| #include <numeric> |
| |
| #include "absl/flags/flag.h" |
| |
| #include "aos/configuration.h" |
| #include "aos/events/logging/log_reader.h" |
| #include "aos/events/simulated_event_loop.h" |
| #include "aos/init.h" |
| #include "aos/util/mcap_logger.h" |
| #include "frc971/control_loops/pose.h" |
| #include "frc971/control_loops/quaternion_utils.h" |
| #include "frc971/vision/calibration_generated.h" |
| #include "frc971/vision/charuco_lib.h" |
| #include "frc971/vision/extrinsics_calibration.h" |
| #include "frc971/vision/target_mapper.h" |
| #include "frc971/vision/vision_util_lib.h" |
| #include "frc971/vision/visualize_robot.h" |
| // clang-format off |
| // OpenCV eigen files must be included after Eigen includes |
| #include "opencv2/aruco.hpp" |
| #include "opencv2/calib3d.hpp" |
| #include "opencv2/core/eigen.hpp" |
| #include "opencv2/features2d.hpp" |
| #include "opencv2/highgui.hpp" |
| #include "opencv2/highgui/highgui.hpp" |
| #include "opencv2/imgproc.hpp" |
| // clang-format on |
| #include "y2023/constants/simulated_constants_sender.h" |
| #include "y2023/vision/aprilrobotics.h" |
| #include "y2023/vision/vision_util.h" |
| |
| ABSL_FLAG(bool, alt_view, false, |
| "If true, show visualization from field level, rather than above"); |
| ABSL_FLAG(std::string, config, "", |
| "If set, override the log's config file with this one."); |
| ABSL_FLAG(std::string, constants_path, "y2023/constants/constants.json", |
| "Path to the constant file"); |
| ABSL_FLAG(double, max_pose_error, 5e-5, |
| "Throw out target poses with a higher pose error than this"); |
| ABSL_FLAG(double, max_pose_error_ratio, 0.4, |
| "Throw out target poses with a higher pose error ratio than this"); |
| ABSL_FLAG(std::string, output_folder, "/tmp", |
| "Directory in which to store the updated calibration files"); |
| ABSL_FLAG(std::string, target_type, "charuco_diamond", |
| "Type of target being used [aruco, charuco, charuco_diamond]"); |
| ABSL_FLAG(int32_t, team_number, 0, |
| "Required: Use the calibration for a node with this team number"); |
| ABSL_FLAG(bool, use_full_logs, false, |
| "If true, extract data from logs with images"); |
| ABSL_FLAG( |
| uint64_t, wait_key, 1, |
| "Time in ms to wait between images (0 to wait indefinitely until click)"); |
| |
| ABSL_DECLARE_FLAG(int32_t, min_target_id); |
| ABSL_DECLARE_FLAG(int32_t, max_target_id); |
| |
| // Calibrate extrinsic relationship between cameras using two targets |
| // seen jointly between cameras. Uses two types of information: 1) |
| // when a single camera sees two targets, we estimate the pose between |
| // targets, and 2) when two separate cameras each see a target, we can |
| // use the pose between targets to estimate the pose between cameras. |
| |
| // We then create the extrinsics for the robot by starting with the |
| // given extrinsic for camera 1 (between imu/robot and camera frames) |
| // and then map each subsequent camera based on the data collected and |
| // the extrinsic poses computed here. |
| |
| // TODO<Jim>: Not currently using estimate from pi1->pi4-- should do full |
| // estimation, and probably also include camera->imu extrinsics from all |
| // cameras, not just pi1 |
| |
| namespace y2023::vision { |
| using frc971::vision::DataAdapter; |
| using frc971::vision::ImageCallback; |
| using frc971::vision::PoseUtils; |
| using frc971::vision::TargetMap; |
| using frc971::vision::TargetMapper; |
| using frc971::vision::VisualizeRobot; |
| namespace calibration = frc971::vision::calibration; |
| |
| static constexpr double kImagePeriodMs = |
| 1.0 / 30.0 * 1000.0; // Image capture period in ms |
| |
| // Change reference frame from camera to robot |
| Eigen::Affine3d CameraToRobotDetection(Eigen::Affine3d H_camera_target, |
| Eigen::Affine3d extrinsics) { |
| const Eigen::Affine3d H_robot_camera = extrinsics; |
| const Eigen::Affine3d H_robot_target = H_robot_camera * H_camera_target; |
| return H_robot_target; |
| } |
| |
| struct TimestampedPiDetection { |
| aos::distributed_clock::time_point time; |
| // Pose of target relative to robot |
| Eigen::Affine3d H_camera_target; |
| // name of pi |
| std::string pi_name; |
| int board_id; |
| }; |
| |
| TimestampedPiDetection last_observation; |
| std::vector<std::pair<TimestampedPiDetection, TimestampedPiDetection>> |
| detection_list; |
| std::vector<TimestampedPiDetection> two_board_extrinsics_list; |
| VisualizeRobot vis_robot_; |
| |
| // TODO<jim>: Implement variance calcs |
| Eigen::Affine3d ComputeAveragePose( |
| std::vector<Eigen::Vector3d> &translation_list, |
| std::vector<Eigen::Vector4d> &rotation_list, |
| Eigen::Vector3d *translation_variance = nullptr, |
| Eigen::Vector3d *rotation_variance = nullptr) { |
| Eigen::Vector3d avg_translation = |
| std::accumulate(translation_list.begin(), translation_list.end(), |
| Eigen::Vector3d{0, 0, 0}) / |
| translation_list.size(); |
| |
| // TODO<Jim>: Use QuaternionMean from quaternion_utils.cc (but this |
| // requires a fixed number of quaternions to be averaged |
| Eigen::Vector4d avg_rotation = |
| std::accumulate(rotation_list.begin(), rotation_list.end(), |
| Eigen::Vector4d{0, 0, 0, 0}) / |
| rotation_list.size(); |
| // Normalize, so it's a valid quaternion |
| avg_rotation = avg_rotation / avg_rotation.norm(); |
| Eigen::Quaterniond avg_rotation_q{avg_rotation[0], avg_rotation[1], |
| avg_rotation[2], avg_rotation[3]}; |
| Eigen::Translation3d translation(avg_translation); |
| Eigen::Affine3d return_pose = translation * avg_rotation_q; |
| if (translation_variance != nullptr) { |
| *translation_variance = Eigen::Vector3d(); |
| } |
| if (rotation_variance != nullptr) { |
| LOG(INFO) << *rotation_variance; |
| } |
| |
| return return_pose; |
| } |
| |
| Eigen::Affine3d ComputeAveragePose( |
| std::vector<Eigen::Affine3d> &pose_list, |
| Eigen::Vector3d *translation_variance = nullptr, |
| Eigen::Vector3d *rotation_variance = nullptr) { |
| std::vector<Eigen::Vector3d> translation_list; |
| std::vector<Eigen::Vector4d> rotation_list; |
| |
| for (Eigen::Affine3d pose : pose_list) { |
| translation_list.push_back(pose.translation()); |
| Eigen::Quaterniond quat(pose.rotation().matrix()); |
| rotation_list.push_back( |
| Eigen::Vector4d(quat.w(), quat.x(), quat.y(), quat.z())); |
| } |
| |
| return ComputeAveragePose(translation_list, rotation_list, |
| translation_variance, rotation_variance); |
| } |
| |
| Eigen::Affine3d ComputeAveragePose( |
| std::vector<TimestampedPiDetection> &pose_list, |
| Eigen::Vector3d *translation_variance = nullptr, |
| Eigen::Vector3d *rotation_variance = nullptr) { |
| std::vector<Eigen::Vector3d> translation_list; |
| std::vector<Eigen::Vector4d> rotation_list; |
| |
| for (TimestampedPiDetection pose : pose_list) { |
| translation_list.push_back(pose.H_camera_target.translation()); |
| Eigen::Quaterniond quat(pose.H_camera_target.rotation().matrix()); |
| rotation_list.push_back( |
| Eigen::Vector4d(quat.w(), quat.x(), quat.y(), quat.z())); |
| } |
| return ComputeAveragePose(translation_list, rotation_list, |
| translation_variance, rotation_variance); |
| } |
| |
| void HandlePoses(cv::Mat rgb_image, |
| std::vector<TargetMapper::TargetPose> target_poses, |
| aos::distributed_clock::time_point distributed_eof, |
| std::string node_name) { |
| // This is used to transform points for visualization |
| // Assumes targets are aligned with x->right, y->up, z->out of board |
| Eigen::Affine3d H_world_board; |
| H_world_board = Eigen::Translation3d::Identity() * |
| Eigen::AngleAxisd(M_PI / 2.0, Eigen::Vector3d::UnitX()); |
| if (absl::GetFlag(FLAGS_alt_view)) { |
| // Don't rotate -- this is like viewing from the side |
| H_world_board = Eigen::Translation3d(0.0, 0.0, 3.0); |
| } |
| |
| bool draw_vis = false; |
| CHECK_LE(target_poses.size(), 2u) |
| << "Can't handle more than two tags in field of view"; |
| if (target_poses.size() == 2) { |
| draw_vis = true; |
| VLOG(1) << "Saw two boards in same view from " << node_name; |
| int from_index = 0; |
| int to_index = 1; |
| // Handle when we see two boards at once |
| // We'll store them referenced to the lower id board |
| if (target_poses[from_index].id > target_poses[to_index].id) { |
| std::swap<int>(from_index, to_index); |
| } |
| |
| // Create "from" (A) and "to" (B) transforms |
| Eigen::Affine3d H_camera_boardA = |
| PoseUtils::Pose3dToAffine3d(target_poses[from_index].pose); |
| Eigen::Affine3d H_camera_boardB = |
| PoseUtils::Pose3dToAffine3d(target_poses[to_index].pose); |
| |
| Eigen::Affine3d H_boardA_boardB = |
| H_camera_boardA.inverse() * H_camera_boardB; |
| |
| TimestampedPiDetection boardA_boardB{ |
| .time = distributed_eof, |
| .H_camera_target = H_boardA_boardB, |
| .pi_name = node_name, |
| .board_id = target_poses[from_index].id}; |
| |
| VLOG(1) << "Map from board " << from_index << " to " << to_index << " is\n" |
| << H_boardA_boardB.matrix(); |
| // Store this observation of the transform between two boards |
| two_board_extrinsics_list.push_back(boardA_boardB); |
| |
| if (absl::GetFlag(FLAGS_visualize)) { |
| vis_robot_.DrawFrameAxes( |
| H_world_board, |
| std::string("board ") + std::to_string(target_poses[from_index].id), |
| cv::Scalar(0, 255, 0)); |
| vis_robot_.DrawFrameAxes( |
| H_world_board * boardA_boardB.H_camera_target, |
| std::string("board ") + std::to_string(target_poses[to_index].id), |
| cv::Scalar(255, 0, 0)); |
| VLOG(2) << "Detection map from camera " << node_name << " to board " |
| << target_poses[from_index].id << " is\n" |
| << H_camera_boardA.matrix() << "\n and inverse is\n" |
| << H_camera_boardA.inverse().matrix() |
| << "\n and with world to board rotation is\n" |
| << H_world_board * H_camera_boardA.inverse().matrix(); |
| vis_robot_.DrawRobotOutline(H_world_board * H_camera_boardA.inverse(), |
| node_name, cv::Scalar(0, 0, 255)); |
| } |
| } else if (target_poses.size() == 1) { |
| VLOG(1) << "Saw single board in camera " << node_name; |
| Eigen::Affine3d H_camera2_board2 = |
| PoseUtils::Pose3dToAffine3d(target_poses[0].pose); |
| TimestampedPiDetection new_observation{.time = distributed_eof, |
| .H_camera_target = H_camera2_board2, |
| .pi_name = node_name, |
| .board_id = target_poses[0].id}; |
| |
| // Only take two observations if they're within half an image cycle of each |
| // other (i.e., as close in time as possible) |
| if (std::abs((distributed_eof - last_observation.time).count()) < |
| kImagePeriodMs / 2.0 * 1000000.0) { |
| // Sort by pi numbering, since this is how we will handle them |
| std::pair<TimestampedPiDetection, TimestampedPiDetection> new_pair; |
| if (last_observation.pi_name < new_observation.pi_name) { |
| new_pair = std::pair(last_observation, new_observation); |
| } else if (last_observation.pi_name > new_observation.pi_name) { |
| new_pair = std::pair(new_observation, last_observation); |
| } else { |
| LOG(WARNING) << "Got 2 observations in a row from same pi. Probably " |
| "not too much of an issue???"; |
| } |
| detection_list.push_back(new_pair); |
| |
| // This bit is just for visualization and checking purposes-- use the |
| // last two-board observation to figure out the current estimate |
| // between the two cameras |
| if (absl::GetFlag(FLAGS_visualize) && |
| two_board_extrinsics_list.size() > 0) { |
| draw_vis = true; |
| TimestampedPiDetection &last_two_board_ext = |
| two_board_extrinsics_list[two_board_extrinsics_list.size() - 1]; |
| Eigen::Affine3d &H_boardA_boardB = last_two_board_ext.H_camera_target; |
| int boardA_boardB_id = last_two_board_ext.board_id; |
| |
| TimestampedPiDetection camera1_boardA = new_pair.first; |
| TimestampedPiDetection camera2_boardB = new_pair.second; |
| // If camera1_boardA doesn't point to the first target, then swap |
| // these two |
| if (camera1_boardA.board_id != boardA_boardB_id) { |
| camera1_boardA = new_pair.second; |
| camera2_boardB = new_pair.first; |
| } |
| VLOG(1) << "Camera " << camera1_boardA.pi_name << " seeing board " |
| << camera1_boardA.board_id << " and camera " |
| << camera2_boardB.pi_name << " seeing board " |
| << camera2_boardB.board_id; |
| |
| vis_robot_.DrawRobotOutline( |
| H_world_board * camera1_boardA.H_camera_target.inverse(), |
| camera1_boardA.pi_name, cv::Scalar(0, 0, 255)); |
| vis_robot_.DrawRobotOutline( |
| H_world_board * H_boardA_boardB * |
| camera2_boardB.H_camera_target.inverse(), |
| camera2_boardB.pi_name, cv::Scalar(128, 128, 0)); |
| vis_robot_.DrawFrameAxes( |
| H_world_board, |
| std::string("Board ") + std::to_string(last_two_board_ext.board_id), |
| cv::Scalar(0, 255, 0)); |
| vis_robot_.DrawFrameAxes(H_world_board * H_boardA_boardB, "Board B", |
| cv::Scalar(255, 0, 0)); |
| } |
| VLOG(1) << "Storing observation between " << new_pair.first.pi_name |
| << ", target " << new_pair.first.board_id << " and " |
| << new_pair.second.pi_name << ", target " |
| << new_pair.second.board_id; |
| } else { |
| VLOG(2) << "Storing observation for " << node_name << " at time " |
| << distributed_eof; |
| last_observation = new_observation; |
| } |
| } |
| |
| if (absl::GetFlag(FLAGS_visualize)) { |
| if (!rgb_image.empty()) { |
| std::string image_name = node_name + " Image"; |
| cv::Mat rgb_small; |
| cv::resize(rgb_image, rgb_small, cv::Size(), 0.5, 0.5); |
| cv::imshow(image_name, rgb_small); |
| cv::waitKey(absl::GetFlag(FLAGS_wait_key)); |
| } |
| |
| if (draw_vis) { |
| cv::imshow("View", vis_robot_.image_); |
| cv::waitKey(absl::GetFlag(FLAGS_wait_key)); |
| vis_robot_.ClearImage(); |
| } |
| } |
| } |
| |
| void HandleTargetMap(const TargetMap &map, |
| aos::distributed_clock::time_point distributed_eof, |
| std::string node_name) { |
| VLOG(1) << "Got april tag map call from node " << node_name; |
| // Create empty RGB image in this case |
| cv::Mat rgb_image; |
| std::vector<TargetMapper::TargetPose> target_poses; |
| |
| for (const auto *target_pose_fbs : *map.target_poses()) { |
| // Skip detections with invalid ids |
| if (static_cast<TargetMapper::TargetId>(target_pose_fbs->id()) < |
| absl::GetFlag(FLAGS_min_target_id) || |
| static_cast<TargetMapper::TargetId>(target_pose_fbs->id()) > |
| absl::GetFlag(FLAGS_max_target_id)) { |
| LOG(INFO) << "Skipping tag with invalid id of " << target_pose_fbs->id(); |
| continue; |
| } |
| |
| // Skip detections with high pose errors |
| if (target_pose_fbs->pose_error() > absl::GetFlag(FLAGS_max_pose_error)) { |
| LOG(INFO) << "Skipping tag " << target_pose_fbs->id() |
| << " due to pose error of " << target_pose_fbs->pose_error(); |
| continue; |
| } |
| // Skip detections with high pose error ratios |
| if (target_pose_fbs->pose_error_ratio() > |
| absl::GetFlag(FLAGS_max_pose_error_ratio)) { |
| LOG(INFO) << "Skipping tag " << target_pose_fbs->id() |
| << " due to pose error ratio of " |
| << target_pose_fbs->pose_error_ratio(); |
| continue; |
| } |
| |
| const TargetMapper::TargetPose target_pose = |
| TargetMapper::TargetPoseFromFbs(*target_pose_fbs); |
| |
| target_poses.emplace_back(target_pose); |
| |
| Eigen::Affine3d H_camera_target = |
| PoseUtils::Pose3dToAffine3d(target_pose.pose); |
| VLOG(2) << node_name << " saw target " << target_pose.id |
| << " from TargetMap at timestamp " << distributed_eof |
| << " with pose = " << H_camera_target.matrix(); |
| } |
| HandlePoses(rgb_image, target_poses, distributed_eof, node_name); |
| } |
| |
| void HandleImage(aos::EventLoop *event_loop, cv::Mat rgb_image, |
| const aos::monotonic_clock::time_point eof, |
| aos::distributed_clock::time_point distributed_eof, |
| frc971::vision::CharucoExtractor &charuco_extractor, |
| std::string node_name) { |
| std::vector<cv::Vec4i> charuco_ids; |
| std::vector<std::vector<cv::Point2f>> charuco_corners; |
| bool valid = false; |
| std::vector<Eigen::Vector3d> rvecs_eigen; |
| std::vector<Eigen::Vector3d> tvecs_eigen; |
| // Why eof vs. distributed_eof? |
| charuco_extractor.ProcessImage(rgb_image, eof, event_loop->monotonic_now(), |
| charuco_ids, charuco_corners, valid, |
| rvecs_eigen, tvecs_eigen); |
| if (rvecs_eigen.size() > 0 && !valid) { |
| LOG(WARNING) << "Charuco extractor returned not valid"; |
| return; |
| } |
| |
| std::vector<TargetMapper::TargetPose> target_poses; |
| for (size_t i = 0; i < tvecs_eigen.size(); i++) { |
| Eigen::Quaterniond rotation( |
| frc971::controls::ToQuaternionFromRotationVector(rvecs_eigen[i])); |
| ceres::examples::Pose3d pose(Eigen::Vector3d(tvecs_eigen[i]), rotation); |
| TargetMapper::TargetPose target_pose{charuco_ids[i][0], pose}; |
| target_poses.emplace_back(target_pose); |
| |
| Eigen::Affine3d H_camera_target = PoseUtils::Pose3dToAffine3d(pose); |
| VLOG(2) << node_name << " saw target " << target_pose.id |
| << " from image at timestamp " << distributed_eof |
| << " with pose = " << H_camera_target.matrix(); |
| } |
| HandlePoses(rgb_image, target_poses, distributed_eof, node_name); |
| } |
| |
| void ExtrinsicsMain(int argc, char *argv[]) { |
| vis_robot_ = VisualizeRobot(cv::Size(1000, 1000)); |
| vis_robot_.ClearImage(); |
| const double kFocalLength = 1000.0; |
| const int kImageWidth = 1000; |
| vis_robot_.SetDefaultViewpoint(kImageWidth, kFocalLength); |
| |
| std::optional<aos::FlatbufferDetachedBuffer<aos::Configuration>> config = |
| (absl::GetFlag(FLAGS_config).empty() |
| ? std::nullopt |
| : std::make_optional( |
| aos::configuration::ReadConfig(absl::GetFlag(FLAGS_config)))); |
| |
| // open logfiles |
| aos::logger::LogReader reader( |
| aos::logger::SortParts(aos::logger::FindLogs(argc, argv)), |
| config.has_value() ? &config->message() : nullptr); |
| |
| constexpr size_t kNumPis = 4; |
| for (size_t i = 1; i <= kNumPis; i++) { |
| reader.RemapLoggedChannel(absl::StrFormat("/pi%u/constants", i), |
| "y2023.Constants"); |
| } |
| |
| reader.RemapLoggedChannel("/imu/constants", "y2023.Constants"); |
| reader.RemapLoggedChannel("/logger/constants", "y2023.Constants"); |
| reader.RemapLoggedChannel("/roborio/constants", "y2023.Constants"); |
| reader.Register(); |
| |
| SendSimulationConstants(reader.event_loop_factory(), |
| absl::GetFlag(FLAGS_team_number), |
| absl::GetFlag(FLAGS_constants_path)); |
| |
| VLOG(1) << "Using target type " << absl::GetFlag(FLAGS_target_type); |
| std::vector<std::string> node_list; |
| node_list.push_back("pi1"); |
| node_list.push_back("pi2"); |
| node_list.push_back("pi3"); |
| node_list.push_back("pi4"); |
| std::vector<const calibration::CameraCalibration *> calibration_list; |
| |
| std::vector<std::unique_ptr<aos::EventLoop>> detection_event_loops; |
| std::vector<frc971::vision::CharucoExtractor *> charuco_extractors; |
| std::vector<frc971::vision::ImageCallback *> image_callbacks; |
| std::vector<Eigen::Affine3d> default_extrinsics; |
| |
| for (uint i = 0; i < node_list.size(); i++) { |
| std::string node = node_list[i]; |
| const aos::Node *pi = |
| aos::configuration::GetNode(reader.configuration(), node.c_str()); |
| |
| detection_event_loops.emplace_back( |
| reader.event_loop_factory()->MakeEventLoop( |
| (node + "_detection").c_str(), pi)); |
| |
| frc971::constants::ConstantsFetcher<y2023::Constants> constants_fetcher( |
| detection_event_loops.back().get()); |
| |
| const calibration::CameraCalibration *calibration = |
| FindCameraCalibration(constants_fetcher.constants(), node); |
| calibration_list.push_back(calibration); |
| |
| frc971::vision::TargetType target_type = |
| frc971::vision::TargetTypeFromString(absl::GetFlag(FLAGS_target_type)); |
| frc971::vision::CharucoExtractor *charuco_ext = |
| new frc971::vision::CharucoExtractor(calibration, target_type); |
| charuco_extractors.emplace_back(charuco_ext); |
| |
| cv::Mat extrinsics_cv = CameraExtrinsics(calibration).value(); |
| Eigen::Matrix4d extrinsics_matrix; |
| cv::cv2eigen(extrinsics_cv, extrinsics_matrix); |
| const auto ext_H_robot_pi = Eigen::Affine3d(extrinsics_matrix); |
| default_extrinsics.emplace_back(ext_H_robot_pi); |
| |
| VLOG(1) << "Got extrinsics for " << node << " as\n" |
| << default_extrinsics.back().matrix(); |
| |
| if (absl::GetFlag(FLAGS_use_full_logs)) { |
| LOG(INFO) << "Set up image callback for node " << node_list[i]; |
| frc971::vision::ImageCallback *image_callback = |
| new frc971::vision::ImageCallback( |
| detection_event_loops[i].get(), "/" + node_list[i] + "/camera", |
| [&reader, &charuco_extractors, &detection_event_loops, &node_list, |
| i](cv::Mat rgb_image, |
| const aos::monotonic_clock::time_point eof) { |
| aos::distributed_clock::time_point pi_distributed_time = |
| reader.event_loop_factory() |
| ->GetNodeEventLoopFactory( |
| detection_event_loops[i].get()->node()) |
| ->ToDistributedClock(eof); |
| HandleImage(detection_event_loops[i].get(), rgb_image, eof, |
| pi_distributed_time, *charuco_extractors[i], |
| node_list[i]); |
| }); |
| |
| image_callbacks.emplace_back(image_callback); |
| } else { |
| detection_event_loops[i]->MakeWatcher( |
| "/camera", [&reader, &detection_event_loops, &node_list, |
| i](const TargetMap &map) { |
| aos::distributed_clock::time_point pi_distributed_time = |
| reader.event_loop_factory() |
| ->GetNodeEventLoopFactory(detection_event_loops[i]->node()) |
| ->ToDistributedClock(aos::monotonic_clock::time_point( |
| aos::monotonic_clock::duration( |
| map.monotonic_timestamp_ns()))); |
| |
| HandleTargetMap(map, pi_distributed_time, node_list[i]); |
| }); |
| LOG(INFO) << "Created watcher for using the detection event loop for " |
| << node_list[i] << " with i = " << i << " and size " |
| << detection_event_loops.size(); |
| } |
| } |
| |
| reader.event_loop_factory()->Run(); |
| |
| // Do quick check to see what averaged two-board pose for each pi is |
| // individually |
| CHECK_GT(two_board_extrinsics_list.size(), 0u) |
| << "Must have at least one view of both boards"; |
| int base_target_id = two_board_extrinsics_list[0].board_id; |
| VLOG(1) << "Base id for two_board_extrinsics_list is " << base_target_id; |
| for (auto node : node_list) { |
| std::vector<TimestampedPiDetection> pose_list; |
| for (auto ext : two_board_extrinsics_list) { |
| CHECK_EQ(base_target_id, ext.board_id) |
| << " All boards should have same reference id"; |
| if (ext.pi_name == node) { |
| pose_list.push_back(ext); |
| } |
| } |
| Eigen::Affine3d avg_pose_from_pi = ComputeAveragePose(pose_list); |
| VLOG(1) << "Estimate from " << node << " with " << pose_list.size() |
| << " observations is:\n" |
| << avg_pose_from_pi.matrix(); |
| } |
| Eigen::Affine3d H_boardA_boardB_avg = |
| ComputeAveragePose(two_board_extrinsics_list); |
| // TODO: Should probably do some outlier rejection |
| LOG(INFO) << "Estimate of two board pose using all nodes with " |
| << two_board_extrinsics_list.size() << " observations is:\n" |
| << H_boardA_boardB_avg.matrix() << "\n"; |
| |
| // Next, compute the relative camera poses |
| LOG(INFO) << "Got " << detection_list.size() << " extrinsic observations"; |
| std::vector<Eigen::Affine3d> H_camera1_camera2_list; |
| std::vector<Eigen::Affine3d> updated_extrinsics; |
| // Use the first node's extrinsics as our base, and fix from there |
| updated_extrinsics.push_back(default_extrinsics[0]); |
| LOG(INFO) << "Default extrinsic for node " << node_list[0] << " is " |
| << default_extrinsics[0].matrix(); |
| for (uint i = 0; i < node_list.size() - 1; i++) { |
| H_camera1_camera2_list.clear(); |
| // Go through the list, and find successive pairs of cameras |
| for (auto [pose1, pose2] : detection_list) { |
| if ((pose1.pi_name == node_list[i]) && |
| (pose2.pi_name == node_list[i + 1])) { |
| Eigen::Affine3d H_camera1_boardA = pose1.H_camera_target; |
| // If pose1 isn't referenced to base_target_id, correct that |
| if (pose1.board_id != base_target_id) { |
| // pose1.H_camera_target references boardB, so map back to boardA |
| H_camera1_boardA = |
| pose1.H_camera_target * H_boardA_boardB_avg.inverse(); |
| } |
| |
| // Now, get the camera2->boardA map (notice it's boardA, same as |
| // camera1, so we can compute the difference based both on boardA) |
| Eigen::Affine3d H_camera2_boardA = pose2.H_camera_target; |
| // If pose2 isn't referenced to boardA (base_target_id), correct |
| // that |
| if (pose2.board_id != base_target_id) { |
| // pose2.H_camera_target references boardB, so map back to boardA |
| H_camera2_boardA = |
| pose2.H_camera_target * H_boardA_boardB_avg.inverse(); |
| } |
| |
| // Compute camera1->camera2 map |
| Eigen::Affine3d H_camera1_camera2 = |
| H_camera1_boardA * H_camera2_boardA.inverse(); |
| H_camera1_camera2_list.push_back(H_camera1_camera2); |
| VLOG(1) << "Map from camera " << pose1.pi_name << " and tag " |
| << pose1.board_id << " with observation: \n" |
| << pose1.H_camera_target.matrix() << "\n to camera " |
| << pose2.pi_name << " and tag " << pose2.board_id |
| << " with observation: \n" |
| << pose2.H_camera_target.matrix() << "\ngot map as\n" |
| << H_camera1_camera2.matrix(); |
| |
| Eigen::Affine3d H_world_board; |
| H_world_board = Eigen::Translation3d::Identity() * |
| Eigen::AngleAxisd(M_PI / 2.0, Eigen::Vector3d::UnitX()); |
| if (absl::GetFlag(FLAGS_alt_view)) { |
| H_world_board = Eigen::Translation3d(0.0, 0.0, 3.0); |
| } |
| |
| VLOG(2) << "Camera1 " << pose1.pi_name << " in world frame is \n" |
| << (H_world_board * H_camera1_boardA.inverse()).matrix(); |
| VLOG(2) << "Camera2 " << pose2.pi_name << " in world frame is \n" |
| << (H_world_board * H_camera2_boardA.inverse()).matrix(); |
| } |
| } |
| // TODO<Jim>: If we don't get any matches, we could just use default |
| // extrinsics |
| CHECK(H_camera1_camera2_list.size() > 0) |
| << "Failed with zero poses for node " << node_list[i]; |
| if (H_camera1_camera2_list.size() > 0) { |
| Eigen::Affine3d H_camera1_camera2_avg = |
| ComputeAveragePose(H_camera1_camera2_list); |
| LOG(INFO) << "From " << node_list[i] << " to " << node_list[i + 1] |
| << " found " << H_camera1_camera2_list.size() |
| << " observations, and the average pose is:\n" |
| << H_camera1_camera2_avg.matrix(); |
| Eigen::Affine3d H_camera1_camera2_default = |
| default_extrinsics[i].inverse() * default_extrinsics[i + 1]; |
| LOG(INFO) << "Compare this to that from default values:\n" |
| << H_camera1_camera2_default.matrix(); |
| Eigen::Affine3d H_camera1_camera2_diff = |
| H_camera1_camera2_avg * H_camera1_camera2_default.inverse(); |
| LOG(INFO) |
| << "Difference between averaged and default delta poses " |
| "has |T| = " |
| << H_camera1_camera2_diff.translation().norm() << "m and |R| = " |
| << Eigen::AngleAxisd(H_camera1_camera2_diff.rotation()).angle() |
| << " radians (" |
| << Eigen::AngleAxisd(H_camera1_camera2_diff.rotation()).angle() * |
| 180.0 / M_PI |
| << " degrees)"; |
| // Next extrinsic is just previous one * avg_delta_pose |
| Eigen::Affine3d next_extrinsic = |
| updated_extrinsics.back() * H_camera1_camera2_avg; |
| updated_extrinsics.push_back(next_extrinsic); |
| LOG(INFO) << "Default Extrinsic for " << node_list[i + 1] << " is \n" |
| << default_extrinsics[i + 1].matrix(); |
| LOG(INFO) << "--> Updated Extrinsic for " << node_list[i + 1] << " is \n" |
| << next_extrinsic.matrix(); |
| |
| // Wirte out this extrinsic to a file |
| flatbuffers::FlatBufferBuilder fbb; |
| flatbuffers::Offset<flatbuffers::Vector<float>> data_offset = |
| fbb.CreateVector( |
| frc971::vision::MatrixToVector(next_extrinsic.matrix())); |
| calibration::TransformationMatrix::Builder matrix_builder(fbb); |
| matrix_builder.add_data(data_offset); |
| flatbuffers::Offset<calibration::TransformationMatrix> |
| extrinsic_calibration_offset = matrix_builder.Finish(); |
| |
| calibration::CameraCalibration::Builder calibration_builder(fbb); |
| calibration_builder.add_fixed_extrinsics(extrinsic_calibration_offset); |
| const aos::realtime_clock::time_point realtime_now = |
| aos::realtime_clock::now(); |
| calibration_builder.add_calibration_timestamp( |
| realtime_now.time_since_epoch().count()); |
| fbb.Finish(calibration_builder.Finish()); |
| aos::FlatbufferDetachedBuffer<calibration::CameraCalibration> |
| solved_extrinsics = fbb.Release(); |
| |
| aos::FlatbufferDetachedBuffer< |
| frc971::vision::calibration::CameraCalibration> |
| cal_copy = aos::RecursiveCopyFlatBuffer(calibration_list[i + 1]); |
| cal_copy.mutable_message()->clear_fixed_extrinsics(); |
| cal_copy.mutable_message()->clear_calibration_timestamp(); |
| aos::FlatbufferDetachedBuffer<calibration::CameraCalibration> |
| merged_calibration = aos::MergeFlatBuffers( |
| &cal_copy.message(), &solved_extrinsics.message()); |
| |
| std::stringstream time_ss; |
| time_ss << realtime_now; |
| |
| // Assumes node_list name is of form "pi#" to create camera id |
| const std::string calibration_filename = |
| absl::GetFlag(FLAGS_output_folder) + |
| absl::StrFormat( |
| "/calibration_pi-%d-%s_cam-%s_%s.json", |
| absl::GetFlag(FLAGS_team_number), node_list[i + 1].substr(2, 3), |
| calibration_list[i + 1]->camera_id()->data(), time_ss.str()); |
| |
| LOG(INFO) << calibration_filename << " -> " |
| << aos::FlatbufferToJson(merged_calibration, |
| {.multi_line = true}); |
| |
| aos::util::WriteStringToFileOrDie( |
| calibration_filename, |
| aos::FlatbufferToJson(merged_calibration, {.multi_line = true})); |
| } |
| } |
| |
| // Cleanup |
| for (uint i = 0; i < image_callbacks.size(); i++) { |
| delete charuco_extractors[i]; |
| delete image_callbacks[i]; |
| } |
| } |
| } // namespace y2023::vision |
| |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| y2023::vision::ExtrinsicsMain(argc, argv); |
| } |