| #include "Eigen/Dense" |
| #include "opencv2/aruco.hpp" |
| #include "opencv2/calib3d.hpp" |
| #include "opencv2/core/eigen.hpp" |
| #include "opencv2/features2d.hpp" |
| #include "opencv2/highgui.hpp" |
| #include "opencv2/highgui/highgui.hpp" |
| #include "opencv2/imgproc.hpp" |
| |
| #include "aos/configuration.h" |
| #include "aos/events/logging/log_reader.h" |
| #include "aos/events/simulated_event_loop.h" |
| #include "aos/init.h" |
| #include "aos/util/mcap_logger.h" |
| #include "frc971/control_loops/pose.h" |
| #include "frc971/vision/calibration_generated.h" |
| #include "frc971/vision/target_mapper.h" |
| #include "frc971/vision/vision_util_lib.h" |
| #include "frc971/vision/visualize_robot.h" |
| #include "y2023/constants/simulated_constants_sender.h" |
| #include "y2023/vision/aprilrobotics.h" |
| #include "y2023/vision/vision_util.h" |
| |
| ABSL_FLAG(std::string, config, "", |
| "If set, override the log's config file with this one."); |
| ABSL_FLAG(std::string, constants_path, "y2023/constants/constants.json", |
| "Path to the constant file"); |
| ABSL_FLAG(std::string, dump_constraints_to, "/tmp/mapping_constraints.txt", |
| "Write the target constraints to this path"); |
| ABSL_FLAG(std::string, dump_stats_to, "/tmp/mapping_stats.txt", |
| "Write the mapping stats to this path"); |
| ABSL_FLAG(std::string, field_name, "charged_up", |
| "Field name, for the output json filename and flatbuffer field"); |
| ABSL_FLAG(std::string, json_path, "y2023/vision/maps/target_map.json", |
| "Specify path for json with initial pose guesses."); |
| ABSL_FLAG(double, max_pose_error, 1e-6, |
| "Throw out target poses with a higher pose error than this"); |
| ABSL_FLAG(double, max_pose_error_ratio, 0.4, |
| "Throw out target poses with a higher pose error ratio than this"); |
| ABSL_FLAG(std::string, mcap_output_path, "", "Log to output."); |
| ABSL_FLAG(std::string, output_dir, "y2023/vision/maps", |
| "Directory to write solved target map to"); |
| ABSL_FLAG(double, pause_on_distance, 1.0, |
| "Pause if two consecutive implied robot positions differ by more " |
| "than this many meters"); |
| ABSL_FLAG(std::string, pi, "pi1", |
| "Pi name to generate mcap log for; defaults to pi1."); |
| ABSL_FLAG(uint64_t, skip_to, 1, |
| "Start at combined image of this number (1 is the first image)"); |
| ABSL_FLAG(bool, solve, true, "Whether to solve for the field's target map."); |
| ABSL_FLAG(int32_t, team_number, 0, |
| "Required: Use the calibration for a node with this team number"); |
| ABSL_FLAG(uint64_t, wait_key, 1, |
| "Time in ms to wait between images, if no click (0 to wait " |
| "indefinitely until click)."); |
| |
| ABSL_DECLARE_FLAG(int32_t, frozen_target_id); |
| ABSL_DECLARE_FLAG(int32_t, min_target_id); |
| ABSL_DECLARE_FLAG(int32_t, max_target_id); |
| ABSL_DECLARE_FLAG(bool, visualize_solver); |
| |
| namespace y2023::vision { |
| using frc971::vision::DataAdapter; |
| using frc971::vision::ImageCallback; |
| using frc971::vision::PoseUtils; |
| using frc971::vision::TargetMap; |
| using frc971::vision::TargetMapper; |
| using frc971::vision::VisualizeRobot; |
| namespace calibration = frc971::vision::calibration; |
| |
| // Class to handle reading target poses from a replayed log, |
| // displaying various debug info, and passing the poses to |
| // frc971::vision::TargetMapper for field mapping. |
| class TargetMapperReplay { |
| public: |
| TargetMapperReplay(aos::logger::LogReader *reader); |
| |
| // Solves for the target poses with the accumulated detections if FLAGS_solve. |
| void MaybeSolve(); |
| |
| private: |
| static constexpr int kImageWidth = 1280; |
| // Map from pi node name to color for drawing |
| static const std::map<std::string, cv::Scalar> kPiColors; |
| // Contains fixed target poses without solving, for use with visualization |
| static const TargetMapper kFixedTargetMapper; |
| |
| // Change reference frame from camera to robot |
| static Eigen::Affine3d CameraToRobotDetection(Eigen::Affine3d H_camera_target, |
| Eigen::Affine3d extrinsics); |
| |
| // Adds april tag detections into the detection list, and handles |
| // visualization |
| void HandleAprilTags(const TargetMap &map, |
| aos::distributed_clock::time_point pi_distributed_time, |
| std::string node_name, Eigen::Affine3d extrinsics); |
| |
| // Gets images from the given pi and passes apriltag positions to |
| // HandleAprilTags() |
| void HandlePiCaptures(aos::EventLoop *mapping_event_loop); |
| |
| aos::logger::LogReader *reader_; |
| // April tag detections from all pis |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections_; |
| |
| VisualizeRobot vis_robot_; |
| // Set of node names which are currently drawn on the display |
| std::set<std::string> drawn_nodes_; |
| // Number of frames displayed |
| size_t display_count_; |
| // Last time we drew onto the display image. |
| // This is different from when we actually call imshow() to update |
| // the display window |
| aos::distributed_clock::time_point last_draw_time_; |
| |
| Eigen::Affine3d last_H_world_robot_; |
| // Maximum distance between consecutive T_world_robot's in one display frame, |
| // used to determine if we need to pause for the user to see this frame |
| // clearly |
| double max_delta_T_world_robot_; |
| |
| std::vector<std::unique_ptr<aos::EventLoop>> mapping_event_loops_; |
| |
| std::unique_ptr<aos::EventLoop> mcap_event_loop_; |
| std::unique_ptr<aos::McapLogger> relogger_; |
| }; |
| |
| const auto TargetMapperReplay::kPiColors = std::map<std::string, cv::Scalar>{ |
| {"pi1", cv::Scalar(255, 0, 255)}, |
| {"pi2", cv::Scalar(255, 255, 0)}, |
| {"pi3", cv::Scalar(0, 255, 255)}, |
| {"pi4", cv::Scalar(255, 165, 0)}, |
| }; |
| |
| const auto TargetMapperReplay::kFixedTargetMapper = TargetMapper( |
| absl::GetFlag(FLAGS_json_path), ceres::examples::VectorOfConstraints{}); |
| |
| Eigen::Affine3d TargetMapperReplay::CameraToRobotDetection( |
| Eigen::Affine3d H_camera_target, Eigen::Affine3d extrinsics) { |
| const Eigen::Affine3d H_robot_camera = extrinsics; |
| const Eigen::Affine3d H_robot_target = H_robot_camera * H_camera_target; |
| return H_robot_target; |
| } |
| |
| TargetMapperReplay::TargetMapperReplay(aos::logger::LogReader *reader) |
| : reader_(reader), |
| timestamped_target_detections_(), |
| vis_robot_(cv::Size(1280, 1000)), |
| drawn_nodes_(), |
| display_count_(0), |
| last_draw_time_(aos::distributed_clock::min_time), |
| last_H_world_robot_(Eigen::Matrix4d::Identity()), |
| max_delta_T_world_robot_(0.0) { |
| constexpr size_t kNumPis = 4; |
| // TODO(milind): add a flag to support replaying april detection from full |
| // logs as well. |
| for (size_t i = 1; i <= kNumPis; i++) { |
| reader_->RemapLoggedChannel(absl::StrFormat("/pi%u/constants", i), |
| "y2023.Constants"); |
| } |
| |
| reader_->RemapLoggedChannel("/imu/constants", "y2023.Constants"); |
| reader_->RemapLoggedChannel("/logger/constants", "y2023.Constants"); |
| reader_->RemapLoggedChannel("/roborio/constants", "y2023.Constants"); |
| |
| reader_->Register(); |
| |
| SendSimulationConstants(reader_->event_loop_factory(), |
| absl::GetFlag(FLAGS_team_number), |
| absl::GetFlag(FLAGS_constants_path)); |
| |
| for (size_t i = 1; i < kNumPis; i++) { |
| std::string node_name = "pi" + std::to_string(i); |
| const aos::Node *pi = |
| aos::configuration::GetNode(reader_->configuration(), node_name); |
| mapping_event_loops_.emplace_back( |
| reader_->event_loop_factory()->MakeEventLoop(node_name + "_mapping", |
| pi)); |
| HandlePiCaptures( |
| mapping_event_loops_[mapping_event_loops_.size() - 1].get()); |
| } |
| |
| if (!absl::GetFlag(FLAGS_mcap_output_path).empty()) { |
| LOG(INFO) << "Writing out mcap file to " |
| << absl::GetFlag(FLAGS_mcap_output_path); |
| const aos::Node *node = aos::configuration::GetNode( |
| reader_->configuration(), absl::GetFlag(FLAGS_pi)); |
| reader_->event_loop_factory()->GetNodeEventLoopFactory(node)->OnStartup( |
| [this, node]() { |
| mcap_event_loop_ = |
| reader_->event_loop_factory()->MakeEventLoop("mcap", node); |
| relogger_ = std::make_unique<aos::McapLogger>( |
| mcap_event_loop_.get(), absl::GetFlag(FLAGS_mcap_output_path), |
| aos::McapLogger::Serialization::kFlatbuffer, |
| aos::McapLogger::CanonicalChannelNames::kShortened, |
| aos::McapLogger::Compression::kLz4); |
| }); |
| } |
| |
| if (absl::GetFlag(FLAGS_visualize_solver)) { |
| vis_robot_.ClearImage(); |
| const double kFocalLength = 500.0; |
| vis_robot_.SetDefaultViewpoint(kImageWidth, kFocalLength); |
| } |
| } |
| |
| // Add detected apriltag poses relative to the robot to |
| // timestamped_target_detections |
| void TargetMapperReplay::HandleAprilTags( |
| const TargetMap &map, |
| aos::distributed_clock::time_point pi_distributed_time, |
| std::string node_name, Eigen::Affine3d extrinsics) { |
| bool drew = false; |
| std::stringstream label; |
| label << node_name << " - "; |
| |
| for (const auto *target_pose_fbs : *map.target_poses()) { |
| // Skip detections with invalid ids |
| if (static_cast<TargetMapper::TargetId>(target_pose_fbs->id()) < |
| absl::GetFlag(FLAGS_min_target_id) || |
| static_cast<TargetMapper::TargetId>(target_pose_fbs->id()) > |
| absl::GetFlag(FLAGS_max_target_id)) { |
| VLOG(1) << "Skipping tag with invalid id of " << target_pose_fbs->id(); |
| continue; |
| } |
| |
| // Skip detections with high pose errors |
| if (target_pose_fbs->pose_error() > absl::GetFlag(FLAGS_max_pose_error)) { |
| VLOG(1) << "Skipping tag " << target_pose_fbs->id() |
| << " due to pose error of " << target_pose_fbs->pose_error(); |
| continue; |
| } |
| // Skip detections with high pose error ratios |
| if (target_pose_fbs->pose_error_ratio() > |
| absl::GetFlag(FLAGS_max_pose_error_ratio)) { |
| VLOG(1) << "Skipping tag " << target_pose_fbs->id() |
| << " due to pose error ratio of " |
| << target_pose_fbs->pose_error_ratio(); |
| continue; |
| } |
| |
| const TargetMapper::TargetPose target_pose = |
| TargetMapper::TargetPoseFromFbs(*target_pose_fbs); |
| |
| Eigen::Affine3d H_camera_target = |
| Eigen::Translation3d(target_pose.pose.p) * target_pose.pose.q; |
| Eigen::Affine3d H_robot_target = |
| CameraToRobotDetection(H_camera_target, extrinsics); |
| |
| ceres::examples::Pose3d target_pose_camera = |
| PoseUtils::Affine3dToPose3d(H_camera_target); |
| double distance_from_camera = target_pose_camera.p.norm(); |
| double distortion_factor = target_pose_fbs->distortion_factor(); |
| |
| CHECK(map.has_monotonic_timestamp_ns()) |
| << "Need detection timestamps for mapping"; |
| |
| timestamped_target_detections_.emplace_back( |
| DataAdapter::TimestampedDetection{ |
| .time = pi_distributed_time, |
| .H_robot_target = H_robot_target, |
| .distance_from_camera = distance_from_camera, |
| .distortion_factor = distortion_factor, |
| .id = static_cast<TargetMapper::TargetId>(target_pose.id)}); |
| |
| if (absl::GetFlag(FLAGS_visualize_solver)) { |
| // If we've already drawn this node_name in the current image, |
| // display the image before clearing and adding the new poses |
| if (drawn_nodes_.count(node_name) != 0) { |
| display_count_++; |
| cv::putText(vis_robot_.image_, |
| "Poses #" + std::to_string(display_count_), |
| cv::Point(600, 10), cv::FONT_HERSHEY_PLAIN, 1.0, |
| cv::Scalar(255, 255, 255)); |
| |
| if (display_count_ >= absl::GetFlag(FLAGS_skip_to)) { |
| VLOG(1) << "Showing image for node " << node_name |
| << " since we've drawn it already"; |
| cv::imshow("View", vis_robot_.image_); |
| // Pause if delta_T is too large, but only after first image (to make |
| // sure the delta's are correct |
| if (max_delta_T_world_robot_ > |
| absl::GetFlag(FLAGS_pause_on_distance) && |
| display_count_ > 1) { |
| LOG(INFO) << "Pausing since the delta between robot estimates is " |
| << max_delta_T_world_robot_ << " which is > threshold of " |
| << absl::GetFlag(FLAGS_pause_on_distance); |
| cv::waitKey(0); |
| } else { |
| cv::waitKey(absl::GetFlag(FLAGS_wait_key)); |
| } |
| max_delta_T_world_robot_ = 0.0; |
| } else { |
| VLOG(1) << "At poses #" << std::to_string(display_count_); |
| } |
| vis_robot_.ClearImage(); |
| drawn_nodes_.clear(); |
| } |
| |
| Eigen::Affine3d H_world_target = PoseUtils::Pose3dToAffine3d( |
| kFixedTargetMapper.GetTargetPoseById(target_pose_fbs->id())->pose); |
| Eigen::Affine3d H_world_robot = H_world_target * H_robot_target.inverse(); |
| VLOG(2) << node_name << ", id " << target_pose_fbs->id() |
| << ", t = " << pi_distributed_time |
| << ", pose_error = " << target_pose_fbs->pose_error() |
| << ", pose_error_ratio = " << target_pose_fbs->pose_error_ratio() |
| << ", robot_pos (x,y,z) = " |
| << H_world_robot.translation().transpose(); |
| |
| label << "id " << target_pose_fbs->id() << ": err (% of max): " |
| << (target_pose_fbs->pose_error() / |
| absl::GetFlag(FLAGS_max_pose_error)) |
| << " err_ratio: " << target_pose_fbs->pose_error_ratio() << " "; |
| |
| vis_robot_.DrawRobotOutline(H_world_robot, node_name, |
| kPiColors.at(node_name)); |
| vis_robot_.DrawFrameAxes(H_world_target, |
| std::to_string(target_pose_fbs->id()), |
| kPiColors.at(node_name)); |
| |
| double delta_T_world_robot = |
| (H_world_robot.translation() - last_H_world_robot_.translation()) |
| .norm(); |
| max_delta_T_world_robot_ = |
| std::max(delta_T_world_robot, max_delta_T_world_robot_); |
| |
| VLOG(1) << "Drew in info for robot " << node_name << " and target #" |
| << target_pose_fbs->id(); |
| drew = true; |
| last_draw_time_ = pi_distributed_time; |
| last_H_world_robot_ = H_world_robot; |
| } |
| } |
| |
| if (absl::GetFlag(FLAGS_visualize_solver)) { |
| if (drew) { |
| // Collect all the labels from a given node, and add the text |
| size_t pi_number = |
| static_cast<size_t>(node_name[node_name.size() - 1] - '0'); |
| cv::putText(vis_robot_.image_, label.str(), |
| cv::Point(10, 10 + 20 * pi_number), cv::FONT_HERSHEY_PLAIN, |
| 1.0, kPiColors.at(node_name)); |
| |
| drawn_nodes_.emplace(node_name); |
| } else if (pi_distributed_time - last_draw_time_ > |
| std::chrono::milliseconds(30) && |
| display_count_ >= absl::GetFlag(FLAGS_skip_to)) { |
| cv::putText(vis_robot_.image_, "No detections", cv::Point(10, 0), |
| cv::FONT_HERSHEY_PLAIN, 1.0, kPiColors.at(node_name)); |
| // Display and clear the image if we haven't draw in a while |
| VLOG(1) << "Displaying image due to time lapse"; |
| cv::imshow("View", vis_robot_.image_); |
| cv::waitKey(absl::GetFlag(FLAGS_wait_key)); |
| vis_robot_.ClearImage(); |
| max_delta_T_world_robot_ = 0.0; |
| drawn_nodes_.clear(); |
| } |
| } |
| } |
| |
| void TargetMapperReplay::HandlePiCaptures(aos::EventLoop *mapping_event_loop) { |
| // Get the camera extrinsics |
| const frc971::constants::ConstantsFetcher<Constants> constants( |
| mapping_event_loop); |
| const auto *calibration = FindCameraCalibration( |
| constants.constants(), mapping_event_loop->node()->name()->string_view()); |
| cv::Mat extrinsics_cv = CameraExtrinsics(calibration).value(); |
| Eigen::Matrix4d extrinsics_matrix; |
| cv::cv2eigen(extrinsics_cv, extrinsics_matrix); |
| const auto extrinsics = Eigen::Affine3d(extrinsics_matrix); |
| |
| mapping_event_loop->MakeWatcher( |
| "/camera", [this, mapping_event_loop, extrinsics](const TargetMap &map) { |
| aos::distributed_clock::time_point pi_distributed_time = |
| reader_->event_loop_factory() |
| ->GetNodeEventLoopFactory(mapping_event_loop->node()) |
| ->ToDistributedClock(aos::monotonic_clock::time_point( |
| aos::monotonic_clock::duration( |
| map.monotonic_timestamp_ns()))); |
| |
| std::string node_name = mapping_event_loop->node()->name()->str(); |
| HandleAprilTags(map, pi_distributed_time, node_name, extrinsics); |
| }); |
| } |
| |
| void TargetMapperReplay::MaybeSolve() { |
| if (absl::GetFlag(FLAGS_solve)) { |
| auto target_constraints = |
| DataAdapter::MatchTargetDetections(timestamped_target_detections_); |
| |
| // Remove constraints between the two sides of the field - these are |
| // basically garbage because of how far the camera is. We will use seeding |
| // below to connect the two sides |
| target_constraints.erase( |
| std::remove_if(target_constraints.begin(), target_constraints.end(), |
| [](const auto &constraint) { |
| constexpr TargetMapper::TargetId kMaxRedId = 4; |
| TargetMapper::TargetId min_id = |
| std::min(constraint.id_begin, constraint.id_end); |
| TargetMapper::TargetId max_id = |
| std::max(constraint.id_begin, constraint.id_end); |
| return (min_id <= kMaxRedId && max_id > kMaxRedId); |
| }), |
| target_constraints.end()); |
| |
| LOG(INFO) << "Solving for locations of tags with " |
| << target_constraints.size() << " constraints"; |
| TargetMapper mapper(absl::GetFlag(FLAGS_json_path), target_constraints); |
| mapper.Solve(absl::GetFlag(FLAGS_field_name), |
| absl::GetFlag(FLAGS_output_dir)); |
| |
| if (!absl::GetFlag(FLAGS_dump_constraints_to).empty()) { |
| mapper.DumpConstraints(absl::GetFlag(FLAGS_dump_constraints_to)); |
| } |
| if (!absl::GetFlag(FLAGS_dump_stats_to).empty()) { |
| mapper.DumpStats(absl::GetFlag(FLAGS_dump_stats_to)); |
| } |
| } |
| } |
| |
| void MappingMain(int argc, char *argv[]) { |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections; |
| |
| std::optional<aos::FlatbufferDetachedBuffer<aos::Configuration>> config = |
| (absl::GetFlag(FLAGS_config).empty() |
| ? std::nullopt |
| : std::make_optional( |
| aos::configuration::ReadConfig(absl::GetFlag(FLAGS_config)))); |
| |
| // Open logfiles |
| aos::logger::LogReader reader( |
| aos::logger::SortParts(aos::logger::FindLogs(argc, argv)), |
| config.has_value() ? &config->message() : nullptr); |
| |
| TargetMapperReplay mapper_replay(&reader); |
| reader.event_loop_factory()->Run(); |
| mapper_replay.MaybeSolve(); |
| } |
| |
| } // namespace y2023::vision |
| |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| y2023::vision::MappingMain(argc, argv); |
| } |