blob: 512ddc36d431a0f6c6594a235784f5a36962564c [file] [log] [blame]
Python
======
Before generating code for a parametric problem, the problem should be first
specified in the setup phase. See :ref:`python_setup` for more details.
Codegen
-------
The code is generated by running
.. code:: python
m.codegen(dir_name, **opts)
The argument :code:`dir_name` is the name of a directory where the generated
code is stored.
Additional codegen options are shown in the following table
+-------------------------+---------------------------------------------------+--------------------------------+
| Option | Description | Allowed values |
+=========================+===================================================+================================+
| :code:`project_type` | Build environment | | :code:`''` (default) |
| | | | :code:`'Makefile'` |
| | | | :code:`'MinGW Makefiles'` |
| | | | :code:`'Unix Makefiles'` |
| | | | :code:`'CodeBlocks'` |
| | | | :code:`'Xcode'` |
+-------------------------+---------------------------------------------------+--------------------------------+
| :code:`parameters` | Problem parameters | | :code:`'vectors'` (default) |
| | | | :code:`'matrices'` |
+-------------------------+---------------------------------------------------+--------------------------------+
| :code:`python_ext_name` | Name of the generated Python module | | :code:`'emosqp'` (default) |
| | | | Nonempty string |
+-------------------------+---------------------------------------------------+--------------------------------+
| :code:`force_rewrite` | Rewrite existing directory | | :code:`False` (default) |
| | | | :code:`True` |
+-------------------------+---------------------------------------------------+--------------------------------+
| :code:`FLOAT` | Use :code:`float` type instead of :code:`double` | | :code:`False` (default) |
| | | | :code:`True` |
+-------------------------+---------------------------------------------------+--------------------------------+
| :code:`LONG` | Use :code:`long long` type instead of :code:`int` | | :code:`True` (default) |
| | | | :code:`False` |
+-------------------------+---------------------------------------------------+--------------------------------+
The options are passed using named arguments, e.g.,
.. code:: python
m.codegen('code', parameters='matrices', python_ext_name='emosqp')
If the :code:`project_type` argument is not passed or is set to :code:`''`,
then no build files are generated.
Extension module API
--------------------
Once the code is generated, you can import a light python wrapper with
.. code:: python
import emosqp
where :code:`emosqp` is the extension name given in the previous section. The module imports the following functions
.. py:function:: solve()
:noindex:
Solve the problem.
:returns: tuple (x, y, status_val, iter, run_time)
- **x** (*ndarray*) - Primal solution
- **y** (*ndarray*) - Dual solution
- **status_val** (*int*) - Status value as in :ref:`status_values`
- **iter** (*int*) - Number of iterations
- **run_time** (*double*) - Run time
.. py:function:: update_lin_cost(q_new)
:noindex:
Update linear cost.
:param ndarray q_new: New linear cost vector
.. py:function:: update_lower_bound(l_new)
:noindex:
Update lower bound in the constraints.
:param ndarray l_new: New lower bound vector
.. py:function:: update_upper_bound(u_new)
:noindex:
Update upper bound in the constraints.
:param ndarray u_new: New upper bound vector
.. py:function:: update_bounds(l_new, u_new)
:noindex:
Update lower and upper bounds in the constraints.
:param ndarray l_new: New lower bound vector
:param ndarray u_new: New upper bound vector
If the code is generated with the option :code:`parameters` set to
:code:`'matrices'`, the following functions are also provided
.. py:function:: update_P(Px, Px_idx, Px_n)
:noindex:
Update nonzero entries of the quadratic cost matrix (only upper triangular) without changing sparsity structure.
:param ndarray Px: Values of entries to be updated
:param ndarray Px_idx: Indices of entries to be updated. Pass :code:`None` if
all the indices are to be updated
:param int Px_n: Number of entries to be updated. Used only if Px_idx is not
:code:`None`.
.. py:function:: update_A(Ax, Ax_idx, Ax_n)
:noindex:
Update nonzero entries of the constraint matrix.
:param ndarray Ax: Values of entries to be updated
:param ndarray Ax_idx: Indices of entries to be updated. Pass :code:`None` if
all the indices are to be updated
:param int Ax_n: Number of entries to be updated. Used only if Ax_idx is not
:code:`None`.
.. py:function:: update_P_A(Px, Px_idx, Px_n, Ax, Ax_idx, Ax_n)
:noindex:
Update nonzero entries of the quadratic cost and constraint matrices. It considers only the upper-triangular part of P.
:param ndarray Px: Values of entries to be updated
:param ndarray Px_idx: Indices of entries to be updated. Pass :code:`None` if
all the indices are to be updated
:param int Px_n: Number of entries to be updated. Used only if Px_idx is not
:code:`None`.
:param ndarray Ax: Values of entries to be updated
:param ndarray Ax_idx: Indices of entries to be updated. Pass :code:`None` if
all the indices are to be updated
:param int Ax_n: Number of entries to be updated. Used only if Ax_idx is not
:code:`None`.
You can update all the nonzero entries in matrix :math:`A` by running
.. code:: python
emosqp.update_A(Ax_new, None, 0);
See C :ref:`C_sublevel_API` for more details on the input arguments.