blob: bcee19267e26c81a93bc3880b88ff0d4db04c473 [file] [log] [blame]
#include "y2022/localizer/localizer.h"
#include "absl/flags/flag.h"
#include "gtest/gtest.h"
#include "aos/events/logging/log_writer.h"
#include "aos/events/simulated_event_loop.h"
#include "frc971/control_loops/drivetrain/drivetrain_test_lib.h"
#include "frc971/control_loops/pose.h"
#include "y2022/control_loops/drivetrain/drivetrain_base.h"
#include "y2022/control_loops/superstructure/superstructure_status_generated.h"
#include "y2022/vision/target_estimate_generated.h"
ABSL_FLAG(std::string, output_folder, "",
"If set, logs all channels to the provided logfile.");
namespace frc971::controls::testing {
typedef ModelBasedLocalizer::ModelState ModelState;
typedef ModelBasedLocalizer::AccelState AccelState;
typedef ModelBasedLocalizer::ModelInput ModelInput;
typedef ModelBasedLocalizer::AccelInput AccelInput;
using frc971::control_loops::Pose;
using frc971::control_loops::drivetrain::DrivetrainConfig;
using frc971::control_loops::drivetrain::LocalizerControl;
using frc971::vision::calibration::CameraCalibrationT;
using frc971::vision::calibration::TransformationMatrixT;
using y2022::vision::TargetEstimate;
using y2022::vision::TargetEstimateT;
namespace {
constexpr size_t kX = ModelBasedLocalizer::kX;
constexpr size_t kY = ModelBasedLocalizer::kY;
constexpr size_t kTheta = ModelBasedLocalizer::kTheta;
constexpr size_t kVelocityX = ModelBasedLocalizer::kVelocityX;
constexpr size_t kVelocityY = ModelBasedLocalizer::kVelocityY;
constexpr size_t kAccelX = ModelBasedLocalizer::kAccelX;
constexpr size_t kAccelY = ModelBasedLocalizer::kAccelY;
constexpr size_t kThetaRate = ModelBasedLocalizer::kThetaRate;
constexpr size_t kLeftEncoder = ModelBasedLocalizer::kLeftEncoder;
constexpr size_t kLeftVelocity = ModelBasedLocalizer::kLeftVelocity;
constexpr size_t kLeftVoltageError = ModelBasedLocalizer::kLeftVoltageError;
constexpr size_t kRightEncoder = ModelBasedLocalizer::kRightEncoder;
constexpr size_t kRightVelocity = ModelBasedLocalizer::kRightVelocity;
constexpr size_t kRightVoltageError = ModelBasedLocalizer::kRightVoltageError;
constexpr size_t kLeftVoltage = ModelBasedLocalizer::kLeftVoltage;
constexpr size_t kRightVoltage = ModelBasedLocalizer::kRightVoltage;
Eigen::Matrix<double, 4, 4> TurretRobotTransformation() {
Eigen::Matrix<double, 4, 4> H;
H.setIdentity();
H.block<3, 1>(0, 3) << 1, 1.1, 0.9;
return H;
}
// Provides the location of the camera on the turret.
Eigen::Matrix<double, 4, 4> CameraTurretTransformation() {
Eigen::Matrix<double, 4, 4> H;
H.setIdentity();
H.block<3, 1>(0, 3) << 0.1, 0, 0;
H.block<3, 3>(0, 0) << 0, 0, 1, -1, 0, 0, 0, -1, 0;
// Introduce a bit of pitch to make sure that we're exercising all the code.
H.block<3, 3>(0, 0) =
Eigen::AngleAxis<double>(0.1, Eigen::Vector3d::UnitY()) *
H.block<3, 3>(0, 0);
return H;
}
// Copies an Eigen matrix into a row-major vector of the data.
std::vector<float> MatrixToVector(const Eigen::Matrix<double, 4, 4> &H) {
std::vector<float> data;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
data.push_back(H(row, col));
}
}
return data;
}
DrivetrainConfig<double> GetTest2022DrivetrainConfig() {
DrivetrainConfig<double> config =
y2022::control_loops::drivetrain::GetDrivetrainConfig();
config.is_simulated = true;
return config;
}
} // namespace
class LocalizerTest : public ::testing::Test {
protected:
LocalizerTest()
: dt_config_(GetTest2022DrivetrainConfig()), localizer_(dt_config_) {
localizer_.set_longitudinal_offset(0.0);
}
ModelState CallDiffModel(const ModelState &state, const ModelInput &U) {
return localizer_.DiffModel(state, U);
}
AccelState CallDiffAccel(const AccelState &state, const AccelInput &U) {
return localizer_.DiffAccel(state, U);
}
const control_loops::drivetrain::DrivetrainConfig<double> dt_config_;
ModelBasedLocalizer localizer_;
};
TEST_F(LocalizerTest, AccelIntegrationTest) {
AccelState state;
state.setZero();
AccelInput input;
input.setZero();
EXPECT_EQ(0.0, CallDiffAccel(state, input).norm());
// Non-zero x/y/theta states should still result in a zero derivative.
state(kX) = 1.0;
state(kY) = 1.0;
state(kTheta) = 1.0;
EXPECT_EQ(0.0, CallDiffAccel(state, input).norm());
state.setZero();
state(kVelocityX) = 1.0;
state(kVelocityY) = 2.0;
EXPECT_EQ((AccelState() << 1.0, 2.0, 0.0, 0.0, 0.0).finished(),
CallDiffAccel(state, input));
// Derivatives should be independent of theta.
state(kTheta) = M_PI / 2.0;
EXPECT_EQ((AccelState() << 1.0, 2.0, 0.0, 0.0, 0.0).finished(),
CallDiffAccel(state, input));
state.setZero();
input(kAccelX) = 1.0;
input(kAccelY) = 2.0;
input(kThetaRate) = 3.0;
EXPECT_EQ((AccelState() << 0.0, 0.0, 3.0, 1.0, 2.0).finished(),
CallDiffAccel(state, input));
state(kTheta) = M_PI / 2.0;
EXPECT_EQ((AccelState() << 0.0, 0.0, 3.0, 1.0, 2.0).finished(),
CallDiffAccel(state, input));
}
TEST_F(LocalizerTest, ModelIntegrationTest) {
ModelState state;
state.setZero();
ModelInput input;
input.setZero();
ModelState diff;
EXPECT_EQ(0.0, CallDiffModel(state, input).norm());
// Non-zero x/y/theta/encoder states should still result in a zero derivative.
state(kX) = 1.0;
state(kY) = 1.0;
state(kTheta) = 1.0;
state(kLeftEncoder) = 1.0;
state(kRightEncoder) = 1.0;
EXPECT_EQ(0.0, CallDiffModel(state, input).norm());
state.setZero();
state(kLeftVelocity) = 1.0;
state(kRightVelocity) = 1.0;
diff = CallDiffModel(state, input);
const ModelState mask_velocities =
(ModelState() << 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0).finished();
EXPECT_EQ(
(ModelState() << 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0).finished(),
diff.cwiseProduct(mask_velocities));
EXPECT_EQ(diff(kLeftVelocity), diff(kRightVelocity));
EXPECT_GT(0.0, diff(kLeftVelocity));
state(kTheta) = M_PI / 2.0;
diff = CallDiffModel(state, input);
EXPECT_NEAR(0.0,
((ModelState() << 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
.finished() -
diff.cwiseProduct(mask_velocities))
.norm(),
1e-12);
EXPECT_EQ(diff(kLeftVelocity), diff(kRightVelocity));
EXPECT_GT(0.0, diff(kLeftVelocity));
state.setZero();
state(kLeftVelocity) = -1.0;
state(kRightVelocity) = 1.0;
diff = CallDiffModel(state, input);
EXPECT_EQ((ModelState() << 0.0, 0.0, 1.0 / dt_config_.robot_radius, -1.0, 0.0,
0.0, 1.0, 0.0, 0.0)
.finished(),
diff.cwiseProduct(mask_velocities));
EXPECT_EQ(-diff(kLeftVelocity), diff(kRightVelocity));
EXPECT_LT(0.0, diff(kLeftVelocity));
state.setZero();
input(kLeftVoltage) = 5.0;
input(kRightVoltage) = 6.0;
diff = CallDiffModel(state, input);
EXPECT_EQ(0, diff(kX));
EXPECT_EQ(0, diff(kY));
EXPECT_EQ(0, diff(kTheta));
EXPECT_EQ(0, diff(kLeftEncoder));
EXPECT_EQ(0, diff(kRightEncoder));
EXPECT_EQ(0, diff(kLeftVoltageError));
EXPECT_EQ(0, diff(kRightVoltageError));
EXPECT_LT(0, diff(kLeftVelocity));
EXPECT_LT(0, diff(kRightVelocity));
EXPECT_LT(diff(kLeftVelocity), diff(kRightVelocity));
state.setZero();
state(kLeftVoltageError) = -1.0;
state(kRightVoltageError) = -2.0;
input(kLeftVoltage) = 1.0;
input(kRightVoltage) = 2.0;
EXPECT_EQ(ModelState::Zero(), CallDiffModel(state, input));
}
// Test that the HandleReset does indeed reset the state of the localizer.
TEST_F(LocalizerTest, LocalizerReset) {
aos::monotonic_clock::time_point t = aos::monotonic_clock::epoch();
localizer_.HandleReset(t, {1.0, 2.0, 3.0});
EXPECT_EQ((Eigen::Vector3d{1.0, 2.0, 3.0}), localizer_.xytheta());
localizer_.HandleReset(t, {4.0, 5.0, 6.0});
EXPECT_EQ((Eigen::Vector3d{4.0, 5.0, 6.0}), localizer_.xytheta());
}
// Test that if we are moving only by accelerometer readings (and just assuming
// zero voltage/encoders) that we initially don't believe it but then latch into
// following the accelerometer.
// Note: this test is somewhat sensitive to the exact tuning values used for the
// filter.
TEST_F(LocalizerTest, AccelOnly) {
const aos::monotonic_clock::time_point start = aos::monotonic_clock::epoch();
const std::chrono::microseconds kDt{500};
aos::monotonic_clock::time_point t = start - std::chrono::milliseconds(1000);
Eigen::Vector3d gyro{0.0, 0.0, 0.0};
const Eigen::Vector2d encoders{0.0, 0.0};
const Eigen::Vector2d voltages{0.0, 0.0};
Eigen::Vector3d accel{5.0, 2.0, 9.80665};
Eigen::Vector3d accel_gs =
dt_config_.imu_transform.inverse() * accel / 9.80665;
while (t < start) {
// Spin to fill up the buffer.
localizer_.HandleImu(t, gyro, Eigen::Vector3d::UnitZ(), encoders, voltages);
t += kDt;
}
while (t < start + std::chrono::milliseconds(100)) {
localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages);
EXPECT_EQ(Eigen::Vector3d::Zero(), localizer_.xytheta());
t += kDt;
}
while (t < start + std::chrono::milliseconds(500)) {
// Too lazy to hard-code when the transition happens.
localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages);
t += kDt;
}
while (t < start + std::chrono::milliseconds(1000)) {
SCOPED_TRACE(t);
localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages);
const Eigen::Vector3d xytheta = localizer_.xytheta();
t += kDt;
EXPECT_NEAR(
0.5 * accel(0) * std::pow(aos::time::DurationInSeconds(t - start), 2),
xytheta(0), 1e-4);
EXPECT_NEAR(
0.5 * accel(1) * std::pow(aos::time::DurationInSeconds(t - start), 2),
xytheta(1), 1e-4);
EXPECT_EQ(0.0, xytheta(2));
}
ASSERT_NEAR(accel(0), localizer_.accel_state()(kVelocityX), 1e-10);
ASSERT_NEAR(accel(1), localizer_.accel_state()(kVelocityY), 1e-10);
// Start going in a cirlce, and confirm that we
// handle things correctly. We rotate the accelerometer readings by 90 degrees
// and then leave them constant, which should make it look like we are going
// around in a circle.
accel = Eigen::Vector3d{-accel(1), accel(0), 9.80665};
accel_gs = dt_config_.imu_transform.inverse() * accel / 9.80665;
// v^2 / r = a
// w * r = v
// v^2 / v * w = a
// w = a / v
const double omega = accel.topRows<2>().norm() /
std::hypot(localizer_.accel_state()(kVelocityX),
localizer_.accel_state()(kVelocityY));
gyro << 0.0, 0.0, omega;
// Due to the magic of math, omega works out to be 1.0 after having run at the
// acceleration for one second.
ASSERT_NEAR(1.0, omega, 1e-10);
// Yes, we could save some operations here, but let's be at least somewhat
// clear about what we're doing...
const double radius = accel.topRows<2>().norm() / (omega * omega);
const Eigen::Vector2d center = localizer_.xytheta().topRows<2>() +
accel.topRows<2>().normalized() * radius;
const double initial_theta = std::atan2(-accel(1), -accel(0));
std::chrono::microseconds one_revolution_time(
static_cast<int>(2 * M_PI / omega * 1e6));
aos::monotonic_clock::time_point circle_start = t;
while (t < circle_start + one_revolution_time) {
SCOPED_TRACE(t);
localizer_.HandleImu(t, gyro, accel_gs, encoders, voltages);
t += kDt;
const double t_circle = aos::time::DurationInSeconds(t - circle_start);
ASSERT_NEAR(t_circle * omega, localizer_.xytheta()(2), 1e-5);
const double theta_circle = t_circle * omega + initial_theta;
const Eigen::Vector2d offset =
radius *
Eigen::Vector2d{std::cos(theta_circle), std::sin(theta_circle)};
const Eigen::Vector2d expected = center + offset;
const Eigen::Vector2d estimated = localizer_.xytheta().topRows<2>();
const Eigen::Vector2d implied_offset = estimated - center;
const double implied_theta =
std::atan2(implied_offset.y(), implied_offset.x());
VLOG(1) << "center: " << center.transpose() << " radius " << radius
<< "\nlocalizer " << localizer_.xytheta().transpose()
<< " t_circle " << t_circle << " omega " << omega << " theta "
<< theta_circle << "\noffset " << offset.transpose()
<< "\nexpected " << expected.transpose() << "\nimplied offset "
<< implied_offset << " implied_theta " << implied_theta << "\nvel "
<< localizer_.accel_state()(kVelocityX) << ", "
<< localizer_.accel_state()(kVelocityY);
ASSERT_NEAR(0.0, (expected - localizer_.xytheta().topRows<2>()).norm(),
1e-2);
}
// Set accelerometer back to zero and confirm that we recover (the
// implementation decays the accelerometer speeds to zero when still, so
// should recover).
while (t <
circle_start + one_revolution_time + std::chrono::milliseconds(3000)) {
localizer_.HandleImu(t, Eigen::Vector3d::Zero(), Eigen::Vector3d::UnitZ(),
encoders, voltages);
t += kDt;
}
const Eigen::Vector3d final_pos = localizer_.xytheta();
localizer_.HandleImu(t, Eigen::Vector3d::Zero(), Eigen::Vector3d::UnitZ(),
encoders, voltages);
ASSERT_NEAR(0.0, (final_pos - localizer_.xytheta()).norm(), 1e-10);
}
using control_loops::drivetrain::Output;
class EventLoopLocalizerTest : public ::testing::Test {
protected:
EventLoopLocalizerTest()
: configuration_(aos::configuration::ReadConfig("y2022/aos_config.json")),
event_loop_factory_(&configuration_.message()),
roborio_node_(
aos::configuration::GetNode(&configuration_.message(), "roborio")),
imu_node_(
aos::configuration::GetNode(&configuration_.message(), "imu")),
camera_node_(
aos::configuration::GetNode(&configuration_.message(), "pi1")),
dt_config_(
control_loops::drivetrain::testing::GetTestDrivetrainConfig()),
localizer_event_loop_(
event_loop_factory_.MakeEventLoop("localizer", imu_node_)),
localizer_(localizer_event_loop_.get(), dt_config_),
drivetrain_plant_event_loop_(event_loop_factory_.MakeEventLoop(
"drivetrain_plant", roborio_node_)),
drivetrain_plant_imu_event_loop_(
event_loop_factory_.MakeEventLoop("drivetrain_plant", imu_node_)),
drivetrain_plant_(drivetrain_plant_event_loop_.get(),
drivetrain_plant_imu_event_loop_.get(), dt_config_,
std::chrono::microseconds(500)),
roborio_test_event_loop_(
event_loop_factory_.MakeEventLoop("test", roborio_node_)),
imu_test_event_loop_(
event_loop_factory_.MakeEventLoop("test", imu_node_)),
camera_test_event_loop_(
event_loop_factory_.MakeEventLoop("test", camera_node_)),
logger_test_event_loop_(
event_loop_factory_.GetNodeEventLoopFactory("logger")
->MakeEventLoop("test")),
output_sender_(
roborio_test_event_loop_->MakeSender<Output>("/drivetrain")),
turret_sender_(
roborio_test_event_loop_
->MakeSender<y2022::control_loops::superstructure::Status>(
"/superstructure")),
target_sender_(
camera_test_event_loop_->MakeSender<y2022::vision::TargetEstimate>(
"/camera")),
control_sender_(roborio_test_event_loop_->MakeSender<LocalizerControl>(
"/drivetrain")),
output_fetcher_(roborio_test_event_loop_->MakeFetcher<LocalizerOutput>(
"/localizer")),
status_fetcher_(
imu_test_event_loop_->MakeFetcher<LocalizerStatus>("/localizer")) {
localizer_.localizer()->set_longitudinal_offset(0.0);
{
aos::TimerHandler *timer = roborio_test_event_loop_->AddTimer([this]() {
{
auto builder = output_sender_.MakeBuilder();
auto output_builder = builder.MakeBuilder<Output>();
output_builder.add_left_voltage(output_voltages_(0));
output_builder.add_right_voltage(output_voltages_(1));
builder.CheckOk(builder.Send(output_builder.Finish()));
}
{
auto builder = turret_sender_.MakeBuilder();
auto turret_estimator_builder =
builder
.MakeBuilder<frc971::PotAndAbsoluteEncoderEstimatorState>();
turret_estimator_builder.add_position(turret_position_);
const flatbuffers::Offset<frc971::PotAndAbsoluteEncoderEstimatorState>
turret_estimator_offset = turret_estimator_builder.Finish();
auto turret_builder =
builder
.MakeBuilder<frc971::control_loops::
PotAndAbsoluteEncoderProfiledJointStatus>();
turret_builder.add_position(turret_position_);
turret_builder.add_velocity(turret_velocity_);
turret_builder.add_zeroed(true);
turret_builder.add_estimator_state(turret_estimator_offset);
const auto turret_offset = turret_builder.Finish();
auto status_builder =
builder
.MakeBuilder<y2022::control_loops::superstructure::Status>();
status_builder.add_turret(turret_offset);
builder.CheckOk(builder.Send(status_builder.Finish()));
}
});
roborio_test_event_loop_->OnRun([timer, this]() {
timer->Schedule(roborio_test_event_loop_->monotonic_now(),
std::chrono::milliseconds(5));
});
}
{
aos::TimerHandler *timer = camera_test_event_loop_->AddTimer([this]() {
if (!send_targets_) {
return;
}
const frc971::control_loops::Pose robot_pose(
{drivetrain_plant_.GetPosition().x(),
drivetrain_plant_.GetPosition().y(), 0.0},
drivetrain_plant_.state()(2, 0));
const Eigen::Matrix<double, 4, 4> H_turret_camera =
frc971::control_loops::TransformationMatrixForYaw(
turret_position_) *
CameraTurretTransformation();
const Eigen::Matrix<double, 4, 4> H_field_camera =
robot_pose.AsTransformationMatrix() * TurretRobotTransformation() *
H_turret_camera;
const Eigen::Matrix<double, 4, 4> target_transform =
Eigen::Matrix<double, 4, 4>::Identity();
const Eigen::Matrix<double, 4, 4> H_camera_target =
H_field_camera.inverse() * target_transform;
const Eigen::Matrix<double, 4, 4> H_target_camera =
H_camera_target.inverse();
std::unique_ptr<y2022::vision::TargetEstimateT> estimate(
new y2022::vision::TargetEstimateT());
estimate->distance = H_target_camera.block<2, 1>(0, 3).norm();
estimate->angle_to_target =
std::atan2(-H_camera_target(0, 3), H_camera_target(2, 3));
estimate->camera_calibration.reset(new CameraCalibrationT());
{
estimate->camera_calibration->fixed_extrinsics.reset(
new TransformationMatrixT());
TransformationMatrixT *H_robot_turret =
estimate->camera_calibration->fixed_extrinsics.get();
H_robot_turret->data = MatrixToVector(TurretRobotTransformation());
}
estimate->camera_calibration->turret_extrinsics.reset(
new TransformationMatrixT());
estimate->camera_calibration->turret_extrinsics->data =
MatrixToVector(CameraTurretTransformation());
estimate->confidence = 1.0;
auto builder = target_sender_.MakeBuilder();
builder.CheckOk(
builder.Send(TargetEstimate::Pack(*builder.fbb(), estimate.get())));
});
camera_test_event_loop_->OnRun([timer, this]() {
timer->Schedule(camera_test_event_loop_->monotonic_now(),
std::chrono::milliseconds(50));
});
}
localizer_control_send_timer_ =
roborio_test_event_loop_->AddTimer([this]() {
auto builder = control_sender_.MakeBuilder();
auto control_builder = builder.MakeBuilder<LocalizerControl>();
control_builder.add_x(localizer_control_x_);
control_builder.add_y(localizer_control_y_);
control_builder.add_theta(localizer_control_theta_);
control_builder.add_theta_uncertainty(0.01);
control_builder.add_keep_current_theta(false);
builder.CheckOk(builder.Send(control_builder.Finish()));
});
// Get things zeroed.
event_loop_factory_.RunFor(std::chrono::seconds(10));
CHECK(status_fetcher_.Fetch());
CHECK(status_fetcher_->zeroed());
if (!absl::GetFlag(FLAGS_output_folder).empty()) {
logger_event_loop_ =
event_loop_factory_.MakeEventLoop("logger", imu_node_);
logger_ = std::make_unique<aos::logger::Logger>(logger_event_loop_.get());
logger_->StartLoggingOnRun(absl::GetFlag(FLAGS_output_folder));
}
}
void SendLocalizerControl(double x, double y, double theta) {
localizer_control_x_ = x;
localizer_control_y_ = y;
localizer_control_theta_ = theta;
localizer_control_send_timer_->Schedule(
roborio_test_event_loop_->monotonic_now());
}
::testing::AssertionResult IsNear(double expected, double actual,
double epsilon) {
if (std::abs(expected - actual) < epsilon) {
return ::testing::AssertionSuccess();
} else {
return ::testing::AssertionFailure()
<< "Expected " << expected << " but got " << actual
<< " with a max difference of " << epsilon
<< " and an actual difference of " << std::abs(expected - actual);
}
}
::testing::AssertionResult VerifyEstimatorAccurate(double eps) {
const Eigen::Matrix<double, 5, 1> true_state = drivetrain_plant_.state();
::testing::AssertionResult result(true);
status_fetcher_.Fetch();
if (!(result = IsNear(status_fetcher_->model_based()->x(), true_state(0),
eps))) {
return result;
}
if (!(result = IsNear(status_fetcher_->model_based()->y(), true_state(1),
eps))) {
return result;
}
if (!(result = IsNear(status_fetcher_->model_based()->theta(),
true_state(2), eps))) {
return result;
}
return result;
}
aos::FlatbufferDetachedBuffer<aos::Configuration> configuration_;
aos::SimulatedEventLoopFactory event_loop_factory_;
const aos::Node *const roborio_node_;
const aos::Node *const imu_node_;
const aos::Node *const camera_node_;
const control_loops::drivetrain::DrivetrainConfig<double> dt_config_;
std::unique_ptr<aos::EventLoop> localizer_event_loop_;
EventLoopLocalizer localizer_;
std::unique_ptr<aos::EventLoop> drivetrain_plant_event_loop_;
std::unique_ptr<aos::EventLoop> drivetrain_plant_imu_event_loop_;
control_loops::drivetrain::testing::DrivetrainSimulation drivetrain_plant_;
std::unique_ptr<aos::EventLoop> roborio_test_event_loop_;
std::unique_ptr<aos::EventLoop> imu_test_event_loop_;
std::unique_ptr<aos::EventLoop> camera_test_event_loop_;
std::unique_ptr<aos::EventLoop> logger_test_event_loop_;
aos::Sender<Output> output_sender_;
aos::Sender<y2022::control_loops::superstructure::Status> turret_sender_;
aos::Sender<y2022::vision::TargetEstimate> target_sender_;
aos::Sender<LocalizerControl> control_sender_;
aos::Fetcher<LocalizerOutput> output_fetcher_;
aos::Fetcher<LocalizerStatus> status_fetcher_;
Eigen::Vector2d output_voltages_ = Eigen::Vector2d::Zero();
aos::TimerHandler *localizer_control_send_timer_;
bool send_targets_ = false;
double turret_position_ = 0.0;
double turret_velocity_ = 0.0;
double localizer_control_x_ = 0.0;
double localizer_control_y_ = 0.0;
double localizer_control_theta_ = 0.0;
std::unique_ptr<aos::EventLoop> logger_event_loop_;
std::unique_ptr<aos::logger::Logger> logger_;
};
TEST_F(EventLoopLocalizerTest, Nominal) {
output_voltages_ << 1.0, 1.0;
event_loop_factory_.RunFor(std::chrono::seconds(2));
drivetrain_plant_.set_accel_sin_magnitude(0.01);
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
// The two can be different because they may've been sent at different times.
ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-6);
ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-6);
ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(),
1e-6);
ASSERT_LT(0.1, output_fetcher_->x());
ASSERT_NEAR(0.0, output_fetcher_->y(), 1e-10);
ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-10);
ASSERT_TRUE(status_fetcher_->has_model_based());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
ASSERT_LT(0.1, status_fetcher_->model_based()->accel_state()->velocity_x());
ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_y(),
1e-10);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(),
1e-1);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(),
1e-1);
}
TEST_F(EventLoopLocalizerTest, Reverse) {
output_voltages_ << -4.0, -4.0;
drivetrain_plant_.set_accel_sin_magnitude(0.01);
event_loop_factory_.RunFor(std::chrono::seconds(2));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
// The two can be different because they may've been sent at different times.
ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-6);
ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-6);
ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(),
1e-6);
ASSERT_GT(-0.1, output_fetcher_->x());
ASSERT_NEAR(0.0, output_fetcher_->y(), 1e-10);
ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-10);
ASSERT_TRUE(status_fetcher_->has_model_based());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
ASSERT_GT(-0.1, status_fetcher_->model_based()->accel_state()->velocity_x());
ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_y(),
1e-10);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(),
1e-1);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(),
1e-1);
}
TEST_F(EventLoopLocalizerTest, SpinInPlace) {
output_voltages_ << 4.0, -4.0;
event_loop_factory_.RunFor(std::chrono::seconds(2));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
// The two can be different because they may've been sent at different times.
ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-6);
ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-6);
ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(),
1e-1);
ASSERT_NEAR(0.0, output_fetcher_->x(), 1e-10);
ASSERT_NEAR(0.0, output_fetcher_->y(), 1e-10);
ASSERT_LT(0.1, std::abs(output_fetcher_->theta()));
ASSERT_TRUE(status_fetcher_->has_model_based());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_x(),
1e-10);
ASSERT_NEAR(0.0, status_fetcher_->model_based()->accel_state()->velocity_y(),
1e-10);
ASSERT_NEAR(-status_fetcher_->model_based()->model_state()->left_velocity(),
status_fetcher_->model_based()->model_state()->right_velocity(),
1e-3);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(),
1e-1);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(),
1e-1);
ASSERT_NEAR(0.0, status_fetcher_->model_based()->residual(), 1e-3);
}
TEST_F(EventLoopLocalizerTest, Curve) {
output_voltages_ << 2.0, 4.0;
event_loop_factory_.RunFor(std::chrono::seconds(2));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
// The two can be different because they may've been sent at different times.
ASSERT_NEAR(output_fetcher_->x(), status_fetcher_->model_based()->x(), 1e-2);
ASSERT_NEAR(output_fetcher_->y(), status_fetcher_->model_based()->y(), 1e-2);
ASSERT_NEAR(output_fetcher_->theta(), status_fetcher_->model_based()->theta(),
1e-1);
ASSERT_LT(0.1, output_fetcher_->x());
ASSERT_LT(0.1, output_fetcher_->y());
ASSERT_LT(0.1, std::abs(output_fetcher_->theta()));
ASSERT_TRUE(status_fetcher_->has_model_based());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
ASSERT_LT(0.0, status_fetcher_->model_based()->accel_state()->velocity_x());
ASSERT_LT(0.0, status_fetcher_->model_based()->accel_state()->velocity_y());
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->left_voltage_error(),
1e-1);
ASSERT_NEAR(
0.0, status_fetcher_->model_based()->model_state()->right_voltage_error(),
1e-1);
ASSERT_NEAR(0.0, status_fetcher_->model_based()->residual(), 1e-1)
<< aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true});
}
// Tests that small amounts of voltage error are handled by the model-based
// half of the localizer.
TEST_F(EventLoopLocalizerTest, VoltageError) {
output_voltages_ << 0.0, 0.0;
drivetrain_plant_.set_left_voltage_offset(2.0);
drivetrain_plant_.set_right_voltage_offset(2.0);
drivetrain_plant_.set_accel_sin_magnitude(0.01);
event_loop_factory_.RunFor(std::chrono::seconds(2));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
// Should still be using the model, but have a non-trivial residual.
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
ASSERT_LT(0.02, status_fetcher_->model_based()->residual())
<< aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true});
// Afer running for a while, voltage error terms should converge and result in
// low residuals.
event_loop_factory_.RunFor(std::chrono::seconds(10));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
ASSERT_NEAR(
2.0, status_fetcher_->model_based()->model_state()->left_voltage_error(),
0.1)
<< aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true});
ASSERT_NEAR(
2.0, status_fetcher_->model_based()->model_state()->right_voltage_error(),
0.1)
<< aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true});
ASSERT_GT(0.02, status_fetcher_->model_based()->residual())
<< aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true});
}
// Tests that large amounts of voltage error force us into the
// acceleration-based localizer.
TEST_F(EventLoopLocalizerTest, HighVoltageError) {
output_voltages_ << 0.0, 0.0;
drivetrain_plant_.set_left_voltage_offset(200.0);
drivetrain_plant_.set_right_voltage_offset(200.0);
drivetrain_plant_.set_accel_sin_magnitude(0.01);
event_loop_factory_.RunFor(std::chrono::seconds(2));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
// Should still be using the model, but have a non-trivial residual.
ASSERT_FALSE(status_fetcher_->model_based()->using_model());
ASSERT_LT(0.1, status_fetcher_->model_based()->residual())
<< aos::FlatbufferToJson(status_fetcher_.get(), {.multi_line = true});
ASSERT_NEAR(drivetrain_plant_.state()(0), status_fetcher_->model_based()->x(),
1.0);
ASSERT_NEAR(drivetrain_plant_.state()(1), status_fetcher_->model_based()->y(),
1e-6);
}
// Tests that image corrections in the nominal case (no errors) causes no
// issues.
TEST_F(EventLoopLocalizerTest, NominalImageCorrections) {
output_voltages_ << 3.0, 2.0;
drivetrain_plant_.set_accel_sin_magnitude(0.01);
send_targets_ = true;
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(status_fetcher_.Fetch());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
EXPECT_TRUE(VerifyEstimatorAccurate(1e-1));
ASSERT_TRUE(status_fetcher_->model_based()->has_statistics());
ASSERT_LT(10,
status_fetcher_->model_based()->statistics()->total_candidates());
ASSERT_EQ(status_fetcher_->model_based()->statistics()->total_candidates(),
status_fetcher_->model_based()->statistics()->total_accepted());
}
// Tests that image corrections when there is an error at the start results
// in us actually getting corrected over time.
TEST_F(EventLoopLocalizerTest, ImageCorrections) {
output_voltages_ << 0.0, 0.0;
drivetrain_plant_.mutable_state()->x() = 2.0;
drivetrain_plant_.mutable_state()->y() = 2.0;
SendLocalizerControl(5.0, 3.0, 0.0);
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(output_fetcher_.Fetch());
ASSERT_NEAR(5.0, output_fetcher_->x(), 1e-5);
ASSERT_NEAR(3.0, output_fetcher_->y(), 1e-5);
ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-5);
send_targets_ = true;
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(status_fetcher_.Fetch());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
EXPECT_TRUE(VerifyEstimatorAccurate(5e-1));
ASSERT_TRUE(status_fetcher_->model_based()->has_statistics());
ASSERT_LT(10,
status_fetcher_->model_based()->statistics()->total_candidates());
ASSERT_EQ(status_fetcher_->model_based()->statistics()->total_candidates(),
status_fetcher_->model_based()->statistics()->total_accepted());
}
// Tests that image corrections are ignored when the turret moves too fast.
TEST_F(EventLoopLocalizerTest, ImageCorrectionsTurretTooFast) {
output_voltages_ << 0.0, 0.0;
drivetrain_plant_.mutable_state()->x() = 2.0;
drivetrain_plant_.mutable_state()->y() = 2.0;
SendLocalizerControl(5.0, 3.0, 0.0);
turret_velocity_ = 10.0;
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(output_fetcher_.Fetch());
ASSERT_NEAR(5.0, output_fetcher_->x(), 1e-5);
ASSERT_NEAR(3.0, output_fetcher_->y(), 1e-5);
ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-5);
send_targets_ = true;
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(status_fetcher_.Fetch());
CHECK(output_fetcher_.Fetch());
ASSERT_NEAR(5.0, output_fetcher_->x(), 1e-5);
ASSERT_NEAR(3.0, output_fetcher_->y(), 1e-5);
ASSERT_NEAR(0.0, output_fetcher_->theta(), 1e-5);
ASSERT_TRUE(status_fetcher_->model_based()->has_statistics());
ASSERT_LT(10,
status_fetcher_->model_based()->statistics()->total_candidates());
ASSERT_EQ(0, status_fetcher_->model_based()->statistics()->total_accepted());
ASSERT_EQ(status_fetcher_->model_based()->statistics()->total_candidates(),
status_fetcher_->model_based()
->statistics()
->rejection_reason_count()
->Get(static_cast<int>(RejectionReason::TURRET_TOO_FAST)));
// We expect one more rejection to occur due to the time it takes all the
// information to propagate.
const int rejected_count =
status_fetcher_->model_based()->statistics()->total_candidates() + 1;
// Check that when we go back to being still we do successfully converge.
turret_velocity_ = 0.0;
turret_position_ = 1.0;
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(status_fetcher_.Fetch());
ASSERT_TRUE(status_fetcher_->model_based()->using_model());
EXPECT_TRUE(VerifyEstimatorAccurate(5e-1));
ASSERT_TRUE(status_fetcher_->model_based()->has_statistics());
ASSERT_EQ(status_fetcher_->model_based()->statistics()->total_candidates(),
rejected_count +
status_fetcher_->model_based()->statistics()->total_accepted());
}
// Tests that image corrections when we are in accel mode works.
TEST_F(EventLoopLocalizerTest, ImageCorrectionsInAccel) {
output_voltages_ << 0.0, 0.0;
drivetrain_plant_.set_left_voltage_offset(200.0);
drivetrain_plant_.set_right_voltage_offset(200.0);
drivetrain_plant_.set_accel_sin_magnitude(0.01);
drivetrain_plant_.mutable_state()->x() = 2.0;
drivetrain_plant_.mutable_state()->y() = 2.0;
SendLocalizerControl(6.0, 3.0, 0.0);
event_loop_factory_.RunFor(std::chrono::seconds(1));
CHECK(output_fetcher_.Fetch());
CHECK(status_fetcher_.Fetch());
ASSERT_FALSE(status_fetcher_->model_based()->using_model());
EXPECT_FALSE(VerifyEstimatorAccurate(3.0));
send_targets_ = true;
event_loop_factory_.RunFor(std::chrono::seconds(4));
CHECK(status_fetcher_.Fetch());
ASSERT_FALSE(status_fetcher_->model_based()->using_model());
EXPECT_TRUE(VerifyEstimatorAccurate(3.0));
// y should be noticeably more accurate than x, since we are just driving
// straight.
ASSERT_NEAR(drivetrain_plant_.state()(1), status_fetcher_->model_based()->y(),
0.1);
ASSERT_TRUE(status_fetcher_->model_based()->has_statistics());
ASSERT_LT(10,
status_fetcher_->model_based()->statistics()->total_candidates());
ASSERT_EQ(status_fetcher_->model_based()->statistics()->total_candidates(),
status_fetcher_->model_based()->statistics()->total_accepted());
}
TEST_F(EventLoopLocalizerTest, LedOutputs) {
send_targets_ = true;
event_loop_factory_.RunFor(std::chrono::milliseconds(10));
CHECK(output_fetcher_.Fetch());
EXPECT_EQ(output_fetcher_->led_outputs()->size(),
ModelBasedLocalizer::kNumPis);
for (LedOutput led_output : *output_fetcher_->led_outputs()) {
EXPECT_EQ(led_output, LedOutput::ON);
}
}
} // namespace frc971::controls::testing