| /* mpz_oddfac_1(RESULT, N) -- Set RESULT to the odd factor of N!. |
| |
| Contributed to the GNU project by Marco Bodrato. |
| |
| THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. |
| IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. |
| IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR |
| DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| |
| Copyright 2010-2012, 2015-2017 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| /* TODO: |
| - split this file in smaller parts with functions that can be recycled for different computations. |
| */ |
| |
| /**************************************************************/ |
| /* Section macros: common macros, for mswing/fac/bin (&sieve) */ |
| /**************************************************************/ |
| |
| #define FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I) \ |
| if ((PR) > (MAX_PR)) { \ |
| (VEC)[(I)++] = (PR); \ |
| (PR) = 1; \ |
| } |
| |
| #define FACTOR_LIST_STORE(P, PR, MAX_PR, VEC, I) \ |
| do { \ |
| if ((PR) > (MAX_PR)) { \ |
| (VEC)[(I)++] = (PR); \ |
| (PR) = (P); \ |
| } else \ |
| (PR) *= (P); \ |
| } while (0) |
| |
| #define LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) \ |
| __max_i = (end); \ |
| \ |
| do { \ |
| ++__i; \ |
| if (((sieve)[__index] & __mask) == 0) \ |
| { \ |
| mp_limb_t prime; \ |
| prime = id_to_n(__i) |
| |
| #define LOOP_ON_SIEVE_BEGIN(prime,start,end,off,sieve) \ |
| do { \ |
| mp_limb_t __mask, __index, __max_i, __i; \ |
| \ |
| __i = (start)-(off); \ |
| __index = __i / GMP_LIMB_BITS; \ |
| __mask = CNST_LIMB(1) << (__i % GMP_LIMB_BITS); \ |
| __i += (off); \ |
| \ |
| LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) |
| |
| #define LOOP_ON_SIEVE_STOP \ |
| } \ |
| __mask = __mask << 1 | __mask >> (GMP_LIMB_BITS-1); \ |
| __index += __mask & 1; \ |
| } while (__i <= __max_i) |
| |
| #define LOOP_ON_SIEVE_END \ |
| LOOP_ON_SIEVE_STOP; \ |
| } while (0) |
| |
| /*********************************************************/ |
| /* Section sieve: sieving functions and tools for primes */ |
| /*********************************************************/ |
| |
| #if WANT_ASSERT |
| static mp_limb_t |
| bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; } |
| #endif |
| |
| /* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/ |
| static mp_limb_t |
| id_to_n (mp_limb_t id) { return id*3+1+(id&1); } |
| |
| /* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */ |
| static mp_limb_t |
| n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; } |
| |
| #if WANT_ASSERT |
| static mp_size_t |
| primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; } |
| #endif |
| |
| /*********************************************************/ |
| /* Section mswing: 2-multiswing factorial */ |
| /*********************************************************/ |
| |
| /* Returns an approximation of the sqare root of x. |
| * It gives: |
| * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 |
| * or |
| * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 |
| */ |
| static mp_limb_t |
| limb_apprsqrt (mp_limb_t x) |
| { |
| int s; |
| |
| ASSERT (x > 2); |
| count_leading_zeros (s, x); |
| s = (GMP_LIMB_BITS - s) >> 1; |
| return ((CNST_LIMB(1) << s) + (x >> s)) >> 1; |
| } |
| |
| #if 0 |
| /* A count-then-exponentiate variant for SWING_A_PRIME */ |
| #define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \ |
| do { \ |
| mp_limb_t __q, __prime; \ |
| int __exp; \ |
| __prime = (P); \ |
| __exp = 0; \ |
| __q = (N); \ |
| do { \ |
| __q /= __prime; \ |
| __exp += __q & 1; \ |
| } while (__q >= __prime); \ |
| if (__exp) { /* Store $prime^{exp}$ */ \ |
| for (__q = __prime; --__exp; __q *= __prime); \ |
| FACTOR_LIST_STORE(__q, PR, MAX_PR, VEC, I); \ |
| }; \ |
| } while (0) |
| #else |
| #define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \ |
| do { \ |
| mp_limb_t __q, __prime; \ |
| __prime = (P); \ |
| FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I); \ |
| __q = (N); \ |
| do { \ |
| __q /= __prime; \ |
| if ((__q & 1) != 0) (PR) *= __prime; \ |
| } while (__q >= __prime); \ |
| } while (0) |
| #endif |
| |
| #define SH_SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \ |
| do { \ |
| mp_limb_t __prime; \ |
| __prime = (P); \ |
| if ((((N) / __prime) & 1) != 0) \ |
| FACTOR_LIST_STORE(__prime, PR, MAX_PR, VEC, I); \ |
| } while (0) |
| |
| /* mpz_2multiswing_1 computes the odd part of the 2-multiswing |
| factorial of the parameter n. The result x is an odd positive |
| integer so that multiswing(n,2) = x 2^a. |
| |
| Uses the algorithm described by Peter Luschny in "Divide, Swing and |
| Conquer the Factorial!". |
| |
| The pointer sieve points to primesieve_size(n) limbs containing a |
| bit-array where primes are marked as 0. |
| Enough (FIXME: explain :-) limbs must be pointed by factors. |
| */ |
| |
| static void |
| mpz_2multiswing_1 (mpz_ptr x, mp_limb_t n, mp_ptr sieve, mp_ptr factors) |
| { |
| mp_limb_t prod, max_prod; |
| mp_size_t j; |
| |
| ASSERT (n > 25); |
| |
| j = 0; |
| prod = -(n & 1); |
| n &= ~ CNST_LIMB(1); /* n-1, if n is odd */ |
| |
| prod = (prod & n) + 1; /* the original n, if it was odd, 1 otherwise */ |
| max_prod = GMP_NUMB_MAX / (n-1); |
| |
| /* Handle prime = 3 separately. */ |
| SWING_A_PRIME (3, n, prod, max_prod, factors, j); |
| |
| /* Swing primes from 5 to n/3 */ |
| { |
| mp_limb_t s, l_max_prod; |
| |
| s = limb_apprsqrt(n); |
| ASSERT (s >= 5); |
| s = n_to_bit (s); |
| ASSERT (bit_to_n (s+1) * bit_to_n (s+1) > n); |
| ASSERT (s < n_to_bit (n / 3)); |
| LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (5), s, 0,sieve); |
| SWING_A_PRIME (prime, n, prod, max_prod, factors, j); |
| LOOP_ON_SIEVE_STOP; |
| |
| ASSERT (max_prod <= GMP_NUMB_MAX / 3); |
| |
| l_max_prod = max_prod * 3; |
| |
| LOOP_ON_SIEVE_CONTINUE (prime, n_to_bit (n/3), sieve); |
| SH_SWING_A_PRIME (prime, n, prod, l_max_prod, factors, j); |
| LOOP_ON_SIEVE_END; |
| } |
| |
| /* Store primes from (n+1)/2 to n */ |
| LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (n >> 1) + 1, n_to_bit (n), 0,sieve); |
| FACTOR_LIST_STORE (prime, prod, max_prod, factors, j); |
| LOOP_ON_SIEVE_END; |
| |
| if (LIKELY (j != 0)) |
| { |
| factors[j++] = prod; |
| mpz_prodlimbs (x, factors, j); |
| } |
| else |
| { |
| ASSERT (ALLOC (x) > 0); |
| PTR (x)[0] = prod; |
| SIZ (x) = 1; |
| } |
| } |
| |
| #undef SWING_A_PRIME |
| #undef SH_SWING_A_PRIME |
| #undef LOOP_ON_SIEVE_END |
| #undef LOOP_ON_SIEVE_STOP |
| #undef LOOP_ON_SIEVE_BEGIN |
| #undef LOOP_ON_SIEVE_CONTINUE |
| #undef FACTOR_LIST_APPEND |
| |
| /*********************************************************/ |
| /* Section oddfac: odd factorial, needed also by binomial*/ |
| /*********************************************************/ |
| |
| #if TUNE_PROGRAM_BUILD |
| #define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD_LIMIT-1)+1)) |
| #else |
| #define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD-1)+1)) |
| #endif |
| |
| /* mpz_oddfac_1 computes the odd part of the factorial of the |
| parameter n. I.e. n! = x 2^a, where x is the returned value: an |
| odd positive integer. |
| |
| If flag != 0 a square is skipped in the DSC part, e.g. |
| if n is odd, n > FAC_DSC_THRESHOLD and flag = 1, x is set to n!!. |
| |
| If n is too small, flag is ignored, and an ASSERT can be triggered. |
| |
| TODO: FAC_DSC_THRESHOLD is used here with two different roles: |
| - to decide when prime factorisation is needed, |
| - to stop the recursion, once sieving is done. |
| Maybe two thresholds can do a better job. |
| */ |
| void |
| mpz_oddfac_1 (mpz_ptr x, mp_limb_t n, unsigned flag) |
| { |
| ASSERT (n <= GMP_NUMB_MAX); |
| ASSERT (flag == 0 || (flag == 1 && n > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1 && ABOVE_THRESHOLD (n, FAC_DSC_THRESHOLD))); |
| |
| if (n <= ODD_FACTORIAL_TABLE_LIMIT) |
| { |
| MPZ_NEWALLOC (x, 1)[0] = __gmp_oddfac_table[n]; |
| SIZ (x) = 1; |
| } |
| else if (n <= ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1) |
| { |
| mp_ptr px; |
| |
| px = MPZ_NEWALLOC (x, 2); |
| umul_ppmm (px[1], px[0], __gmp_odd2fac_table[(n - 1) >> 1], __gmp_oddfac_table[n >> 1]); |
| SIZ (x) = 2; |
| } |
| else |
| { |
| unsigned s; |
| mp_ptr factors; |
| |
| s = 0; |
| { |
| mp_limb_t tn; |
| mp_limb_t prod, max_prod, i; |
| mp_size_t j; |
| TMP_SDECL; |
| |
| #if TUNE_PROGRAM_BUILD |
| ASSERT (FAC_DSC_THRESHOLD_LIMIT >= FAC_DSC_THRESHOLD); |
| ASSERT (FAC_DSC_THRESHOLD >= 2 * (ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2)); |
| #endif |
| |
| /* Compute the number of recursive steps for the DSC algorithm. */ |
| for (tn = n; ABOVE_THRESHOLD (tn, FAC_DSC_THRESHOLD); s++) |
| tn >>= 1; |
| |
| j = 0; |
| |
| TMP_SMARK; |
| factors = TMP_SALLOC_LIMBS (1 + tn / FACTORS_PER_LIMB); |
| ASSERT (tn >= FACTORS_PER_LIMB); |
| |
| prod = 1; |
| #if TUNE_PROGRAM_BUILD |
| max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD_LIMIT; |
| #else |
| max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD; |
| #endif |
| |
| ASSERT (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1); |
| do { |
| i = ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2; |
| factors[j++] = ODD_DOUBLEFACTORIAL_TABLE_MAX; |
| do { |
| FACTOR_LIST_STORE (i, prod, max_prod, factors, j); |
| i += 2; |
| } while (i <= tn); |
| max_prod <<= 1; |
| tn >>= 1; |
| } while (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1); |
| |
| factors[j++] = prod; |
| factors[j++] = __gmp_odd2fac_table[(tn - 1) >> 1]; |
| factors[j++] = __gmp_oddfac_table[tn >> 1]; |
| mpz_prodlimbs (x, factors, j); |
| |
| TMP_SFREE; |
| } |
| |
| if (s != 0) |
| /* Use the algorithm described by Peter Luschny in "Divide, |
| Swing and Conquer the Factorial!". |
| |
| Improvement: there are two temporary buffers, factors and |
| square, that are never used together; with a good estimate |
| of the maximal needed size, they could share a single |
| allocation. |
| */ |
| { |
| mpz_t mswing; |
| mp_ptr sieve; |
| mp_size_t size; |
| TMP_DECL; |
| |
| TMP_MARK; |
| |
| flag--; |
| size = n / GMP_NUMB_BITS + 4; |
| ASSERT (primesieve_size (n - 1) <= size - (size / 2 + 1)); |
| /* 2-multiswing(n) < 2^(n-1)*sqrt(n/pi) < 2^(n+GMP_NUMB_BITS); |
| one more can be overwritten by mul, another for the sieve */ |
| MPZ_TMP_INIT (mswing, size); |
| /* Initialize size, so that ASSERT can check it correctly. */ |
| ASSERT_CODE (SIZ (mswing) = 0); |
| |
| /* Put the sieve on the second half, it will be overwritten by the last mswing. */ |
| sieve = PTR (mswing) + size / 2 + 1; |
| |
| size = (gmp_primesieve (sieve, n - 1) + 1) / log_n_max (n) + 1; |
| |
| factors = TMP_ALLOC_LIMBS (size); |
| do { |
| mp_ptr square, px; |
| mp_size_t nx, ns; |
| mp_limb_t cy; |
| TMP_DECL; |
| |
| s--; |
| ASSERT (ABSIZ (mswing) < ALLOC (mswing) / 2); /* Check: sieve has not been overwritten */ |
| mpz_2multiswing_1 (mswing, n >> s, sieve, factors); |
| |
| TMP_MARK; |
| nx = SIZ (x); |
| if (s == flag) { |
| size = nx; |
| square = TMP_ALLOC_LIMBS (size); |
| MPN_COPY (square, PTR (x), nx); |
| } else { |
| size = nx << 1; |
| square = TMP_ALLOC_LIMBS (size); |
| mpn_sqr (square, PTR (x), nx); |
| size -= (square[size - 1] == 0); |
| } |
| ns = SIZ (mswing); |
| nx = size + ns; |
| px = MPZ_NEWALLOC (x, nx); |
| ASSERT (ns <= size); |
| cy = mpn_mul (px, square, size, PTR(mswing), ns); /* n!= n$ * floor(n/2)!^2 */ |
| |
| SIZ(x) = nx - (cy == 0); |
| TMP_FREE; |
| } while (s != 0); |
| TMP_FREE; |
| } |
| } |
| } |
| |
| #undef FACTORS_PER_LIMB |
| #undef FACTOR_LIST_STORE |