_state).bottomRows<2>(); |
| velocity_residual_ = (accel_vel - model_vel).norm() / |
| (1.0 + accel_vel.norm() + model_vel.norm()); |
| theta_rate_residual_ = theta_rate_diff; |
| accel_residual_ = accel_diff / 4.0; |
| return velocity_residual_ + theta_rate_residual_ + accel_residual_; |
| } |
| |
| void ModelBasedLocalizer::UpdateState( |
| CombinedState *state, |
| const Eigen::Matrix<double, kNModelStates, kNModelOutputs> &K, |
| const Eigen::Matrix<double, kNModelOutputs, 1> &Z, |
| const Eigen::Matrix<double, kNModelOutputs, kNModelStates> &H, |
| const AccelInput &accel_input, const ModelInput &model_input, |
| aos::monotonic_clock::duration dt) { |
| state->accel_state = UpdateAccel(state->accel_state, accel_input, dt); |
| if (down_estimator_.consecutive_still() > 500.0) { |
| state->accel_state(kVelocityX) *= 0.9; |
| state->accel_state(kVelocityY) *= 0.9; |
| } |
| state->model_state = UpdateModel(state->model_state, model_input, dt); |
| state->model_state += K * (Z - H * state->model_state); |
| } |
| |
| void ModelBasedLocalizer::HandleImu( |
| aos::monotonic_clock::time_point t, const Eigen::Vector3d &gyro, |
| const Eigen::Vector3d &accel, const std::optional<Eigen::Vector2d> encoders, |
| const Eigen::Vector2d voltage) { |
| VLOG(2) << t; |
| if (t_ == aos::monotonic_clock::min_time) { |
| t_ = t; |
| } |
| if (t_ + 10 * kNominalDt < t) { |
| t_ = t; |
| ++clock_resets_; |
| } |
| const aos::monotonic_clock::duration dt = t - t_; |
| t_ = t; |
| down_estimator_.Predict(gyro, accel, dt); |
| // TODO(james): Should we prefer this or use the down-estimator corrected |
| // version? Using the down estimator is more principled, but does create more |
| // opportunities for subtle biases. |
| const double yaw_rate = (dt_config_.imu_transform * gyro)(2); |
| const double diameter = 2.0 * dt_config_.robot_radius; |
| |
| const Eigen::AngleAxis<double> orientation( |
| Eigen::AngleAxis<double>(xytheta()(kTheta), Eigen::Vector3d::UnitZ()) * |
| down_estimator_.X_hat()); |
| last_orientation_ = orientation; |
| |
| const Eigen::Vector3d absolute_accel = |
| orientation * dt_config_.imu_transform * kG * accel; |
| abs_accel_ = absolute_accel; |
| |
| VLOG(2) << "abs accel " << absolute_accel.transpose(); |
| VLOG(2) << "dt " << aos::time::DurationInSeconds(dt); |
| |
| // Update all the branched states. |
| const AccelInput accel_input(absolute_accel.x(), absolute_accel.y(), |
| yaw_rate); |
| const ModelInput model_input(voltage); |
| |
| const Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous = |
| AModel(current_state_.model_state); |
| |
| Eigen::Matrix<double, kNModelStates, kNModelStates> A_discrete; |
| Eigen::Matrix<double, kNModelStates, kNModelStates> Q_discrete; |
| |
| DiscretizeQAFast(Q_continuous_model_, A_continuous, dt, &Q_discrete, |
| &A_discrete); |
| |
| P_model_ = A_discrete * P_model_ * A_discrete.transpose() + Q_discrete; |
| P_accel_ = A_discrete_accel_ * P_accel_ * A_discrete_accel_.transpose() + |
| Q_discrete_accel_; |
| |
| Eigen::Matrix<double, kNModelOutputs, kNModelStates> H; |
| Eigen::Matrix<double, kNModelOutputs, kNModelOutputs> R; |
| { |
| H.setZero(); |
| R.setZero(); |
| H(0, kLeftEncoder) = 1.0; |
| H(1, kRightEncoder) = 1.0; |
| H(2, kRightVelocity) = 1.0 / diameter; |
| H(2, kLeftVelocity) = -1.0 / diameter; |
| |
| R.diagonal() << 1e-9, 1e-9, 1e-13; |
| } |
| |
| const Eigen::Matrix<double, kNModelOutputs, 1> Z = |
| encoders.has_value() |
| ? Eigen::Vector3d(encoders.value()(0), encoders.value()(1), yaw_rate) |
| : Eigen::Vector3d(current_state_.model_state(kLeftEncoder), |
| current_state_.model_state(kRightEncoder), |
| yaw_rate); |
| |
| if (branches_.empty()) { |
| VLOG(2) << "Initializing"; |
| current_state_.model_state(kLeftEncoder) = Z(0); |
| current_state_.model_state(kRightEncoder) = Z(1); |
| current_state_.branch_time = t; |
| branches_.Push(current_state_); |
| } |
| |
| const Eigen::Matrix<double, kNModelStates, kNModelOutputs> K = |
| P_model_ * H.transpose() * (H * P_model_ * H.transpose() + R).inverse(); |
| P_model_ = (Eigen::Matrix<double, kNModelStates, kNModelStates>::Identity() - |
| K * H) * |
| P_model_; |
| VLOG(2) << "K\n" << K; |
| VLOG(2) << "Z\n" << Z.transpose(); |
| |
| for (CombinedState &state : branches_) { |
| UpdateState(&state, K, Z, H, accel_input, model_input, dt); |
| } |
| UpdateState(¤t_state_, K, Z, H, accel_input, model_input, dt); |
| |
| VLOG(2) << "oildest accel " << branches_[0].accel_state.transpose(); |
| VLOG(2) << "oildest accel diff " |
| << DiffAccel(branches_[0].accel_state, accel_input).transpose(); |
| VLOG(2) << "oildest model " << branches_[0].model_state.transpose(); |
| |
| // Determine whether to switch modes--if we are currently in model-based mode, |
| // swap to accel-based if the two states have divergeed meaningfully in the |
| // oldest branch. If we are currently in accel-based, then swap back to model |
| // if the oldest model branch matches has matched the |
| filtered_residual_accel_ += |
| 0.01 * (accel_input.topRows<2>() - filtered_residual_accel_); |
| const double model_divergence = |
| branches_.full() ? ModelDivergence(branches_[0], accel_input, |
| filtered_residual_accel_, model_input) |
| : 0.0; |
| filtered_residual_ += |
| (1.0 - std::exp(-aos::time::DurationInSeconds(kNominalDt) / 0.0095)) * |
| (model_divergence - filtered_residual_); |
| // TODO(james): Tune this more. Currently set to generally trust the model, |
| // perhaps a bit too much. |
| // When the residual exceeds the accel threshold, we start using the inertials |
| // alone; when it drops back below the model threshold, we go back to being |
| // model-based. |
| constexpr double kUseAccelThreshold = 2.0; |
| constexpr double kUseModelThreshold = 0.5; |
| constexpr size_t kShareStates = kNModelStates; |
| static_assert(kUseModelThreshold < kUseAccelThreshold); |
| if (using_model_) { |
| if (!absl::GetFlag(FLAGS_ignore_accelerometer) && |
| filtered_residual_ > kUseAccelThreshold) { |
| hysteresis_count_++; |
| } else { |
| hysteresis_count_ = 0; |
| } |
| if (hysteresis_count_ > 0) { |
| using_model_ = false; |
| // Grab the accel-based state from back when we started diverging. |
| // TODO(james): This creates a problematic selection bias, because |
| // we will tend to bias towards deliberately out-of-tune measurements. |
| current_state_.accel_state = branches_[0].accel_state; |
| current_state_.model_state = branches_[0].model_state; |
| current_state_.model_state = ModelStateForAccelState( |
| current_state_.accel_state, Z.topRows<2>(), yaw_rate); |
| } else { |
| VLOG(2) << "Normal branching"; |
| current_state_.accel_state = |
| AccelStateForModelState(current_state_.model_state); |
| current_state_.branch_time = t; |
| } |
| hysteresis_count_ = 0; |
| } else { |
| if (filtered_residual_ < kUseModelThreshold) { |
| hysteresis_count_++; |
| } else { |
| hysteresis_count_ = 0; |
| } |
| if (hysteresis_count_ > 100) { |
| using_model_ = true; |
| // Grab the model-based state from back when we stopped diverging. |
| current_state_.model_state.topRows<kShareStates>() = |
| ModelStateForAccelState(branches_[0].accel_state, Z.topRows<2>(), |
| yaw_rate) |
| .topRows<kShareStates>(); |
| current_state_.accel_state = |
| AccelStateForModelState(current_state_.model_state); |
| } else { |
| // TODO(james): Why was I leaving the encoders/wheel velocities in place? |
| current_state_.model_state = ModelStateForAccelState( |
| current_state_.accel_state, Z.topRows<2>(), yaw_rate); |
| current_state_.branch_time = t; |
| } |
| } |
| |
| // Generate a new branch, with the accel state reset based on the model-based |
| // state (really, just getting rid of the lateral velocity). |
| // By resetting the accel state in the new branch, this tries to minimize the |
| // odds of runaway lateral velocities. This doesn't help with runaway |
| // longitudinal velocities, however. |
| CombinedState new_branch = current_state_; |
| new_branch.accel_state = AccelStateForModelState(new_branch.model_state); |
| new_branch.accumulated_divergence = 0.0; |
| |
| ++branch_counter_; |
| if (branch_counter_ % kBranchPeriod == 0) { |
| branches_.Push(new_branch); |
| old_positions_.Push(OldPosition{t, xytheta(), latest_turret_position_, |
| latest_turret_velocity_}); |
| branch_counter_ = 0; |
| } |
| |
| last_residual_ = model_divergence; |
| |
| VLOG(2) << "Using " << (using_model_ ? "model" : "accel"); |
| VLOG(2) << "Residual " << last_residual_; |
| VLOG(2) << "Filtered Residual " << filtered_residual_; |
| VLOG(2) << "buffer size " << branches_.size(); |
| VLOG(2) << "Model state " << current_state_.model_state.transpose(); |
| VLOG(2) << "Accel state " << current_state_.accel_state.transpose(); |
| VLOG(2) << "Accel state for model " |
| << AccelStateForModelState(current_state_.model_state).transpose(); |
| VLOG(2) << "Input acce " << accel.transpose(); |
| VLOG(2) << "Input gyro " << gyro.transpose(); |
| VLOG(2) << "Input voltage " << voltage.transpose(); |
| VLOG(2) << "Input encoder " << Z.topRows<2>().transpose(); |
| VLOG(2) << "yaw rate " << yaw_rate; |
| |
| CHECK(std::isfinite(last_residual_)); |
| } |
| |
| const ModelBasedLocalizer::OldPosition ModelBasedLocalizer::GetStateForTime( |
| aos::monotonic_clock::time_point time) { |
| if (old_positions_.empty()) { |
| return OldPosition{}; |
| } |
| |
| aos::monotonic_clock::duration lowest_time_error = |
| aos::monotonic_clock::duration::max(); |
| const OldPosition *best_match = nullptr; |
| for (const OldPosition &sample : old_positions_) { |
| const aos::monotonic_clock::duration time_error = |
| std::chrono::abs(sample.sample_time - time); |
| if (time_error < lowest_time_error) { |
| lowest_time_error = time_error; |
| best_match = &sample; |
| } |
| } |
| return *best_match; |
| } |
| |
| namespace { |
| |
| // Node names of the pis to listen for cameras from. |
| constexpr std::array<std::string_view, ModelBasedLocalizer::kNumPis> kPisToUse{ |
| "pi1", "pi2", "pi3", "pi4"}; |
| } // namespace |
| |
| const Eigen::Matrix<double, 4, 4> ModelBasedLocalizer::CameraTransform( |
| const OldPosition &state, |
| const frc971::vision::calibration::CameraCalibration *calibration, |
| std::optional<RejectionReason> *rejection_reason) const { |
| CHECK(rejection_reason != nullptr); |
| CHECK(calibration != nullptr); |
| // Per the CameraCalibration specification, we can actually determine whether |
| // the camera is the turret camera just from the presence of the |
| // turret_extrinsics member. |
| const bool is_turret = calibration->has_turret_extrinsics(); |
| // Ignore readings when the turret is spinning too fast, on the assumption |
| // that the odds of screwing up the time compensation are higher. |
| // Note that the current number here is chosen pretty arbitrarily--1 rad / sec |
| // seems reasonable, but may be unnecessarily low or high. |
| constexpr double kMaxTurretVelocity = 1.0; |
| if (is_turret && std::abs(state.turret_velocity) > kMaxTurretVelocity && |
| !rejection_reason->has_value()) { |
| *rejection_reason = RejectionReason::TURRET_TOO_FAST; |
| } |
| CHECK(calibration->has_fixed_extrinsics()); |
| const Eigen::Matrix<double, 4, 4> fixed_extrinsics = |
| control_loops::drivetrain::FlatbufferToTransformationMatrix( |
| *calibration->fixed_extrinsics()); |
| |
| // Calculate the pose of the camera relative to the robot origin. |
| Eigen::Matrix<double, 4, 4> H_robot_camera = fixed_extrinsics; |
| if (is_turret) { |
| H_robot_camera = |
| H_robot_camera * |
| frc971::control_loops::TransformationMatrixForYaw<double>( |
| state.turret_position) * |
| control_loops::drivetrain::FlatbufferToTransformationMatrix( |
| *calibration->turret_extrinsics()); |
| } |
| return H_robot_camera; |
| } |
| |
| const std::optional<Eigen::Vector2d> |
| ModelBasedLocalizer::CameraMeasuredRobotPosition( |
| const OldPosition &state, const y2022::vision::TargetEstimate *target, |
| std::optional<RejectionReason> *rejection_reason, |
| Eigen::Matrix<double, 4, 4> *H_field_camera_measured) const { |
| if (!target->has_camera_calibration()) { |
| *rejection_reason = RejectionReason::NO_CALIBRATION; |
| return std::nullopt; |
| } |
| const Eigen::Matrix<double, 4, 4> H_robot_camera = |
| CameraTransform(state, target->camera_calibration(), rejection_reason); |
| const control_loops::Pose robot_pose( |
| {state.xytheta(0), state.xytheta(1), 0.0}, state.xytheta(2)); |
| const Eigen::Matrix<double, 4, 4> H_field_robot = |
| robot_pose.AsTransformationMatrix(); |
| // Current estimated pose of the camera in the global frame. |
| // Note that this is all really just an elaborate way of extracting the |
| // current estimated camera yaw, and nothing else. |
| const Eigen::Matrix<double, 4, 4> H_field_camera = |
| H_field_robot * H_robot_camera; |
| // Grab the implied yaw of the camera (the +Z axis is coming out of the front |
| // of the cameras). |
| const Eigen::Vector3d rotated_camera_z = |
| H_field_camera.block<3, 3>(0, 0) * Eigen::Vector3d(0, 0, 1); |
| const double camera_yaw = |
| std::atan2(rotated_camera_z.y(), rotated_camera_z.x()); |
| // All right, now we need to use the heading and distance from the |
| // TargetEstimate, plus the yaw embedded in the camera_pose, to determine what |
| // the implied X/Y position of the robot is. To do this, we calculate the |
| // heading/distance from the target to the robot. The distance is easy, since |
| // that's the same as the distance from the robot to the target. The heading |
| // isn't too hard, but is obnoxious to think about, since the heading from the |
| // target to the robot is distinct from the heading from the robot to the |
| // target. |
| |
| // Just to walk through examples to confirm that the below calculation is |
| // correct: |
| // * If yaw = 0, and angle_to_target = 0, we are at 180 deg relative to the |
| // target. |
| // * If yaw = 90 deg, and angle_to_target = 0, we are at -90 deg relative to |
| // the target. |
| // * If yaw = 0, and angle_to_target = 90 deg, we are at -90 deg relative to |
| // the target. |
| const double heading_from_target = |
| aos::math::NormalizeAngle(M_PI + camera_yaw + target->angle_to_target()); |
| const double distance_from_target = target->distance(); |
| // Extract the implied camera position on the field. |
| *H_field_camera_measured = H_field_camera; |
| // TODO(james): Are we going to need to evict the roll/pitch components of the |
| // camera extrinsics this year as well? |
| (*H_field_camera_measured)(0, 3) = |
| distance_from_target * std::cos(heading_from_target) + kVisionTargetX; |
| (*H_field_camera_measured)(1, 3) = |
| distance_from_target * std::sin(heading_from_target) + kVisionTargetY; |
| const Eigen::Matrix<double, 4, 4> H_field_robot_measured = |
| *H_field_camera_measured * H_robot_camera.inverse(); |
| return H_field_robot_measured.block<2, 1>(0, 3); |
| } |
| |
| void ModelBasedLocalizer::HandleImageMatch( |
| aos::monotonic_clock::time_point sample_time, |
| const y2022::vision::TargetEstimate *target, int camera_index) { |
| std::optional<RejectionReason> rejection_reason; |
| |
| if (target->confidence() < kMinTargetEstimateConfidence) { |
| rejection_reason = RejectionReason::LOW_CONFIDENCE; |
| TallyRejection(rejection_reason.value()); |
| return; |
| } |
| |
| const OldPosition &state = GetStateForTime(sample_time); |
| Eigen::Matrix<double, 4, 4> H_field_camera_measured; |
| const std::optional<Eigen::Vector2d> measured_robot_position = |
| CameraMeasuredRobotPosition(state, target, &rejection_reason, |
| &H_field_camera_measured); |
| // Technically, rejection_reason should always be set if |
| // measured_robot_position is nullopt, but in the future we may have more |
| // recoverable rejection reasons that we wish to allow to propagate further |
| // into the process. |
| if (!measured_robot_position || rejection_reason.has_value()) { |
| CHECK(rejection_reason.has_value()); |
| TallyRejection(rejection_reason.value()); |
| return; |
| } |
| |
| // Next, go through and do the actual Kalman corrections for the x/y |
| // measurement, for both the accel state and the model-based state. |
| const Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous_model = |
| AModel(current_state_.model_state); |
| |
| Eigen::Matrix<double, kNModelStates, kNModelStates> A_discrete_model; |
| Eigen::Matrix<double, kNModelStates, kNModelStates> Q_discrete_model; |
| |
| DiscretizeQAFast(Q_continuous_model_, A_continuous_model, kNominalDt, |
| &Q_discrete_model, &A_discrete_model); |
| |
| Eigen::Matrix<double, 2, kNModelStates> H_model; |
| H_model.setZero(); |
| Eigen::Matrix<double, 2, kNAccelStates> H_accel; |
| H_accel.setZero(); |
| Eigen::Matrix<double, 2, 2> R; |
| R.setZero(); |
| H_model(0, kX) = 1.0; |
| H_model(1, kY) = 1.0; |
| H_accel(0, kX) = 1.0; |
| H_accel(1, kY) = 1.0; |
| if (aggressive_corrections_) { |
| R.diagonal() << 1e-2, 1e-2; |
| } else { |
| R.diagonal() << 1e-0, 1e-0; |
| } |
| |
| const Eigen::Matrix<double, kNModelStates, 2> K_model = |
| P_model_ * H_model.transpose() * |
| (H_model * P_model_ * H_model.transpose() + R).inverse(); |
| const Eigen::Matrix<double, kNAccelStates, 2> K_accel = |
| P_accel_ * H_accel.transpose() * |
| (H_accel * P_accel_ * H_accel.transpose() + R).inverse(); |
| P_model_ = (Eigen::Matrix<double, kNModelStates, kNModelStates>::Identity() - |
| K_model * H_model) * |
| P_model_; |
| P_accel_ = (Eigen::Matrix<double, kNAccelStates, kNAccelStates>::Identity() - |
| K_accel * H_accel) * |
| P_accel_; |
| // And now we have to correct *everything* on all the branches: |
| for (CombinedState &state : branches_) { |
| state.model_state += K_model * (measured_robot_position.value() - |
| H_model * state.model_state); |
| state.accel_state += K_accel * (measured_robot_position.value() - |
| H_accel * state.accel_state); |
| } |
| current_state_.model_state += |
| K_model * |
| (measured_robot_position.value() - H_model * current_state_.model_state); |
| current_state_.accel_state += |
| K_accel * |
| (measured_robot_position.value() - H_accel * current_state_.accel_state); |
| |
| statistics_.total_accepted++; |
| statistics_.total_candidates++; |
| |
| const Eigen::Vector3d camera_z_in_field = |
| H_field_camera_measured.block<3, 3>(0, 0) * Eigen::Vector3d::UnitZ(); |
| const double camera_yaw = |
| std::atan2(camera_z_in_field.y(), camera_z_in_field.x()); |
| |
| // TODO(milind): actually control this |
| led_outputs_[camera_index] = LedOutput::ON; |
| |
| TargetEstimateDebugT debug; |
| debug.camera = static_cast<uint8_t>(camera_index); |
| debug.camera_x = H_field_camera_measured(0, 3); |
| debug.camera_y = H_field_camera_measured(1, 3); |
| debug.camera_theta = camera_yaw; |
| debug.implied_robot_x = measured_robot_position.value().x(); |
| debug.implied_robot_y = measured_robot_position.value().y(); |
| debug.implied_robot_theta = xytheta()(2); |
| debug.implied_turret_goal = |
| aos::math::NormalizeAngle(camera_yaw + target->angle_to_target()); |
| debug.accepted = true; |
| debug.image_age_sec = aos::time::DurationInSeconds(t_ - sample_time); |
| CHECK_LT(image_debugs_.size(), kDebugBufferSize); |
| image_debugs_.push_back(debug); |
| } |
| |
| void ModelBasedLocalizer::HandleTurret( |
| aos::monotonic_clock::time_point sample_time, double turret_position, |
| double turret_velocity) { |
| last_turret_update_ = sample_time; |
| latest_turret_position_ = turret_position; |
| latest_turret_velocity_ = turret_velocity; |
| } |
| |
| void ModelBasedLocalizer::HandleReset(aos::monotonic_clock::time_point now, |
| const Eigen::Vector3d &xytheta) { |
| branches_.Reset(); |
| t_ = now; |
| using_model_ = true; |
| current_state_.model_state << xytheta(0), xytheta(1), xytheta(2), |
| current_state_.model_state(kLeftEncoder), 0.0, 0.0, |
| current_state_.model_state(kRightEncoder), 0.0, 0.0; |
| current_state_.accel_state = |
| AccelStateForModelState(current_state_.model_state); |
| last_residual_ = 0.0; |
| filtered_residual_ = 0.0; |
| filtered_residual_accel_.setZero(); |
| abs_accel_.setZero(); |
| } |
| |
| flatbuffers::Offset<AccelBasedState> ModelBasedLocalizer::BuildAccelState( |
| flatbuffers::FlatBufferBuilder *fbb, const AccelState &state) { |
| AccelBasedState::Builder accel_state_builder(*fbb); |
| accel_state_builder.add_x(state(kX)); |
| accel_state_builder.add_y(state(kY)); |
| accel_state_builder.add_theta(state(kTheta)); |
| accel_state_builder.add_velocity_x(state(kVelocityX)); |
| accel_state_builder.add_velocity_y(state(kVelocityY)); |
| return accel_state_builder.Finish(); |
| } |
| |
| flatbuffers::Offset<ModelBasedState> ModelBasedLocalizer::BuildModelState( |
| flatbuffers::FlatBufferBuilder *fbb, const ModelState &state) { |
| ModelBasedState::Builder model_state_builder(*fbb); |
| model_state_builder.add_x(state(kX)); |
| model_state_builder.add_y(state(kY)); |
| model_state_builder.add_theta(state(kTheta)); |
| model_state_builder.add_left_encoder(state(kLeftEncoder)); |
| model_state_builder.add_left_velocity(state(kLeftVelocity)); |
| model_state_builder.add_left_voltage_error(state(kLeftVoltageError)); |
| model_state_builder.add_right_encoder(state(kRightEncoder)); |
| model_state_builder.add_right_velocity(state(kRightVelocity)); |
| model_state_builder.add_right_voltage_error(state(kRightVoltageError)); |
| return model_state_builder.Finish(); |
| } |
| |
| flatbuffers::Offset<CumulativeStatistics> |
| ModelBasedLocalizer::PopulateStatistics(flatbuffers::FlatBufferBuilder *fbb) { |
| const auto rejections_offset = fbb->CreateVector( |
| statistics_.rejection_counts.data(), statistics_.rejection_counts.size()); |
| |
| CumulativeStatistics::Builder stats_builder(*fbb); |
| stats_builder.add_total_accepted(statistics_.total_accepted); |
| stats_builder.add_total_candidates(statistics_.total_candidates); |
| stats_builder.add_rejection_reason_count(rejections_offset); |
| return stats_builder.Finish(); |
| } |
| |
| flatbuffers::Offset<ModelBasedStatus> ModelBasedLocalizer::PopulateStatus( |
| flatbuffers::FlatBufferBuilder *fbb) { |
| const flatbuffers::Offset<CumulativeStatistics> stats_offset = |
| PopulateStatistics(fbb); |
| |
| const flatbuffers::Offset<control_loops::drivetrain::DownEstimatorState> |
| down_estimator_offset = down_estimator_.PopulateStatus(fbb, t_); |
| |
| const CombinedState &state = current_state_; |
| |
| const flatbuffers::Offset<ModelBasedState> model_state_offset = |
| BuildModelState(fbb, state.model_state); |
| |
| const flatbuffers::Offset<AccelBasedState> accel_state_offset = |
| BuildAccelState(fbb, state.accel_state); |
| |
| const flatbuffers::Offset<AccelBasedState> oldest_accel_state_offset = |
| branches_.empty() ? flatbuffers::Offset<AccelBasedState>() |
| : BuildAccelState(fbb, branches_[0].accel_state); |
| |
| const flatbuffers::Offset<ModelBasedState> oldest_model_state_offset = |
| branches_.empty() ? flatbuffers::Offset<ModelBasedState>() |
| : BuildModelState(fbb, branches_[0].model_state); |
| |
| ModelBasedStatus::Builder builder(*fbb); |
| builder.add_accel_state(accel_state_offset); |
| builder.add_oldest_accel_state(oldest_accel_state_offset); |
| builder.add_oldest_model_state(oldest_model_state_offset); |
| builder.add_model_state(model_state_offset); |
| builder.add_using_model(using_model_); |
| builder.add_residual(last_residual_); |
| builder.add_filtered_residual(filtered_residual_); |
| builder.add_velocity_residual(velocity_residual_); |
| builder.add_accel_residual(accel_residual_); |
| builder.add_theta_rate_residual(theta_rate_residual_); |
| builder.add_down_estimator(down_estimator_offset); |
| builder.add_x(xytheta()(0)); |
| builder.add_y(xytheta()(1)); |
| builder.add_theta(xytheta()(2)); |
| builder.add_implied_accel_x(abs_accel_(0)); |
| builder.add_implied_accel_y(abs_accel_(1)); |
| builder.add_implied_accel_z(abs_accel_(2)); |
| builder.add_clock_resets(clock_resets_); |
| builder.add_statistics(stats_offset); |
| return builder.Finish(); |
| } |
| |
| flatbuffers::Offset<LocalizerVisualization> |
| ModelBasedLocalizer::PopulateVisualization( |
| flatbuffers::FlatBufferBuilder *fbb) { |
| const flatbuffers::Offset<CumulativeStatistics> stats_offset = |
| PopulateStatistics(fbb); |
| |
| aos::SizedArray<flatbuffers::Offset<TargetEstimateDebug>, kDebugBufferSize> |
| debug_offsets; |
| |
| for (const TargetEstimateDebugT &debug : image_debugs_) { |
| debug_offsets.push_back(PackTargetEstimateDebug(debug, fbb)); |
| } |
| |
| image_debugs_.clear(); |
| |
| const flatbuffers::Offset< |
| flatbuffers::Vector<flatbuffers::Offset<TargetEstimateDebug>>> |
| debug_offset = |
| fbb->CreateVector(debug_offsets.data(), debug_offsets.size()); |
| |
| LocalizerVisualization::Builder builder(*fbb); |
| builder.add_statistics(stats_offset); |
| builder.add_targets(debug_offset); |
| return builder.Finish(); |
| } |
| |
| void ModelBasedLocalizer::TallyRejection(const RejectionReason reason) { |
| statistics_.total_candidates++; |
| statistics_.rejection_counts[static_cast<size_t>(reason)]++; |
| TargetEstimateDebugT debug; |
| debug.accepted = false; |
| debug.rejection_reason = reason; |
| CHECK_LT(image_debugs_.size(), kDebugBufferSize); |
| image_debugs_.push_back(debug); |
| } |
| |
| flatbuffers::Offset<TargetEstimateDebug> |
| ModelBasedLocalizer::PackTargetEstimateDebug( |
| const TargetEstimateDebugT &debug, flatbuffers::FlatBufferBuilder *fbb) { |
| if (!debug.accepted) { |
| TargetEstimateDebug::Builder builder(*fbb); |
| builder.add_accepted(debug.accepted); |
| builder.add_rejection_reason(debug.rejection_reason); |
| return builder.Finish(); |
| } else { |
| flatbuffers::Offset<TargetEstimateDebug> offset = |
| TargetEstimateDebug::Pack(*fbb, &debug); |
| flatbuffers::GetMutableTemporaryPointer(*fbb, offset) |
| ->clear_rejection_reason(); |
| return offset; |
| } |
| } |
| |
| EventLoopLocalizer::EventLoopLocalizer( |
| aos::EventLoop *event_loop, |
| const control_loops::drivetrain::DrivetrainConfig<double> &dt_config) |
| : event_loop_(event_loop), |
| model_based_(dt_config), |
| status_sender_(event_loop_->MakeSender<LocalizerStatus>("/localizer")), |
| output_sender_(event_loop_->MakeSender<LocalizerOutput>("/localizer")), |
| visualization_sender_( |
| event_loop_->MakeSender<LocalizerVisualization>("/localizer")), |
| superstructure_fetcher_( |
| event_loop_ |
| ->MakeFetcher<y2022::control_loops::superstructure::Status>( |
| "/superstructure")), |
| imu_watcher_(event_loop, dt_config, |
| y2022::constants::Values::DrivetrainEncoderToMeters(1), |
| [this](aos::monotonic_clock::time_point sample_time_pico, |
| aos::monotonic_clock::time_point sample_time_pi, |
| std::optional<Eigen::Vector2d> encoders, |
| Eigen::Vector3d gyro, Eigen::Vector3d accel) { |
| HandleImu(sample_time_pico, sample_time_pi, encoders, gyro, |
| accel); |
| }), |
| utils_(event_loop) { |
| event_loop->SetRuntimeRealtimePriority(10); |
| event_loop_->MakeWatcher( |
| "/drivetrain", |
| [this]( |
| const frc971::control_loops::drivetrain::LocalizerControl &control) { |
| const double theta = control.keep_current_theta() |
| ? model_based_.xytheta()(2) |
| : control.theta(); |
| model_based_.HandleReset(event_loop_->monotonic_now(), |
| {control.x(), control.y(), theta}); |
| }); |
| aos::TimerHandler *superstructure_timer = event_loop_->AddTimer([this]() { |
| if (superstructure_fetcher_.Fetch()) { |
| const y2022::control_loops::superstructure::Status &status = |
| *superstructure_fetcher_.get(); |
| if (!status.has_turret()) { |
| return; |
| } |
| CHECK(status.has_turret()); |
| model_based_.HandleTurret( |
| superstructure_fetcher_.context().monotonic_event_time, |
| status.turret()->position(), status.turret()->velocity()); |
| } |
| }); |
| event_loop_->OnRun([this, superstructure_timer]() { |
| superstructure_timer->Schedule(event_loop_->monotonic_now(), |
| std::chrono::milliseconds(20)); |
| }); |
| |
| for (size_t camera_index = 0; camera_index < kPisToUse.size(); |
| ++camera_index) { |
| CHECK_LT(camera_index, target_estimate_fetchers_.size()); |
| target_estimate_fetchers_[camera_index] = |
| event_loop_->MakeFetcher<y2022::vision::TargetEstimate>( |
| absl::StrCat("/", kPisToUse[camera_index], "/camera")); |
| } |
| aos::TimerHandler *estimate_timer = event_loop_->AddTimer([this]() { |
| const bool maybe_in_auto = utils_.MaybeInAutonomous(); |
| model_based_.set_use_aggressive_image_corrections(!maybe_in_auto); |
| for (size_t camera_index = 0; camera_index < kPisToUse.size(); |
| ++camera_index) { |
| if (model_based_.NumQueuedImageDebugs() == |
| ModelBasedLocalizer::kDebugBufferSize || |
| (last_visualization_send_ + kMinVisualizationPeriod < |
| event_loop_->monotonic_now())) { |
| auto builder = visualization_sender_.MakeBuilder(); |
| visualization_sender_.CheckOk( |
| builder.Send(model_based_.PopulateVisualization(builder.fbb()))); |
| } |
| if (target_estimate_fetchers_[camera_index].Fetch()) { |
| const std::optional<aos::monotonic_clock::duration> monotonic_offset = |
| utils_.ClockOffset(kPisToUse[camera_index]); |
| if (!monotonic_offset.has_value()) { |
| model_based_.TallyRejection( |
| RejectionReason::MESSAGE_BRIDGE_DISCONNECTED); |
| continue; |
| } |
| // TODO(james): Get timestamp from message contents. |
| aos::monotonic_clock::time_point capture_time( |
| target_estimate_fetchers_[camera_index] |
| .context() |
| .monotonic_remote_time - |
| monotonic_offset.value()); |
| if (capture_time > target_estimate_fetchers_[camera_index] |
| .context() |
| .monotonic_event_time) { |
| model_based_.TallyRejection(RejectionReason::IMAGE_FROM_FUTURE); |
| continue; |
| } |
| capture_time -= imu_watcher_.pico_offset_error(); |
| model_based_.HandleImageMatch( |
| capture_time, target_estimate_fetchers_[camera_index].get(), |
| camera_index); |
| } |
| } |
| }); |
| event_loop_->OnRun([this, estimate_timer]() { |
| estimate_timer->Schedule(event_loop_->monotonic_now(), |
| std::chrono::milliseconds(100)); |
| }); |
| } |
| |
| void EventLoopLocalizer::HandleImu( |
| aos::monotonic_clock::time_point sample_time_pico, |
| aos::monotonic_clock::time_point sample_time_pi, |
| std::optional<Eigen::Vector2d> encoders, Eigen::Vector3d gyro, |
| Eigen::Vector3d accel) { |
| model_based_.HandleImu( |
| sample_time_pico, gyro, accel, encoders, |
| utils_.VoltageOrZero(event_loop_->context().monotonic_event_time)); |
| |
| { |
| auto builder = status_sender_.MakeBuilder(); |
| const flatbuffers::Offset<ModelBasedStatus> model_based_status = |
| model_based_.PopulateStatus(builder.fbb()); |
| const flatbuffers::Offset<control_loops::drivetrain::ImuZeroerState> |
| zeroer_status = imu_watcher_.zeroer().PopulateStatus(builder.fbb()); |
| const flatbuffers::Offset<ImuFailures> imu_failures = |
| imu_watcher_.PopulateImuFailures(builder.fbb()); |
| LocalizerStatus::Builder status_builder = |
| builder.MakeBuilder<LocalizerStatus>(); |
| status_builder.add_model_based(model_based_status); |
| status_builder.add_zeroed(imu_watcher_.zeroer().Zeroed()); |
| status_builder.add_faulted_zero(imu_watcher_.zeroer().Faulted()); |
| status_builder.add_zeroing(zeroer_status); |
| status_builder.add_imu_failures(imu_failures); |
| if (encoders.has_value()) { |
| status_builder.add_left_encoder(encoders.value()(0)); |
| status_builder.add_right_encoder(encoders.value()(1)); |
| } |
| if (imu_watcher_.pico_offset().has_value()) { |
| status_builder.add_pico_offset_ns( |
| imu_watcher_.pico_offset().value().count()); |
| status_builder.add_pico_offset_error_ns( |
| imu_watcher_.pico_offset_error().count()); |
| } |
| builder.CheckOk(builder.Send(status_builder.Finish())); |
| } |
| if (last_output_send_ + std::chrono::milliseconds(5) < |
| event_loop_->context().monotonic_event_time) { |
| auto builder = output_sender_.MakeBuilder(); |
| |
| const auto led_outputs_offset = builder.fbb()->CreateVector( |
| model_based_.led_outputs().data(), model_based_.led_outputs().size()); |
| |
| LocalizerOutput::Builder output_builder = |
| builder.MakeBuilder<LocalizerOutput>(); |
| output_builder.add_monotonic_timestamp_ns( |
| std::chrono::duration_cast<std::chrono::nanoseconds>( |
| sample_time_pi.time_since_epoch()) |
| .count()); |
| output_builder.add_x(model_based_.xytheta()(0)); |
| output_builder.add_y(model_based_.xytheta()(1)); |
| output_builder.add_theta(model_based_.xytheta()(2)); |
| output_builder.add_zeroed(imu_watcher_.zeroer().Zeroed()); |
| output_builder.add_image_accepted_count(model_based_.total_accepted()); |
| const Eigen::Quaterniond &orientation = model_based_.orientation(); |
| Quaternion quaternion; |
| quaternion.mutate_x(orientation.x()); |
| quaternion.mutate_y(orientation.y()); |
| quaternion.mutate_z(orientation.z()); |
| quaternion.mutate_w(orientation.w()); |
| output_builder.add_orientation(&quaternion); |
| output_builder.add_led_outputs(led_outputs_offset); |
| builder.CheckOk(builder.Send(output_builder.Finish())); |
| last_output_send_ = event_loop_->monotonic_now(); |
| } |
| } |
| |
| } // namespace frc971::controls |