| #!/usr/bin/python |
| |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| from frc971.control_loops.python import polytope |
| import numpy |
| import sys |
| import matplotlib |
| from matplotlib import pylab |
| import glog |
| import gflags |
| |
| FLAGS = gflags.FLAGS |
| |
| try: |
| gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| except gflags.DuplicateFlagError: |
| pass |
| |
| class Claw(control_loop.ControlLoop): |
| def __init__(self, name='Claw', mass=None): |
| super(Claw, self).__init__(name) |
| # Stall Torque in N m |
| self.stall_torque = 0.476 |
| # Stall Current in Amps |
| self.stall_current = 80.730 |
| # Free Speed in RPM |
| self.free_speed = 13906.0 |
| # Free Current in Amps |
| self.free_current = 5.820 |
| # Mass of the claw |
| if mass is None: |
| self.mass = 5.0 |
| else: |
| self.mass = mass |
| |
| # Resistance of the motor |
| self.R = 12.0 / self.stall_current |
| # Motor velocity constant |
| self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| (12.0 - self.R * self.free_current)) |
| # Torque constant |
| self.Kt = self.stall_torque / self.stall_current |
| # Gear ratio |
| self.G = (56.0 / 12.0) * (54.0 / 14.0) * (64.0 / 14.0) * (72.0 / 18.0) |
| # Claw length |
| self.r = 18 * 0.0254 |
| |
| self.J = self.r * self.mass |
| |
| # Control loop time step |
| self.dt = 0.005 |
| |
| # State is [position, velocity] |
| # Input is [Voltage] |
| |
| C1 = self.G * self.G * self.Kt / (self.R * self.J * self.Kv) |
| C2 = self.Kt * self.G / (self.J * self.R) |
| |
| self.A_continuous = numpy.matrix( |
| [[0, 1], |
| [0, -C1]]) |
| |
| # Start with the unmodified input |
| self.B_continuous = numpy.matrix( |
| [[0], |
| [C2]]) |
| |
| self.C = numpy.matrix([[1, 0]]) |
| self.D = numpy.matrix([[0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete( |
| self.A_continuous, self.B_continuous, self.dt) |
| |
| controllability = controls.ctrb(self.A, self.B) |
| |
| glog.debug('Free speed is %f', self.free_speed * numpy.pi * 2.0 / 60.0 / self.G) |
| |
| q_pos = 0.15 |
| q_vel = 2.5 |
| self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0], |
| [0.0, (1.0 / (q_vel ** 2.0))]]) |
| |
| self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]]) |
| self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| |
| glog.debug('K: %s', repr(self.K)) |
| glog.debug('Poles are: %s', repr(numpy.linalg.eig(self.A - self.B * self.K)[0])) |
| |
| self.rpl = 0.30 |
| self.ipl = 0.10 |
| self.PlaceObserverPoles([self.rpl + 1j * self.ipl, |
| self.rpl - 1j * self.ipl]) |
| |
| glog.debug('L is: %s', repr(self.L)) |
| |
| q_pos = 0.05 |
| q_vel = 2.65 |
| self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0], |
| [0.0, (q_vel ** 2.0)]]) |
| |
| r_volts = 0.025 |
| self.R = numpy.matrix([[(r_volts ** 2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman( |
| A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| |
| glog.debug('Kal: %s', repr(self.KalmanGain)) |
| self.L = self.A * self.KalmanGain |
| glog.debug('KalL is: %s', repr(self.L)) |
| |
| # The box formed by U_min and U_max must encompass all possible values, |
| # or else Austin's code gets angry. |
| self.U_max = numpy.matrix([[12.0]]) |
| self.U_min = numpy.matrix([[-12.0]]) |
| |
| self.InitializeState() |
| |
| |
| def run_test(claw, initial_X, goal, max_separation_error=0.01, |
| iterations=200, controller_claw=None, |
| observer_claw=None): |
| """Runs the claw plant with an initial condition and goal. |
| |
| The tests themselves are not terribly sophisticated; I just test for |
| whether the goal has been reached and whether the separation goes |
| outside of the initial and goal values by more than max_separation_error. |
| Prints out something for a failure of either condition and returns |
| False if tests fail. |
| Args: |
| claw: claw object to use. |
| initial_X: starting state. |
| goal: goal state. |
| iterations: Number of timesteps to run the model for. |
| controller_claw: claw object to get K from, or None if we should |
| use claw. |
| observer_claw: claw object to use for the observer, or None if we should |
| use the actual state. |
| """ |
| |
| claw.X = initial_X |
| |
| if controller_claw is None: |
| controller_claw = claw |
| |
| if observer_claw is not None: |
| observer_claw.X_hat = initial_X + 0.01 |
| observer_claw.X_hat = initial_X |
| |
| # Various lists for graphing things. |
| t = [] |
| x = [] |
| v = [] |
| x_hat = [] |
| u = [] |
| |
| sep_plot_gain = 100.0 |
| |
| for i in xrange(iterations): |
| X_hat = claw.X |
| if observer_claw is not None: |
| X_hat = observer_claw.X_hat |
| x_hat.append(observer_claw.X_hat[0, 0]) |
| U = controller_claw.K * (goal - X_hat) |
| U[0, 0] = numpy.clip(U[0, 0], -12, 12) |
| x.append(claw.X[0, 0]) |
| v.append(claw.X[1, 0]) |
| if observer_claw is not None: |
| observer_claw.PredictObserver(U) |
| claw.Update(U) |
| if observer_claw is not None: |
| observer_claw.Y = claw.Y |
| observer_claw.CorrectObserver(U) |
| |
| t.append(i * claw.dt) |
| u.append(U[0, 0]) |
| |
| pylab.subplot(2, 1, 1) |
| pylab.plot(t, x, label='x') |
| if observer_claw is not None: |
| pylab.plot(t, x_hat, label='x_hat') |
| pylab.legend() |
| |
| pylab.subplot(2, 1, 2) |
| pylab.plot(t, u, label='u') |
| pylab.legend() |
| pylab.show() |
| |
| |
| def main(argv): |
| if FLAGS.plot: |
| loaded_mass = 0 |
| #loaded_mass = 0 |
| claw = Claw(mass=4 + loaded_mass) |
| claw_controller = Claw(mass=5 + 0) |
| observer_claw = Claw(mass=5 + 0) |
| #observer_claw = None |
| |
| # Test moving the claw with constant separation. |
| initial_X = numpy.matrix([[0.0], [0.0]]) |
| R = numpy.matrix([[1.0], [0.0]]) |
| run_test(claw, initial_X, R, controller_claw=claw_controller, |
| observer_claw=observer_claw) |
| |
| # Write the generated constants out to a file. |
| if len(argv) != 3: |
| glog.fatal('Expected .h and .cc filename for claw.') |
| else: |
| namespaces = ['y2015', 'control_loops', 'claw'] |
| claw = Claw('Claw') |
| loop_writer = control_loop.ControlLoopWriter('Claw', [claw], |
| namespaces=namespaces) |
| loop_writer.Write(argv[1], argv[2]) |
| |
| if __name__ == '__main__': |
| argv = FLAGS(sys.argv) |
| glog.init() |
| sys.exit(main(argv)) |