| #include "frc971/vision/target_mapper.h" |
| |
| #include <random> |
| |
| #include "absl/flags/declare.h" |
| #include "absl/flags/flag.h" |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "gtest/gtest.h" |
| |
| #include "aos/events/simulated_event_loop.h" |
| #include "aos/testing/path.h" |
| #include "aos/testing/random_seed.h" |
| #include "aos/util/math.h" |
| #include "vision_util_lib.h" |
| |
| ABSL_DECLARE_FLAG(int32_t, min_target_id); |
| ABSL_DECLARE_FLAG(int32_t, max_target_id); |
| |
| namespace frc971::vision { |
| using frc971::vision::PoseUtils; |
| |
| namespace { |
| constexpr double kToleranceMeters = 0.05; |
| constexpr double kToleranceRadians = 0.05; |
| // Conversions between euler angles and quaternion result in slightly-off |
| // doubles |
| constexpr double kOrientationEqTolerance = 1e-10; |
| constexpr std::chrono::milliseconds kMaxDt = std::chrono::milliseconds(3); |
| constexpr std::string_view kFieldName = "test"; |
| } // namespace |
| |
| // Angles normalized by aos::math::NormalizeAngle() |
| #define EXPECT_NORMALIZED_ANGLES_NEAR(theta1, theta2, tolerance) \ |
| { \ |
| double delta = std::abs(aos::math::DiffAngle(theta1, theta2)); \ |
| /* Have to check delta - 2pi for the case that one angle is very */ \ |
| /* close to -pi, and the other is very close to +pi */ \ |
| EXPECT_TRUE(delta < tolerance || std::abs(aos::math::DiffAngle( \ |
| delta, 2.0 * M_PI)) < tolerance); \ |
| } |
| |
| #define EXPECT_POSE_NEAR(pose1, pose2) \ |
| { \ |
| for (size_t i = 0; i < 3; i++) { \ |
| EXPECT_NEAR(pose1.p(i), pose2.p(i), kToleranceMeters); \ |
| } \ |
| auto rpy_1 = PoseUtils::QuaternionToEulerAngles(pose1.q); \ |
| auto rpy_2 = PoseUtils::QuaternionToEulerAngles(pose2.q); \ |
| for (size_t i = 0; i < 3; i++) { \ |
| SCOPED_TRACE(absl::StrFormat("rpy_1(%d) = %f, rpy_2(%d) = %f", i, \ |
| rpy_1(i), i, rpy_2(i))); \ |
| EXPECT_NORMALIZED_ANGLES_NEAR(rpy_1(i), rpy_2(i), kToleranceRadians) \ |
| } \ |
| } |
| |
| #define EXPECT_POSE_EQ(pose1, pose2) \ |
| EXPECT_EQ(pose1.p, pose2.p); \ |
| EXPECT_EQ(pose1.q, pose2.q); |
| |
| #define EXPECT_QUATERNION_NEAR(q1, q2) \ |
| EXPECT_NEAR(q1.x(), q2.x(), kOrientationEqTolerance) << q1 << " != " << q2; \ |
| EXPECT_NEAR(q1.y(), q2.y(), kOrientationEqTolerance) << q1 << " != " << q2; \ |
| EXPECT_NEAR(q1.z(), q2.z(), kOrientationEqTolerance) << q1 << " != " << q2; \ |
| EXPECT_NEAR(q1.w(), q2.w(), kOrientationEqTolerance) << q1 << " != " << q2; |
| |
| // Expects same roll, pitch, and yaw values (not equivalent rotation) |
| #define EXPECT_RPY_EQ(rpy_1, rpy_2) \ |
| { \ |
| for (size_t i = 0; i < 3; i++) { \ |
| SCOPED_TRACE(absl::StrFormat("rpy_1(%d) = %f, rpy_2(%d) = %f", i, \ |
| rpy_1(i), i, rpy_2(i))); \ |
| EXPECT_NORMALIZED_ANGLES_NEAR(rpy_1(i), rpy_2(i), \ |
| kOrientationEqTolerance) \ |
| } \ |
| } |
| |
| #define EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(roll, pitch, yaw) \ |
| { \ |
| auto rpy = Eigen::Vector3d(roll, pitch, yaw); \ |
| auto converted_rpy = PoseUtils::QuaternionToEulerAngles( \ |
| PoseUtils::EulerAnglesToQuaternion(rpy)); \ |
| EXPECT_RPY_EQ(converted_rpy, rpy); \ |
| } |
| |
| // Both confidence matrixes should have the same dimensions and be square |
| #define EXPECT_CONFIDENCE_GT(confidence1, confidence2) \ |
| { \ |
| ASSERT_EQ(confidence1.rows(), confidence2.rows()); \ |
| ASSERT_EQ(confidence1.rows(), confidence1.cols()); \ |
| ASSERT_EQ(confidence2.rows(), confidence2.cols()); \ |
| for (size_t i = 0; i < confidence1.rows(); i++) { \ |
| EXPECT_GT(confidence1(i, i), confidence2(i, i)); \ |
| } \ |
| } |
| |
| namespace { |
| ceres::examples::Pose3d Make2dPose(double x, double y, double yaw_radians) { |
| return ceres::examples::Pose3d{Eigen::Vector3d(x, y, 0.0), |
| PoseUtils::EulerAnglesToQuaternion( |
| Eigen::Vector3d(0.0, 0.0, yaw_radians))}; |
| } |
| |
| // Assumes camera and robot origin are the same |
| DataAdapter::TimestampedDetection MakeTimestampedDetection( |
| aos::distributed_clock::time_point time, Eigen::Affine3d H_robot_target, |
| TargetMapper::TargetId id, double distortion_factor = 0.001) { |
| auto target_pose = PoseUtils::Affine3dToPose3d(H_robot_target); |
| return DataAdapter::TimestampedDetection{ |
| .time = time, |
| .H_robot_target = H_robot_target, |
| .distance_from_camera = target_pose.p.norm(), |
| .distortion_factor = distortion_factor, |
| .id = id}; |
| } |
| |
| DataAdapter::TimestampedDetection MakeTimestampedDetectionForConfidence( |
| aos::distributed_clock::time_point time, TargetMapper::TargetId id, |
| double distance_from_camera, double distortion_factor) { |
| auto target_pose = ceres::examples::Pose3d{ |
| .p = Eigen::Vector3d(distance_from_camera, 0.0, 0.0), |
| .q = Eigen::Quaterniond(1.0, 0.0, 0.0, 0.0)}; |
| return DataAdapter::TimestampedDetection{ |
| .time = time, |
| .H_robot_target = PoseUtils::Pose3dToAffine3d(target_pose), |
| .distance_from_camera = target_pose.p.norm(), |
| .distortion_factor = distortion_factor, |
| .id = id}; |
| } |
| |
| bool TargetIsInView(TargetMapper::TargetPose target_detection) { |
| // And check if it is within the fov of the robot / |
| // camera, assuming camera is pointing in the |
| // positive x-direction of the robot |
| double angle_to_target = |
| atan2(target_detection.pose.p(1), target_detection.pose.p(0)); |
| |
| // Simulated camera field of view, in radians |
| constexpr double kCameraFov = M_PI_2; |
| if (std::abs(angle_to_target) <= kCameraFov / 2.0) { |
| VLOG(2) << "Found target in view, based on T = " |
| << target_detection.pose.p(0) << ", " << target_detection.pose.p(1) |
| << " with angle " << angle_to_target; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| aos::distributed_clock::time_point TimeInMs(size_t ms) { |
| return aos::distributed_clock::time_point(std::chrono::milliseconds(ms)); |
| } |
| |
| } // namespace |
| |
| TEST(DataAdapterTest, ComputeConfidence) { |
| // Check the confidence matrices. Don't check the actual values |
| // in case the constants change, just check that the confidence of contraints |
| // decreases as time period or distances from camera increase. |
| |
| constexpr size_t kIdStart = 0; |
| constexpr size_t kIdEnd = 1; |
| |
| { |
| // Vary time period |
| constexpr double kDistanceStart = 0.5; |
| constexpr double kDistanceEnd = 2.0; |
| constexpr double kDistortionFactor = 0.001; |
| |
| TargetMapper::ConfidenceMatrix last_confidence = |
| TargetMapper::ConfidenceMatrix::Zero(); |
| for (size_t dt = 0; dt < 15; dt++) { |
| TargetMapper::ConfidenceMatrix confidence = |
| DataAdapter::ComputeConfidence( |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(0), kIdStart, kDistanceStart, kDistortionFactor), |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(dt), kIdEnd, kDistanceEnd, kDistortionFactor)); |
| |
| if (dt != 0) { |
| // Confidence only decreases every 5ms (control loop period) |
| if (dt % 5 == 0) { |
| EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| } else { |
| EXPECT_EQ(last_confidence, confidence); |
| } |
| } |
| last_confidence = confidence; |
| } |
| } |
| |
| { |
| // Vary distance at start |
| constexpr int kDt = 3; |
| constexpr double kDistanceEnd = 1.5; |
| constexpr double kDistortionFactor = 0.001; |
| |
| TargetMapper::ConfidenceMatrix last_confidence = |
| TargetMapper::ConfidenceMatrix::Zero(); |
| for (double distance_start = 0.0; distance_start < 3.0; |
| distance_start += 0.5) { |
| TargetMapper::ConfidenceMatrix confidence = |
| DataAdapter::ComputeConfidence( |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(0), kIdStart, distance_start, kDistortionFactor), |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(kDt), kIdEnd, kDistanceEnd, kDistortionFactor)); |
| |
| if (distance_start != 0.0) { |
| EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| } |
| last_confidence = confidence; |
| } |
| } |
| |
| { |
| // Vary distance at end |
| constexpr int kDt = 2; |
| constexpr double kDistanceStart = 2.5; |
| constexpr double kDistortionFactor = 0.001; |
| |
| TargetMapper::ConfidenceMatrix last_confidence = |
| TargetMapper::ConfidenceMatrix::Zero(); |
| for (double distance_end = 0.0; distance_end < 3.0; distance_end += 0.5) { |
| TargetMapper::ConfidenceMatrix confidence = |
| DataAdapter::ComputeConfidence( |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(0), kIdStart, kDistanceStart, kDistortionFactor), |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(kDt), kIdEnd, distance_end, kDistortionFactor)); |
| |
| if (distance_end != 0.0) { |
| EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| } |
| last_confidence = confidence; |
| } |
| } |
| |
| { |
| // Vary distortion factor |
| constexpr int kDt = 2; |
| constexpr double kDistanceStart = 2.5; |
| constexpr double kDistanceEnd = 1.5; |
| |
| TargetMapper::ConfidenceMatrix last_confidence = |
| TargetMapper::ConfidenceMatrix::Zero(); |
| for (double distortion_factor = 0.0; distortion_factor <= 1.0; |
| distortion_factor += 0.01) { |
| TargetMapper::ConfidenceMatrix confidence = |
| DataAdapter::ComputeConfidence( |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(0), kIdStart, kDistanceStart, distortion_factor), |
| MakeTimestampedDetectionForConfidence( |
| TimeInMs(kDt), kIdEnd, kDistanceEnd, distortion_factor)); |
| |
| if (distortion_factor != 0.0) { |
| EXPECT_CONFIDENCE_GT(last_confidence, confidence); |
| } |
| last_confidence = confidence; |
| } |
| } |
| } |
| |
| TEST(DataAdapterTest, MatchTargetDetections) { |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
| {MakeTimestampedDetection( |
| TimeInMs(5), PoseUtils::Pose3dToAffine3d(Make2dPose(5.0, -5.0, 0.0)), |
| 2), |
| MakeTimestampedDetection( |
| TimeInMs(6), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(5.0, -4.0, M_PI)), 0), |
| MakeTimestampedDetection( |
| TimeInMs(10), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(3.0, -3.0, M_PI)), 1), |
| MakeTimestampedDetection( |
| TimeInMs(13), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(4.0, -7.0, M_PI_2)), 2), |
| MakeTimestampedDetection( |
| TimeInMs(14), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(4.0, -4.0, M_PI_2)), 2)}; |
| |
| auto target_constraints = |
| DataAdapter::MatchTargetDetections(timestamped_target_detections, kMaxDt); |
| |
| // The constraint between the detection at 6ms and the one at 10 ms is skipped |
| // because dt > kMaxDt. |
| // Also, the constraint between the last two detections is skipped because |
| // they are the same target |
| EXPECT_EQ(target_constraints.size(), |
| timestamped_target_detections.size() - 3); |
| |
| // Between 5ms and 6ms detections |
| EXPECT_DOUBLE_EQ(target_constraints[0].t_be.p(0), 0.0); |
| EXPECT_DOUBLE_EQ(target_constraints[0].t_be.p(1), 1.0); |
| EXPECT_QUATERNION_NEAR( |
| target_constraints[0].t_be.q, |
| PoseUtils::EulerAnglesToQuaternion(Eigen::Vector3d(0.0, 0.0, M_PI))); |
| EXPECT_EQ(target_constraints[0].id_begin, 2); |
| EXPECT_EQ(target_constraints[0].id_end, 0); |
| |
| // Between 10ms and 13ms detections |
| EXPECT_DOUBLE_EQ(target_constraints[1].t_be.p(0), -1.0); |
| EXPECT_DOUBLE_EQ(target_constraints[1].t_be.p(1), 4.0); |
| EXPECT_QUATERNION_NEAR( |
| target_constraints[1].t_be.q, |
| PoseUtils::EulerAnglesToQuaternion(Eigen::Vector3d(0.0, 0.0, -M_PI_2))); |
| EXPECT_EQ(target_constraints[1].id_begin, 1); |
| EXPECT_EQ(target_constraints[1].id_end, 2); |
| } |
| |
| TEST(TargetMapperTest, TwoTargetsOneConstraint) { |
| absl::SetFlag(&FLAGS_min_target_id, 0); |
| absl::SetFlag(&FLAGS_max_target_id, 1); |
| |
| ceres::examples::MapOfPoses target_poses; |
| target_poses[0] = Make2dPose(5.0, 0.0, M_PI); |
| target_poses[1] = Make2dPose(-5.0, 0.0, 0.0); |
| |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
| {MakeTimestampedDetection( |
| TimeInMs(5), PoseUtils::Pose3dToAffine3d(Make2dPose(3.0, 0.0, M_PI)), |
| 0), |
| MakeTimestampedDetection( |
| TimeInMs(6), PoseUtils::Pose3dToAffine3d(Make2dPose(-7.0, 0.0, 0.0)), |
| 1)}; |
| auto target_constraints = |
| DataAdapter::MatchTargetDetections(timestamped_target_detections, kMaxDt); |
| |
| frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
| mapper.Solve(kFieldName); |
| |
| ASSERT_EQ(mapper.target_poses().size(), 2); |
| EXPECT_POSE_NEAR(mapper.target_poses()[0], Make2dPose(5.0, 0.0, M_PI)); |
| EXPECT_POSE_NEAR(mapper.target_poses()[1], Make2dPose(-5.0, 0.0, 0.0)); |
| } |
| |
| TEST(TargetMapperTest, TwoTargetsTwoConstraints) { |
| absl::SetFlag(&FLAGS_min_target_id, 0); |
| absl::SetFlag(&FLAGS_max_target_id, 1); |
| |
| ceres::examples::MapOfPoses target_poses; |
| target_poses[0] = Make2dPose(5.0, 0.0, M_PI); |
| target_poses[1] = Make2dPose(-5.0, 0.0, -M_PI_2); |
| |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
| {MakeTimestampedDetection( |
| TimeInMs(5), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(6.0, 0.0, M_PI_2)), 0), |
| MakeTimestampedDetection( |
| TimeInMs(7), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(6.0, 10.0, -M_PI)), 1), |
| MakeTimestampedDetection( |
| TimeInMs(12), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(1.0, 0.0, M_PI)), 0), |
| MakeTimestampedDetection( |
| TimeInMs(13), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(-9.0, 0.0, -M_PI_2)), 1)}; |
| auto target_constraints = |
| DataAdapter::MatchTargetDetections(timestamped_target_detections, kMaxDt); |
| |
| frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
| mapper.Solve(kFieldName); |
| |
| ASSERT_EQ(mapper.target_poses().size(), 2); |
| EXPECT_POSE_NEAR(mapper.target_poses()[0], Make2dPose(5.0, 0.0, M_PI)); |
| EXPECT_POSE_NEAR(mapper.target_poses()[1], Make2dPose(-5.0, 0.0, -M_PI_2)); |
| } |
| |
| TEST(TargetMapperTest, TwoTargetsOneNoisyConstraint) { |
| absl::SetFlag(&FLAGS_min_target_id, 0); |
| absl::SetFlag(&FLAGS_max_target_id, 1); |
| |
| ceres::examples::MapOfPoses target_poses; |
| target_poses[0] = Make2dPose(5.0, 0.0, M_PI); |
| target_poses[1] = Make2dPose(-5.0, 0.0, 0.0); |
| |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections = |
| {MakeTimestampedDetection( |
| TimeInMs(5), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(3.01, 0.001, M_PI - 0.001)), |
| 0), |
| MakeTimestampedDetection( |
| TimeInMs(7), |
| PoseUtils::Pose3dToAffine3d(Make2dPose(-7.01, 0.0, 0.0)), 1)}; |
| |
| auto target_constraints = |
| DataAdapter::MatchTargetDetections(timestamped_target_detections, kMaxDt); |
| |
| frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
| mapper.Solve(kFieldName); |
| |
| ASSERT_EQ(mapper.target_poses().size(), 2); |
| EXPECT_POSE_NEAR(mapper.target_poses()[0], Make2dPose(5.0, 0.0, M_PI)); |
| EXPECT_POSE_NEAR(mapper.target_poses()[1], Make2dPose(-5.0, 0.0, 0.0)); |
| } |
| |
| class ChargedUpTargetMapperTest : public ::testing::Test { |
| public: |
| ChargedUpTargetMapperTest() : generator_(aos::testing::RandomSeed()) {} |
| |
| // Generates noisy target detection if target in camera FOV |
| std::optional<DataAdapter::TimestampedDetection> MaybeGenerateNoisyDetection( |
| const ceres::examples::Pose3d &robot_pose, |
| const TargetMapper::TargetPose &target_pose, size_t t, |
| bool force_in_view = false) { |
| TargetMapper::TargetPose target_detection = { |
| .id = target_pose.id, |
| .pose = PoseUtils::ComputeRelativePose(robot_pose, target_pose.pose)}; |
| if (force_in_view || TargetIsInView(target_detection)) { |
| // Define random generator with Gaussian |
| // distribution |
| constexpr double kMean = 0.0; |
| constexpr double kStdDev = 1.0; |
| // Can play with this to see how it impacts |
| // randomness |
| constexpr double kNoiseScalePosition = 0.01; |
| constexpr double kNoiseScaleOrientation = 0.0005; |
| std::normal_distribution<double> dist(kMean, kStdDev); |
| |
| target_detection.pose.p(0) += dist(generator_) * kNoiseScalePosition; |
| target_detection.pose.p(1) += dist(generator_) * kNoiseScalePosition; |
| target_detection.pose.p(2) += dist(generator_) * kNoiseScalePosition; |
| |
| target_detection.pose.q.w() += dist(generator_) * kNoiseScaleOrientation; |
| target_detection.pose.q.x() += dist(generator_) * kNoiseScaleOrientation; |
| target_detection.pose.q.y() += dist(generator_) * kNoiseScaleOrientation; |
| target_detection.pose.q.z() += dist(generator_) * kNoiseScaleOrientation; |
| |
| // Get most distortion factors close to zero, but have a few outliers |
| const std::vector<double> kDistortionFactorIntervals = {0.0, 0.01, 1.0}; |
| const std::vector<double> kDistortionFactorWeights = {0.9, 0.1}; |
| std::piecewise_constant_distribution<double> distortion_factor_dist( |
| kDistortionFactorIntervals.begin(), kDistortionFactorIntervals.end(), |
| kDistortionFactorWeights.begin()); |
| double distortion_factor = distortion_factor_dist(generator_); |
| |
| auto time_point = TimeInMs(t); |
| return MakeTimestampedDetection( |
| time_point, PoseUtils::Pose3dToAffine3d(target_detection.pose), |
| target_detection.id, distortion_factor); |
| } |
| |
| return std::nullopt; |
| } |
| |
| private: |
| std::default_random_engine generator_; |
| }; |
| |
| // Drive in a circle around the 2023 field, and add a bit of randomness to 3d |
| // pose detections. |
| // TODO(milind): use valgrind to debug why this test passes, but then segfaults |
| // when freeing memory. For some reason this segfault occurs only in this test, |
| // but when running the test with gdb it doesn't occur... |
| TEST_F(ChargedUpTargetMapperTest, DISABLED_FieldCircleMotion) { |
| absl::SetFlag(&FLAGS_min_target_id, 1); |
| absl::SetFlag(&FLAGS_max_target_id, 8); |
| |
| // Read target map |
| auto target_map_fbs = aos::JsonFileToFlatbuffer<TargetMap>( |
| aos::testing::ArtifactPath("frc971/vision/target_map.json")); |
| |
| std::vector<TargetMapper::TargetPose> actual_target_poses; |
| ceres::examples::MapOfPoses target_poses; |
| for (const auto *target_pose_fbs : *target_map_fbs.message().target_poses()) { |
| const TargetMapper::TargetPose target_pose = |
| TargetMapper::TargetPoseFromFbs(*target_pose_fbs); |
| actual_target_poses.emplace_back(target_pose); |
| target_poses[target_pose.id] = target_pose.pose; |
| } |
| |
| double kFieldHalfLength = 16.54 / 2.0; // half length of the field |
| double kFieldHalfWidth = 8.02 / 2.0; // half width of the field |
| |
| // Now, create a bunch of robot poses and target |
| // observations |
| constexpr size_t kDt = 5; |
| constexpr double kRobotZ = 1.0; |
| |
| std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections; |
| |
| constexpr size_t kTotalSteps = 100; |
| for (size_t step_count = 0; step_count < kTotalSteps; step_count++) { |
| size_t t = kDt * step_count; |
| |
| // Circle clockwise around the center of the field |
| double robot_theta = t; |
| |
| constexpr double kRadiusScalar = 0.5; |
| double robot_x = (kRadiusScalar * kFieldHalfLength) * cos(robot_theta); |
| double robot_y = (kRadiusScalar * -kFieldHalfWidth) * sin(robot_theta); |
| |
| auto robot_pose = |
| ceres::examples::Pose3d{.p = Eigen::Vector3d(robot_x, robot_y, kRobotZ), |
| .q = PoseUtils::EulerAnglesToQuaternion( |
| Eigen::Vector3d(robot_theta, 0.0, 0.0))}; |
| |
| for (TargetMapper::TargetPose target_pose : actual_target_poses) { |
| auto optional_detection = |
| MaybeGenerateNoisyDetection(robot_pose, target_pose, t); |
| if (optional_detection.has_value()) { |
| timestamped_target_detections.emplace_back(*optional_detection); |
| } |
| } |
| } |
| |
| // The above circular motion only captures targets 1-4, so add another |
| // detection with the camera looking at targets 5-8, and 4 at the same time to |
| // have a connection to the rest of the targets |
| { |
| auto last_robot_pose = |
| ceres::examples::Pose3d{.p = Eigen::Vector3d(0.0, 0.0, kRobotZ), |
| .q = PoseUtils::EulerAnglesToQuaternion( |
| Eigen::Vector3d(0.0, 0.0, M_PI))}; |
| for (size_t id = 4; id <= 8; id++) { |
| auto target_pose = |
| TargetMapper::GetTargetPoseById(actual_target_poses, id).value(); |
| auto optional_detection = MaybeGenerateNoisyDetection( |
| last_robot_pose, target_pose, kTotalSteps * kDt, true); |
| |
| ASSERT_TRUE(optional_detection.has_value()) |
| << "Didn't detect target " << target_pose.id; |
| timestamped_target_detections.emplace_back(*optional_detection); |
| } |
| } |
| |
| auto target_constraints = |
| DataAdapter::MatchTargetDetections(timestamped_target_detections, kMaxDt); |
| frc971::vision::TargetMapper mapper(target_poses, target_constraints); |
| mapper.Solve(kFieldName); |
| |
| for (auto [target_pose_id, mapper_target_pose] : mapper.target_poses()) { |
| TargetMapper::TargetPose actual_target_pose = |
| TargetMapper::GetTargetPoseById(actual_target_poses, target_pose_id) |
| .value(); |
| EXPECT_POSE_NEAR(mapper_target_pose, actual_target_pose.pose); |
| } |
| } |
| |
| } // namespace frc971::vision |