| // This file has the main for the Teensy on the simple receiver board. |
| |
| #include <inttypes.h> |
| #include <stdio.h> |
| #include <atomic> |
| #include <cmath> |
| |
| #include "frc971/control_loops/drivetrain/polydrivetrain.h" |
| #include "motors/core/kinetis.h" |
| #include "motors/core/time.h" |
| #include "motors/peripheral/adc.h" |
| #include "motors/peripheral/can.h" |
| #include "motors/peripheral/configuration.h" |
| #include "motors/seems_reasonable/drivetrain_dog_motor_plant.h" |
| #include "motors/seems_reasonable/polydrivetrain_dog_motor_plant.h" |
| #include "motors/seems_reasonable/spring.h" |
| #include "motors/usb/cdc.h" |
| #include "motors/usb/usb.h" |
| #include "motors/util.h" |
| |
| namespace frc971 { |
| namespace motors { |
| namespace { |
| |
| using ::frc971::control_loops::drivetrain::DrivetrainConfig; |
| using ::frc971::control_loops::drivetrain::PolyDrivetrain; |
| using ::frc971::constants::ShifterHallEffect; |
| using ::frc971::control_loops::DrivetrainQueue_Goal; |
| using ::frc971::control_loops::DrivetrainQueue_Output; |
| using ::motors::seems_reasonable::Spring; |
| |
| struct SimpleAdcReadings { |
| uint16_t sin, cos; |
| }; |
| |
| void AdcInitSimple() { |
| AdcInitCommon(); |
| |
| // ENC_SIN ADC0_SE23 |
| // ENC_COS ADC1_SE23 |
| } |
| |
| SimpleAdcReadings AdcReadSimple(const DisableInterrupts &) { |
| SimpleAdcReadings r; |
| |
| ADC0_SC1A = 23; |
| ADC1_SC1A = 23; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| while (!(ADC1_SC1A & ADC_SC1_COCO)) { |
| } |
| r.sin = ADC0_RA; |
| r.cos = ADC1_RA; |
| |
| return r; |
| } |
| |
| const ShifterHallEffect kThreeStateDriveShifter{0.0, 0.0, 0.25, 0.75}; |
| |
| const DrivetrainConfig<float> &GetDrivetrainConfig() { |
| static DrivetrainConfig<float> kDrivetrainConfig{ |
| ::frc971::control_loops::drivetrain::ShifterType::NO_SHIFTER, |
| ::frc971::control_loops::drivetrain::LoopType::OPEN_LOOP, |
| ::frc971::control_loops::drivetrain::GyroType::SPARTAN_GYRO, |
| ::frc971::control_loops::drivetrain::IMUType::IMU_X, |
| |
| ::motors::seems_reasonable::MakeDrivetrainLoop, |
| ::motors::seems_reasonable::MakeVelocityDrivetrainLoop, |
| ::std::function<StateFeedbackLoop<7, 2, 4, float>()>(), |
| |
| ::motors::seems_reasonable::kDt, ::motors::seems_reasonable::kRobotRadius, |
| ::motors::seems_reasonable::kWheelRadius, ::motors::seems_reasonable::kV, |
| |
| ::motors::seems_reasonable::kHighGearRatio, |
| ::motors::seems_reasonable::kLowGearRatio, kThreeStateDriveShifter, |
| kThreeStateDriveShifter, true /* default_high_gear */, |
| 0 /* down_offset if using constants use |
| constants::GetValues().down_error */, 0.8 /* wheel_non_linearity */, |
| 1.2 /* quickturn_wheel_multiplier */, 1.5 /* wheel_multiplier */, |
| }; |
| |
| return kDrivetrainConfig; |
| }; |
| |
| |
| ::std::atomic<teensy::AcmTty *> global_stdout{nullptr}; |
| |
| ::std::atomic<PolyDrivetrain<float> *> global_polydrivetrain{nullptr}; |
| ::std::atomic<Spring *> global_spring{nullptr}; |
| |
| // Last width we received on each channel. |
| uint16_t pwm_input_widths[6]; |
| // When we received a pulse on each channel in milliseconds. |
| uint32_t pwm_input_times[6]; |
| |
| constexpr int kChannelTimeout = 100; |
| |
| bool lost_channel(int channel) { |
| DisableInterrupts disable_interrupts; |
| if (time_after(millis(), |
| time_add(pwm_input_times[channel], kChannelTimeout))) { |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns the most recently captured value for the specified input channel |
| // scaled from -1 to 1, or 0 if it was captured over 100ms ago. |
| float convert_input_width(int channel) { |
| uint16_t width; |
| { |
| DisableInterrupts disable_interrupts; |
| if (time_after(millis(), |
| time_add(pwm_input_times[channel], kChannelTimeout))) { |
| return 0; |
| } |
| |
| width = pwm_input_widths[channel]; |
| } |
| |
| // Values measured with a channel mapped to a button. |
| static constexpr uint16_t kMinWidth = 4133; |
| static constexpr uint16_t kMaxWidth = 7177; |
| if (width < kMinWidth) { |
| width = kMinWidth; |
| } else if (width > kMaxWidth) { |
| width = kMaxWidth; |
| } |
| return (static_cast<float>(2 * (width - kMinWidth)) / |
| static_cast<float>(kMaxWidth - kMinWidth)) - |
| 1.0f; |
| } |
| |
| // Sends a SET_RPM command to the specified VESC. |
| // Note that sending 6 VESC commands every 1ms doesn't quite fit in the CAN |
| // bandwidth. |
| void vesc_set_rpm(int vesc_id, float rpm) { |
| const int32_t rpm_int = rpm; |
| uint32_t id = CAN_EFF_FLAG; |
| id |= vesc_id; |
| id |= (0x03 /* SET_RPM */) << 8; |
| uint8_t data[4] = { |
| static_cast<uint8_t>((rpm_int >> 24) & 0xFF), |
| static_cast<uint8_t>((rpm_int >> 16) & 0xFF), |
| static_cast<uint8_t>((rpm_int >> 8) & 0xFF), |
| static_cast<uint8_t>((rpm_int >> 0) & 0xFF), |
| }; |
| can_send(id, data, sizeof(data), 2 + vesc_id); |
| } |
| |
| // Sends a SET_CURRENT command to the specified VESC. |
| // current is in amps. |
| // Note that sending 6 VESC commands every 1ms doesn't quite fit in the CAN |
| // bandwidth. |
| void vesc_set_current(int vesc_id, float current) { |
| constexpr float kMaxCurrent = 80.0f; |
| const int32_t current_int = |
| ::std::max(-kMaxCurrent, ::std::min(kMaxCurrent, current)) * 1000.0f; |
| uint32_t id = CAN_EFF_FLAG; |
| id |= vesc_id; |
| id |= (0x01 /* SET_CURRENT */) << 8; |
| uint8_t data[4] = { |
| static_cast<uint8_t>((current_int >> 24) & 0xFF), |
| static_cast<uint8_t>((current_int >> 16) & 0xFF), |
| static_cast<uint8_t>((current_int >> 8) & 0xFF), |
| static_cast<uint8_t>((current_int >> 0) & 0xFF), |
| }; |
| can_send(id, data, sizeof(data), 2 + vesc_id); |
| } |
| |
| // Sends a SET_DUTY command to the specified VESC. |
| // duty is from -1 to 1. |
| // Note that sending 6 VESC commands every 1ms doesn't quite fit in the CAN |
| // bandwidth. |
| void vesc_set_duty(int vesc_id, float duty) { |
| constexpr int32_t kMaxDuty = 99999; |
| const int32_t duty_int = ::std::max( |
| -kMaxDuty, ::std::min(kMaxDuty, static_cast<int32_t>(duty * 100000.0f))); |
| uint32_t id = CAN_EFF_FLAG; |
| id |= vesc_id; |
| id |= (0x00 /* SET_DUTY */) << 8; |
| uint8_t data[4] = { |
| static_cast<uint8_t>((duty_int >> 24) & 0xFF), |
| static_cast<uint8_t>((duty_int >> 16) & 0xFF), |
| static_cast<uint8_t>((duty_int >> 8) & 0xFF), |
| static_cast<uint8_t>((duty_int >> 0) & 0xFF), |
| }; |
| can_send(id, data, sizeof(data), 2 + vesc_id); |
| } |
| |
| // TODO(Brian): Move these two test functions somewhere else. |
| __attribute__((unused)) void DoVescTest() { |
| uint32_t time = micros(); |
| while (true) { |
| for (int i = 0; i < 6; ++i) { |
| const uint32_t end = time_add(time, 500000); |
| while (true) { |
| const bool done = time_after(micros(), end); |
| float current; |
| if (done) { |
| current = -6; |
| } else { |
| current = 6; |
| } |
| vesc_set_current(i, current); |
| if (done) { |
| break; |
| } |
| delay(5); |
| } |
| time = end; |
| } |
| } |
| } |
| |
| __attribute__((unused)) void DoReceiverTest2() { |
| static constexpr float kMaxRpm = 10000.0f; |
| while (true) { |
| const bool flip = convert_input_width(2) > 0; |
| |
| { |
| const float value = convert_input_width(0); |
| |
| { |
| float rpm = ::std::min(0.0f, value) * kMaxRpm; |
| if (flip) { |
| rpm *= -1.0f; |
| } |
| vesc_set_rpm(0, rpm); |
| } |
| |
| { |
| float rpm = ::std::max(0.0f, value) * kMaxRpm; |
| if (flip) { |
| rpm *= -1.0f; |
| } |
| vesc_set_rpm(1, rpm); |
| } |
| } |
| |
| { |
| const float value = convert_input_width(1); |
| |
| { |
| float rpm = ::std::min(0.0f, value) * kMaxRpm; |
| if (flip) { |
| rpm *= -1.0f; |
| } |
| vesc_set_rpm(2, rpm); |
| } |
| |
| { |
| float rpm = ::std::max(0.0f, value) * kMaxRpm; |
| if (flip) { |
| rpm *= -1.0f; |
| } |
| vesc_set_rpm(3, rpm); |
| } |
| } |
| |
| { |
| const float value = convert_input_width(4); |
| |
| { |
| float rpm = ::std::min(0.0f, value) * kMaxRpm; |
| if (flip) { |
| rpm *= -1.0f; |
| } |
| vesc_set_rpm(4, rpm); |
| } |
| |
| { |
| float rpm = ::std::max(0.0f, value) * kMaxRpm; |
| if (flip) { |
| rpm *= -1.0f; |
| } |
| vesc_set_rpm(5, rpm); |
| } |
| } |
| // Give the CAN frames a chance to go out. |
| delay(5); |
| } |
| } |
| |
| void SetupPwmFtm(BigFTM *ftm) { |
| ftm->MODE = FTM_MODE_WPDIS; |
| ftm->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN; |
| ftm->SC = FTM_SC_CLKS(0) /* Disable counting for now */; |
| |
| // Can't change MOD according to the reference manual ("The Dual Edge Capture |
| // mode must be used with ... the FTM counter in Free running counter."). |
| ftm->MOD = 0xFFFF; |
| |
| // Capturing rising edge. |
| ftm->C0SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| // Capturing falling edge. |
| ftm->C1SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| |
| // Capturing rising edge. |
| ftm->C2SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| // Capturing falling edge. |
| ftm->C3SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| |
| // Capturing rising edge. |
| ftm->C4SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| // Capturing falling edge. |
| ftm->C5SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| |
| // Capturing rising edge. |
| ftm->C6SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| // Capturing falling edge. |
| ftm->C7SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| |
| (void)ftm->STATUS; |
| ftm->STATUS = 0x00; |
| |
| ftm->COMBINE = FTM_COMBINE_DECAP3 | FTM_COMBINE_DECAPEN3 | |
| FTM_COMBINE_DECAP2 | FTM_COMBINE_DECAPEN2 | |
| FTM_COMBINE_DECAP1 | FTM_COMBINE_DECAPEN1 | |
| FTM_COMBINE_DECAP0 | FTM_COMBINE_DECAPEN0; |
| |
| // 34.95ms max period before it starts wrapping and being weird. |
| ftm->SC = FTM_SC_CLKS(1) /* Use the system clock */ | |
| FTM_SC_PS(4) /* Prescaler=32 */; |
| |
| ftm->MODE &= ~FTM_MODE_WPDIS; |
| } |
| |
| struct AccelerometerResult { |
| uint16_t result; |
| bool success; |
| }; |
| |
| // Does a transfer on the accelerometer. Returns the resulting frame, or a |
| // failure if it takes until after end_micros. |
| AccelerometerResult AccelerometerTransfer(uint16_t data, uint32_t end_micros) { |
| SPI0_SR = SPI_SR_RFDF; |
| SPI0_PUSHR = SPI_PUSHR_PCS(1) | data; |
| |
| while (!(SPI0_SR & SPI_SR_RFDF)) { |
| if (time_after(micros(), end_micros)) { |
| return {0, false}; |
| } |
| } |
| const uint32_t popr = SPI0_POPR; |
| SPI0_SR = SPI_SR_RFDF; |
| return {static_cast<uint16_t>(popr & 0xFFFF), true}; |
| } |
| |
| constexpr uint32_t kAccelerometerTimeout = 500; |
| |
| bool AccelerometerWrite(uint8_t address, uint8_t data, uint32_t end_micros) { |
| const AccelerometerResult r = AccelerometerTransfer( |
| (static_cast<uint16_t>(address) << 8) | static_cast<uint16_t>(data), |
| end_micros); |
| return r.success; |
| } |
| |
| AccelerometerResult AccelerometerRead(uint8_t address, uint32_t end_micros) { |
| AccelerometerResult r = AccelerometerTransfer( |
| (static_cast<uint16_t>(address) << 8) | UINT16_C(0x8000), end_micros); |
| r.result = r.result & UINT16_C(0xFF); |
| return r; |
| } |
| |
| bool accelerometer_inited = false; |
| |
| void AccelerometerInit() { |
| accelerometer_inited = false; |
| const uint32_t end_micros = time_add(micros(), kAccelerometerTimeout); |
| { |
| const auto who_am_i = AccelerometerRead(0xF, end_micros); |
| if (!who_am_i.success) { |
| return; |
| } |
| if (who_am_i.result != 0x32) { |
| return; |
| } |
| } |
| if (!AccelerometerWrite( |
| 0x20, (1 << 5) /* Normal mode */ | (1 << 3) /* 100 Hz */ | |
| (1 << 2) /* Z enabled */ | (1 << 1) /* Y enabled */ | |
| (1 << 0) /* X enabled */, |
| end_micros)) { |
| } |
| // If want to read LSB, need to enable BDU to avoid splitting reads. |
| if (!AccelerometerWrite(0x23, (0 << 6) /* Data LSB at lower address */ | |
| (3 << 4) /* 400g full scale */ | |
| (0 << 0) /* 4-wire interface */, |
| end_micros)) { |
| } |
| accelerometer_inited = true; |
| } |
| |
| float AccelerometerConvert(uint16_t value) { |
| return static_cast<float>(400.0 / 65536.0) * static_cast<float>(value); |
| } |
| |
| // Returns the total acceleration (in any direction) or 0 if there's an error. |
| float ReadAccelerometer() { |
| if (!accelerometer_inited) { |
| AccelerometerInit(); |
| return 0; |
| } |
| |
| const uint32_t end_micros = time_add(micros(), kAccelerometerTimeout); |
| const auto x = AccelerometerRead(0x29, end_micros); |
| const auto y = AccelerometerRead(0x2B, end_micros); |
| const auto z = AccelerometerRead(0x2D, end_micros); |
| if (!x.success || !y.success || !z.success) { |
| accelerometer_inited = false; |
| return 0; |
| } |
| |
| const float x_g = AccelerometerConvert(x.result); |
| const float y_g = AccelerometerConvert(y.result); |
| const float z_g = AccelerometerConvert(z.result); |
| return ::std::sqrt(x_g * x_g + y_g * y_g + z_g * z_g); |
| } |
| |
| extern "C" void ftm0_isr() { |
| while (true) { |
| const uint32_t status = FTM0->STATUS; |
| if (status == 0) { |
| return; |
| } |
| |
| if (status & (1 << 1)) { |
| const uint32_t start = FTM0->C0V; |
| const uint32_t end = FTM0->C1V; |
| pwm_input_widths[0] = (end - start) & 0xFFFF; |
| pwm_input_times[0] = millis(); |
| } |
| if (status & (1 << 7)) { |
| const uint32_t start = FTM0->C6V; |
| const uint32_t end = FTM0->C7V; |
| pwm_input_widths[1] = (end - start) & 0xFFFF; |
| pwm_input_times[1] = millis(); |
| } |
| if (status & (1 << 5)) { |
| const uint32_t start = FTM0->C4V; |
| const uint32_t end = FTM0->C5V; |
| pwm_input_widths[2] = (end - start) & 0xFFFF; |
| pwm_input_times[2] = millis(); |
| } |
| if (status & (1 << 3)) { |
| const uint32_t start = FTM0->C2V; |
| const uint32_t end = FTM0->C3V; |
| pwm_input_widths[4] = (end - start) & 0xFFFF; |
| pwm_input_times[4] = millis(); |
| } |
| |
| FTM0->STATUS = 0; |
| } |
| } |
| |
| extern "C" void ftm3_isr() { |
| while (true) { |
| const uint32_t status = FTM3->STATUS; |
| if (status == 0) { |
| return; |
| } |
| |
| if (status & (1 << 3)) { |
| const uint32_t start = FTM3->C2V; |
| const uint32_t end = FTM3->C3V; |
| pwm_input_widths[3] = (end - start) & 0xFFFF; |
| pwm_input_times[3] = millis(); |
| } |
| if (status & (1 << 7)) { |
| const uint32_t start = FTM3->C6V; |
| const uint32_t end = FTM3->C7V; |
| pwm_input_widths[5] = (end - start) & 0xFFFF; |
| pwm_input_times[5] = millis(); |
| } |
| |
| FTM3->STATUS = 0; |
| } |
| } |
| |
| float ConvertEncoderChannel(uint16_t reading) { |
| // Theoretical values based on the datasheet are 931 and 2917. |
| // With these values, the magnitude ranges from 0.99-1.03, which works fine |
| // (the encoder's output appears to get less accurate in one quadrant for some |
| // reason, hence the variation). |
| static constexpr uint16_t kMin = 802, kMax = 3088; |
| if (reading < kMin) { |
| reading = kMin; |
| } else if (reading > kMax) { |
| reading = kMax; |
| } |
| return (static_cast<float>(2 * (reading - kMin)) / |
| static_cast<float>(kMax - kMin)) - |
| 1.0f; |
| } |
| |
| struct EncoderReading { |
| EncoderReading(const SimpleAdcReadings &adc_readings) { |
| const float sin = ConvertEncoderChannel(adc_readings.sin); |
| const float cos = ConvertEncoderChannel(adc_readings.cos); |
| |
| const float magnitude = hypot(sin, cos); |
| const float magnitude_error = ::std::abs(magnitude - 1.0f); |
| valid = magnitude_error < 0.30f; |
| |
| angle = ::std::atan2(sin, cos); |
| } |
| |
| // Angle in radians, in [-pi, pi]. |
| float angle; |
| |
| bool valid; |
| }; |
| |
| extern "C" void pit3_isr() { |
| PIT_TFLG3 = 1; |
| PolyDrivetrain<float> *polydrivetrain = |
| global_polydrivetrain.load(::std::memory_order_acquire); |
| Spring *spring = global_spring.load(::std::memory_order_acquire); |
| |
| SimpleAdcReadings adc_readings; |
| { |
| DisableInterrupts disable_interrupts; |
| adc_readings = AdcReadSimple(disable_interrupts); |
| } |
| |
| EncoderReading encoder(adc_readings); |
| static float last_good_encoder = 0.0f; |
| static int invalid_encoder_count = 0; |
| if (encoder.valid) { |
| last_good_encoder = encoder.angle; |
| invalid_encoder_count = 0; |
| } else { |
| ++invalid_encoder_count; |
| } |
| |
| const bool lost_spring_channel = lost_channel(2) || lost_channel(3) || |
| lost_channel(4) || lost_channel(5) || |
| (convert_input_width(4) < 0.5f); |
| |
| const bool lost_drive_channel = lost_channel(0) || lost_channel(1) || |
| (::std::abs(convert_input_width(4)) < 0.5f); |
| |
| if (polydrivetrain != nullptr && spring != nullptr) { |
| DrivetrainQueue_Goal goal; |
| goal.control_loop_driving = false; |
| if (lost_drive_channel) { |
| goal.throttle = 0.0f; |
| goal.wheel = 0.0f; |
| } else { |
| goal.throttle = convert_input_width(1); |
| goal.wheel = -convert_input_width(0); |
| } |
| goal.quickturn = ::std::abs(polydrivetrain->velocity()) < 0.25f; |
| |
| DrivetrainQueue_Output output; |
| |
| polydrivetrain->SetGoal(goal); |
| polydrivetrain->Update(); |
| polydrivetrain->SetOutput(&output); |
| |
| vesc_set_duty(0, -output.left_voltage / 12.0f); |
| vesc_set_duty(1, -output.left_voltage / 12.0f); |
| |
| vesc_set_duty(2, output.right_voltage / 12.0f); |
| vesc_set_duty(3, output.right_voltage / 12.0f); |
| |
| const bool prime = convert_input_width(2) > 0.1f; |
| const bool fire = convert_input_width(3) > 0.1f; |
| const bool force_move = |
| (convert_input_width(5) > 0.1f) && !lost_spring_channel; |
| |
| bool unload = lost_spring_channel; |
| static bool was_lost = true; |
| bool force_reset = !lost_spring_channel && was_lost; |
| was_lost = lost_spring_channel; |
| |
| spring->Iterate(unload, prime, fire, force_reset, force_move, |
| invalid_encoder_count <= 2, last_good_encoder); |
| |
| float spring_output = spring->output(); |
| |
| vesc_set_duty(4, -spring_output); |
| vesc_set_duty(5, spring_output); |
| |
| const float accelerometer = ReadAccelerometer(); |
| (void)accelerometer; |
| |
| /* |
| // Massive debug. Turn on for useful bits. |
| printf("acc %d/1000\n", (int)(accelerometer / 1000)); |
| if (!encoder.valid) { |
| printf("Stuck encoder: ADC %" PRIu16 " %" PRIu16 |
| " enc %d/1000 %s mag %d\n", |
| adc_readings.sin, adc_readings.cos, (int)(encoder.angle * 1000), |
| encoder.valid ? "T" : "f", |
| (int)(hypot(ConvertEncoderChannel(adc_readings.sin), |
| ConvertEncoderChannel(adc_readings.cos)) * |
| 1000)); |
| } |
| static int i = 0; |
| ++i; |
| if (i > 20) { |
| i = 0; |
| if (lost_spring_channel || lost_drive_channel) { |
| printf("200Hz loop, disabled %d %d %d %d %d %d\n", |
| (int)(convert_input_width(0) * 1000), |
| (int)(convert_input_width(1) * 1000), |
| (int)(convert_input_width(2) * 1000), |
| (int)(convert_input_width(3) * 1000), |
| (int)(convert_input_width(4) * 1000), |
| (int)(convert_input_width(5) * 1000)); |
| } else { |
| printf( |
| "TODO(Austin): 200Hz loop %d %d %d %d %d %d, lr, %d, %d velocity %d |
| " |
| " state: %d, near %d angle %d goal %d to: %d ADC %" PRIu16 |
| " %" PRIu16 " enc %d/1000 %s from %d\n", |
| (int)(convert_input_width(0) * 1000), |
| (int)(convert_input_width(1) * 1000), |
| (int)(convert_input_width(2) * 1000), |
| (int)(convert_input_width(3) * 1000), |
| (int)(convert_input_width(4) * 1000), |
| (int)(convert_input_width(5) * 1000), |
| static_cast<int>(output.left_voltage * 100), |
| static_cast<int>(output.right_voltage * 100), |
| static_cast<int>(polydrivetrain->velocity() * 100), |
| static_cast<int>(spring->state()), static_cast<int>(spring->Near()), |
| static_cast<int>(spring->angle() * 1000), |
| static_cast<int>(spring->goal() * 1000), |
| static_cast<int>(spring->timeout()), adc_readings.sin, |
| adc_readings.cos, (int)(encoder.angle * 1000), |
| encoder.valid ? "T" : "f", |
| (int)(::std::sqrt(ConvertEncoderChannel(adc_readings.sin) * |
| ConvertEncoderChannel(adc_readings.sin) + |
| ConvertEncoderChannel(adc_readings.cos) * |
| ConvertEncoderChannel(adc_readings.cos)) * |
| 1000)); |
| } |
| } |
| */ |
| } |
| } |
| |
| } // namespace |
| |
| extern "C" { |
| |
| void *__stack_chk_guard = (void *)0x67111971; |
| |
| int _write(int /*file*/, char *ptr, int len) { |
| teensy::AcmTty *const tty = global_stdout.load(::std::memory_order_acquire); |
| if (tty != nullptr) { |
| return tty->Write(ptr, len); |
| } |
| return 0; |
| } |
| |
| void __stack_chk_fail(void); |
| |
| } // extern "C" |
| |
| extern "C" int main(void) { |
| // for background about this startup delay, please see these conversations |
| // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980 |
| // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273 |
| delay(400); |
| |
| // Set all interrupts to the second-lowest priority to start with. |
| for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD); |
| |
| // Now set priorities for all the ones we care about. They only have meaning |
| // relative to each other, which means centralizing them here makes it a lot |
| // more manageable. |
| NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7); |
| NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0xa); |
| NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0xa); |
| NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5); |
| |
| // Builtin LED. |
| PERIPHERAL_BITBAND(GPIOC_PDOR, 5) = 1; |
| PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(1); |
| PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1; |
| |
| // Set up the CAN pins. |
| PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| |
| // PWM_IN0 |
| // FTM0_CH0 |
| PORTC_PCR1 = PORT_PCR_MUX(4); |
| |
| // PWM_IN1 |
| // FTM0_CH6 |
| PORTD_PCR6 = PORT_PCR_MUX(4); |
| |
| // PWM_IN2 |
| // FTM0_CH4 |
| PORTD_PCR4 = PORT_PCR_MUX(4); |
| |
| // PWM_IN3 |
| // FTM3_CH2 |
| PORTD_PCR2 = PORT_PCR_MUX(4); |
| |
| // PWM_IN4 |
| // FTM0_CH2 |
| PORTC_PCR3 = PORT_PCR_MUX(4); |
| |
| // PWM_IN5 |
| // FTM3_CH6 |
| PORTC_PCR10 = PORT_PCR_MUX(3); |
| |
| // SPI0 |
| // ACC_CS PCS0 |
| PORTA_PCR14 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| // SCK |
| PORTA_PCR15 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| // MOSI |
| PORTA_PCR16 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| // MISO |
| PORTA_PCR17 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| |
| SIM_SCGC6 |= SIM_SCGC6_SPI0; |
| SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(1) | SPI_MCR_CLR_TXF | |
| SPI_MCR_CLR_RXF | SPI_MCR_HALT; |
| // 60 MHz "protocol clock" |
| // 6ns CS setup |
| // 8ns CS hold |
| SPI0_CTAR0 = SPI_CTAR_FMSZ(15) | SPI_CTAR_CPOL /* Clock idles high */ | |
| SPI_CTAR_CPHA /* Data captured on trailing edge */ | |
| 0 /* !LSBFE MSB first */ | |
| SPI_CTAR_PCSSCK(0) /* PCS->SCK prescaler = 1 */ | |
| SPI_CTAR_PASC(0) /* SCK->PCS prescaler = 1 */ | |
| SPI_CTAR_PDT(0) /* PCS->PCS prescaler = 1 */ | |
| SPI_CTAR_PBR(0) /* baud prescaler = 1 */ | |
| SPI_CTAR_CSSCK(0) /* PCS->SCK 2/60MHz = 33.33ns */ | |
| SPI_CTAR_ASC(0) /* SCK->PCS 2/60MHz = 33.33ns */ | |
| SPI_CTAR_DT(2) /* PCS->PSC 8/60MHz = 133.33ns */ | |
| SPI_CTAR_BR(2) /* BR 60MHz/6 = 10MHz */; |
| |
| SPI0_MCR &= ~SPI_MCR_HALT; |
| |
| delay(100); |
| |
| teensy::UsbDevice usb_device(0, 0x16c0, 0x0492); |
| usb_device.SetManufacturer("Seems Reasonable LLC"); |
| usb_device.SetProduct("Simple Receiver Board"); |
| |
| teensy::AcmTty tty0(&usb_device); |
| global_stdout.store(&tty0, ::std::memory_order_release); |
| usb_device.Initialize(); |
| |
| SIM_SCGC6 |= SIM_SCGC6_PIT; |
| // Workaround for errata e7914. |
| (void)PIT_MCR; |
| PIT_MCR = 0; |
| PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 200) - 1; |
| PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN; |
| |
| can_init(0, 1); |
| AdcInitSimple(); |
| SetupPwmFtm(FTM0); |
| SetupPwmFtm(FTM3); |
| |
| PolyDrivetrain<float> polydrivetrain(GetDrivetrainConfig(), nullptr); |
| global_polydrivetrain.store(&polydrivetrain, ::std::memory_order_release); |
| Spring spring; |
| global_spring.store(&spring, ::std::memory_order_release); |
| |
| // Leave the LEDs on for a bit longer. |
| delay(300); |
| printf("Done starting up\n"); |
| |
| AccelerometerInit(); |
| printf("Accelerometer init %s\n", accelerometer_inited ? "success" : "fail"); |
| |
| // Done starting up, now turn the LED off. |
| PERIPHERAL_BITBAND(GPIOC_PDOR, 5) = 0; |
| |
| NVIC_ENABLE_IRQ(IRQ_FTM0); |
| NVIC_ENABLE_IRQ(IRQ_FTM3); |
| NVIC_ENABLE_IRQ(IRQ_PIT_CH3); |
| printf("Done starting up2\n"); |
| |
| //DoReceiverTest2(); |
| while (true) { |
| } |
| |
| return 0; |
| } |
| |
| void __stack_chk_fail(void) { |
| while (true) { |
| GPIOC_PSOR = (1 << 5); |
| printf("Stack corruption detected\n"); |
| delay(1000); |
| GPIOC_PCOR = (1 << 5); |
| delay(1000); |
| } |
| } |
| |
| } // namespace motors |
| } // namespace frc971 |