| #include "frc971/vision/vision_util_lib.h" |
| |
| #include <numeric> |
| |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "absl/strings/str_format.h" |
| |
| #include "aos/util/math.h" |
| #include "frc971/control_loops/quaternion_utils.h" |
| |
| namespace frc971::vision { |
| |
| std::optional<cv::Mat> CameraExtrinsics( |
| const frc971::vision::calibration::CameraCalibration *camera_calibration) { |
| CHECK(!camera_calibration->has_turret_extrinsics()) |
| << "Turret not currently supported"; |
| |
| if (!camera_calibration->has_fixed_extrinsics()) { |
| return std::nullopt; |
| } |
| CHECK(camera_calibration->fixed_extrinsics()->has_data()); |
| cv::Mat result(4, 4, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration->fixed_extrinsics()->data()->data()))); |
| result.convertTo(result, CV_64F); |
| CHECK_EQ(result.total(), |
| camera_calibration->fixed_extrinsics()->data()->size()); |
| |
| return result; |
| } |
| |
| cv::Mat CameraIntrinsics( |
| const frc971::vision::calibration::CameraCalibration *camera_calibration) { |
| cv::Mat result(3, 3, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration->intrinsics()->data()))); |
| result.convertTo(result, CV_64F); |
| CHECK_EQ(result.total(), camera_calibration->intrinsics()->size()); |
| |
| return result; |
| } |
| |
| cv::Mat CameraDistCoeffs( |
| const frc971::vision::calibration::CameraCalibration *camera_calibration) { |
| const cv::Mat result(5, 1, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration->dist_coeffs()->data()))); |
| CHECK_EQ(result.total(), camera_calibration->dist_coeffs()->size()); |
| return result; |
| } |
| |
| std::optional<uint16_t> CameraNumberFromChannel(std::string camera_channel) { |
| if (camera_channel.find("/camera") == std::string::npos) { |
| return std::nullopt; |
| } |
| // If the string doesn't end in /camera#, return nullopt |
| uint16_t cam_len = std::string("/camera").length(); |
| if (camera_channel.length() != camera_channel.find("/camera") + cam_len + 1) { |
| return std::nullopt; |
| } |
| |
| uint16_t camera_number = std::stoi( |
| camera_channel.substr(camera_channel.find("/camera") + cam_len, 1)); |
| return camera_number; |
| } |
| |
| std::string CalibrationFilename(std::string calibration_folder, |
| std::string node_name, int team_number, |
| int camera_number, std::string camera_id, |
| std::string timestamp) { |
| // Get rid of any fractional seconds-- we shouldn't need those and it makes |
| // the string unnecessarily longer |
| timestamp = timestamp.substr(0, timestamp.find(".")); |
| std::string calibration_filename = |
| calibration_folder + |
| absl::StrFormat("/calibration_%s-%d-%d_cam-%s_%s.json", node_name.c_str(), |
| team_number, camera_number, camera_id.c_str(), |
| timestamp.c_str()); |
| return calibration_filename; |
| } |
| |
| Eigen::Affine3d PoseUtils::Pose3dToAffine3d( |
| const ceres::examples::Pose3d &pose3d) { |
| Eigen::Affine3d H_world_pose = |
| Eigen::Translation3d(pose3d.p(0), pose3d.p(1), pose3d.p(2)) * pose3d.q; |
| return H_world_pose; |
| } |
| |
| ceres::examples::Pose3d PoseUtils::Affine3dToPose3d(const Eigen::Affine3d &H) { |
| return ceres::examples::Pose3d{.p = H.translation(), |
| .q = Eigen::Quaterniond(H.rotation())}; |
| } |
| |
| ceres::examples::Pose3d PoseUtils::ComputeRelativePose( |
| const ceres::examples::Pose3d &pose_1, |
| const ceres::examples::Pose3d &pose_2) { |
| Eigen::Affine3d H_world_1 = Pose3dToAffine3d(pose_1); |
| Eigen::Affine3d H_world_2 = Pose3dToAffine3d(pose_2); |
| |
| // Get the location of 2 in the 1 frame |
| Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2; |
| return Affine3dToPose3d(H_1_2); |
| } |
| |
| ceres::examples::Pose3d PoseUtils::ComputeOffsetPose( |
| const ceres::examples::Pose3d &pose_1, |
| const ceres::examples::Pose3d &pose_2_relative) { |
| auto H_world_1 = Pose3dToAffine3d(pose_1); |
| auto H_1_2 = Pose3dToAffine3d(pose_2_relative); |
| auto H_world_2 = H_world_1 * H_1_2; |
| |
| return Affine3dToPose3d(H_world_2); |
| } |
| |
| Eigen::Quaterniond PoseUtils::EulerAnglesToQuaternion( |
| const Eigen::Vector3d &rpy) { |
| Eigen::AngleAxisd roll_angle(rpy.x(), Eigen::Vector3d::UnitX()); |
| Eigen::AngleAxisd pitch_angle(rpy.y(), Eigen::Vector3d::UnitY()); |
| Eigen::AngleAxisd yaw_angle(rpy.z(), Eigen::Vector3d::UnitZ()); |
| |
| return yaw_angle * pitch_angle * roll_angle; |
| } |
| |
| Eigen::Vector3d PoseUtils::QuaternionToEulerAngles( |
| const Eigen::Quaterniond &q) { |
| return RotationMatrixToEulerAngles(q.toRotationMatrix()); |
| } |
| |
| Eigen::Vector3d PoseUtils::RotationMatrixToEulerAngles( |
| const Eigen::Matrix3d &R) { |
| double roll = aos::math::NormalizeAngle(std::atan2(R(2, 1), R(2, 2))); |
| double pitch = aos::math::NormalizeAngle(-std::asin(R(2, 0))); |
| double yaw = aos::math::NormalizeAngle(std::atan2(R(1, 0), R(0, 0))); |
| |
| return Eigen::Vector3d(roll, pitch, yaw); |
| } |
| |
| // Compute the average pose given a list of translations (as |
| // Eigen::Vector3d's) and rotations (as Eigen::Vector4d quaternions) |
| // Returned as an Eigen::Affine3d pose |
| // Also, compute the variance of each of these list of vectors |
| |
| // NOTE: variance for rotations can get dicey, so we've cheated a |
| // little by doing two things: |
| // 1) Computing variance relative to the mean, so that we're doing |
| // this on small angles and don't have to deal with wrapping at |
| // 180/360 degrees |
| // 2) Returning the variance in Euler angles, since I'm not sure of a |
| // better way to represent variance for rotations. (Maybe log of |
| // rotations, in the Lie algebra?) |
| |
| Eigen::Affine3d ComputeAveragePose( |
| std::vector<Eigen::Vector3d> &translation_list, |
| std::vector<Eigen::Vector4d> &rotation_list, |
| Eigen::Vector3d *translation_variance, Eigen::Vector3d *rotation_variance) { |
| Eigen::Vector3d avg_translation = |
| std::accumulate(translation_list.begin(), translation_list.end(), |
| Eigen::Vector3d{0, 0, 0}) / |
| translation_list.size(); |
| |
| Eigen::Quaterniond avg_rotation_q( |
| frc971::controls::QuaternionMean(rotation_list)); |
| Eigen::Affine3d average_pose = |
| Eigen::Translation3d(avg_translation) * avg_rotation_q; |
| |
| CHECK_EQ(translation_list.size(), rotation_list.size()); |
| if (translation_variance != nullptr) { |
| CHECK(rotation_variance != nullptr); |
| Eigen::Vector3d translation_variance_sum(0.0, 0.0, 0.0); |
| Eigen::Vector3d rotation_variance_sum(0.0, 0.0, 0.0); |
| for (uint i = 0; i < translation_list.size(); i++) { |
| Eigen::Quaterniond rotation_q(rotation_list[i]); |
| Eigen::Affine3d pose = |
| Eigen::Translation3d(translation_list[i]) * rotation_q; |
| Eigen::Affine3d delta_pose = average_pose * pose.inverse(); |
| translation_variance_sum = |
| translation_variance_sum + |
| Eigen::Vector3d(delta_pose.translation().array().square()); |
| rotation_variance_sum = |
| rotation_variance_sum + |
| Eigen::Vector3d(PoseUtils::RotationMatrixToEulerAngles( |
| delta_pose.rotation().matrix()) |
| .array() |
| .square()); |
| } |
| // Compute the variance on the translations (in m) |
| if (translation_variance != nullptr) { |
| CHECK(translation_list.size() > 1) |
| << "Have to have at least two translations to compute variance"; |
| *translation_variance = |
| translation_variance_sum / translation_list.size(); |
| } |
| |
| // Compute the variance on the rotations (in euler angles, radians), |
| // referenced to the mean, to remove issues with Euler angles by |
| // keeping them near zero |
| if (rotation_variance != nullptr) { |
| CHECK(rotation_list.size() > 1) |
| << "Have to have at least two rotations to compute variance"; |
| *rotation_variance = rotation_variance_sum / rotation_list.size(); |
| } |
| } |
| return average_pose; |
| } |
| |
| // Helper function to compute average pose when supplied with list |
| // of Eigen::Affine3d's |
| Eigen::Affine3d ComputeAveragePose(std::vector<Eigen::Affine3d> &pose_list, |
| Eigen::Vector3d *translation_variance, |
| Eigen::Vector3d *rotation_variance) { |
| std::vector<Eigen::Vector3d> translation_list; |
| std::vector<Eigen::Vector4d> rotation_list; |
| |
| for (Eigen::Affine3d pose : pose_list) { |
| translation_list.push_back(pose.translation()); |
| Eigen::Quaterniond quat(pose.rotation().matrix()); |
| rotation_list.push_back( |
| Eigen::Vector4d(quat.x(), quat.y(), quat.z(), quat.w())); |
| } |
| |
| return ComputeAveragePose(translation_list, rotation_list, |
| translation_variance, rotation_variance); |
| } |
| |
| } // namespace frc971::vision |