blob: 2c0799265cb67f5a1a6361a3331522040cad0e6c [file] [log] [blame]
#include "frc971/control_loops/drivetrain/trajectory.h"
#include <chrono>
#include "Eigen/Dense"
#include "aos/logging/matrix_logging.h"
#include "frc971/control_loops/dlqr.h"
#include "frc971/control_loops/c2d.h"
#include "frc971/control_loops/drivetrain/distance_spline.h"
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
#include "frc971/control_loops/hybrid_state_feedback_loop.h"
#include "frc971/control_loops/state_feedback_loop.h"
namespace frc971 {
namespace control_loops {
namespace drivetrain {
Trajectory::Trajectory(const DistanceSpline *spline,
const DrivetrainConfig<double> &config, double vmax,
int num_distance)
: spline_(spline),
velocity_drivetrain_(
::std::unique_ptr<StateFeedbackLoop<2, 2, 2, double,
StateFeedbackHybridPlant<2, 2, 2>,
HybridKalman<2, 2, 2>>>(
new StateFeedbackLoop<2, 2, 2, double,
StateFeedbackHybridPlant<2, 2, 2>,
HybridKalman<2, 2, 2>>(
config.make_hybrid_drivetrain_velocity_loop()))),
robot_radius_l_(config.robot_radius),
robot_radius_r_(config.robot_radius),
longitudal_acceleration_(3.0),
lateral_acceleration_(2.0),
Tlr_to_la_((::Eigen::Matrix<double, 2, 2>() << 0.5, 0.5,
-1.0 / (robot_radius_l_ + robot_radius_r_),
1.0 / (robot_radius_l_ + robot_radius_r_))
.finished()),
Tla_to_lr_(Tlr_to_la_.inverse()),
plan_(num_distance, vmax) {}
void Trajectory::LateralAccelPass() {
for (size_t i = 0; i < plan_.size(); ++i) {
const double distance = Distance(i);
plan_[i] = ::std::min(plan_[i], LateralVelocityCurvature(distance));
}
}
// TODO(austin): Deduplicate this potentially with the backward accel function.
// Need to sort out how the max velocity limit is going to work since the
// velocity and acceleration need to match at all points.
// TODO(austin): Accel check the wheels instead of the center of mass.
double Trajectory::ForwardAcceleration(const double x, const double v) {
::Eigen::Matrix<double, 2, 1> K3;
::Eigen::Matrix<double, 2, 1> K4;
::Eigen::Matrix<double, 2, 1> K5;
K345(x, &K3, &K4, &K5);
const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v;
// Now, solve for all a's and find the best one which meets our criteria.
double maxa = -::std::numeric_limits<double>::infinity();
for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0),
(voltage_limit_ - C(1, 0)) / K5(1, 0),
(-voltage_limit_ - C(0, 0)) / K5(0, 0),
(-voltage_limit_ - C(1, 0)) / K5(1, 0)}) {
const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v;
if ((U.array().abs() < voltage_limit_ + 1e-6).all()) {
maxa = ::std::max(maxa, a);
}
}
// Then, assume an acceleration oval and stay inside it.
const double lateral_acceleration = v * v * spline_->DDXY(x).norm();
const double squared =
1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_, 2.0);
// If we would end up with an imaginary number, cap us at 0 acceleration.
// TODO(austin): Investigate when this happens, why, and fix it.
if (squared < 0.0) {
LOG(ERROR, "Imaginary %f, d %f\n", squared, x);
return 0.0;
}
const double longitudal_acceleration =
::std::sqrt(squared) * longitudal_acceleration_;
return ::std::min(longitudal_acceleration, maxa);
}
void Trajectory::ForwardPass() {
plan_[0] = 0.0;
const double delta_distance = Distance(1) - Distance(0);
for (size_t i = 0; i < plan_.size() - 1; ++i) {
const double distance = Distance(i);
// Integrate our acceleration forward one step.
plan_[i + 1] = ::std::min(
plan_[i + 1],
IntegrateAccelForDistance(
[this](double x, double v) { return ForwardAcceleration(x, v); },
plan_[i], distance, delta_distance));
}
}
double Trajectory::BackwardAcceleration(double x, double v) {
::Eigen::Matrix<double, 2, 1> K3;
::Eigen::Matrix<double, 2, 1> K4;
::Eigen::Matrix<double, 2, 1> K5;
K345(x, &K3, &K4, &K5);
// Now, solve for all a's and find the best one which meets our criteria.
const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v;
double mina = ::std::numeric_limits<double>::infinity();
for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0),
(voltage_limit_ - C(1, 0)) / K5(1, 0),
(-voltage_limit_ - C(0, 0)) / K5(0, 0),
(-voltage_limit_ - C(1, 0)) / K5(1, 0)}) {
const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v;
if ((U.array().abs() < voltage_limit_ + 1e-6).all()) {
mina = ::std::min(mina, a);
}
}
// Then, assume an acceleration oval and stay inside it.
const double lateral_acceleration = v * v * spline_->DDXY(x).norm();
const double squared =
1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_, 2.0);
// If we would end up with an imaginary number, cap us at 0 acceleration.
// TODO(austin): Investigate when this happens, why, and fix it.
if (squared < 0.0) {
LOG(ERROR, "Imaginary %f, d %f\n", squared, x);
return 0.0;
}
const double longitudal_acceleration =
-::std::sqrt(squared) * longitudal_acceleration_;
return ::std::max(longitudal_acceleration, mina);
}
void Trajectory::BackwardPass() {
const double delta_distance = Distance(0) - Distance(1);
plan_.back() = 0.0;
for (size_t i = plan_.size() - 1; i > 0; --i) {
const double distance = Distance(i);
// Integrate our deceleration back one step.
plan_[i - 1] = ::std::min(
plan_[i - 1],
IntegrateAccelForDistance(
[this](double x, double v) { return BackwardAcceleration(x, v); },
plan_[i], distance, delta_distance));
}
}
::Eigen::Matrix<double, 3, 1> Trajectory::FFAcceleration(double distance) {
size_t before_index;
size_t after_index;
if (distance < Distance(1)) {
// Within the first step.
after_index = 1;
// Make sure we don't end up off the beginning of the curve.
if (distance < 0.0) {
distance = 0.0;
}
} else if (distance > Distance(plan_.size() - 2)) {
// Within the last step.
after_index = plan_.size() - 1;
// Make sure we don't end up off the end of the curve.
if (distance > length()) {
distance = length();
}
} else {
// Otherwise do the calculation normally.
after_index = static_cast<size_t>(
::std::ceil(distance / length() * (plan_.size() - 1)));
}
before_index = after_index - 1;
const double before_distance = Distance(before_index);
const double after_distance = Distance(after_index);
// Now, compute the velocity that we could have if we accelerated from the
// previous step and decelerated from the next step. The min will tell us
// which is in effect.
const double velocity_forwards = IntegrateAccelForDistance(
[this](double x, double v) { return ForwardAcceleration(x, v); },
plan_[before_index], before_distance, distance - before_distance);
const double velocity_backward = IntegrateAccelForDistance(
[this](double x, double v) { return BackwardAcceleration(x, v); },
plan_[after_index], after_distance, distance - after_distance);
// And then also make sure we aren't curvature limited.
const double vcurvature = LateralVelocityCurvature(distance);
double acceleration;
double velocity;
if (vcurvature < velocity_forwards && vcurvature < velocity_backward) {
// If we are curvature limited, we can't accelerate.
velocity = vcurvature;
acceleration = 0.0;
} else if (velocity_forwards < velocity_backward) {
// Otherwise, pick the acceleration and velocity from the forward pass if it
// was the predominate factor in this step.
velocity = velocity_forwards;
acceleration = ForwardAcceleration(distance, velocity);
} else {
// Otherwise, pick the acceleration and velocity from the backward pass if
// it was the predominate factor in this step.
velocity = velocity_backward;
acceleration = BackwardAcceleration(distance, velocity);
}
return (::Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration)
.finished();
}
::Eigen::Matrix<double, 2, 1> Trajectory::FFVoltage(double distance) {
const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance);
const double velocity = xva(1);
const double acceleration = xva(2);
const double current_ddtheta = spline_->DDTheta(distance);
const double current_dtheta = spline_->DTheta(distance);
// We've now got the equation:
// K2 * d^x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
const ::Eigen::Matrix<double, 2, 1> my_K2 = K2(current_dtheta);
const ::Eigen::Matrix<double, 2, 2> B_inverse =
velocity_drivetrain_->plant().coefficients().B_continuous.inverse();
// Now, rephrase it as K5 a + K3 v^2 + K4 v = U
const ::Eigen::Matrix<double, 2, 1> K5 = B_inverse * my_K2;
const ::Eigen::Matrix<double, 2, 1> K3 = B_inverse * K1(current_ddtheta);
const ::Eigen::Matrix<double, 2, 1> K4 =
-B_inverse * velocity_drivetrain_->plant().coefficients().A_continuous *
my_K2;
return K5 * acceleration + K3 * velocity * velocity + K4 * velocity;
}
const ::std::vector<double> Trajectory::Distances() const {
::std::vector<double> d;
d.reserve(plan_.size());
for (size_t i = 0; i < plan_.size(); ++i) {
d.push_back(Distance(i));
}
return d;
}
::Eigen::Matrix<double, 5, 5> Trajectory::ALinearizedContinuous(
const ::Eigen::Matrix<double, 5, 1> &state) const {
const double sintheta = ::std::sin(state(2));
const double costheta = ::std::cos(state(2));
const ::Eigen::Matrix<double, 2, 1> linear_angular =
Tlr_to_la_ * state.block<2, 1>(3, 0);
// When stopped, just roll with a min velocity.
double linear_velocity = 0.0;
constexpr double kMinVelocity = 0.1;
if (::std::abs(linear_angular(0)) < kMinVelocity / 100.0) {
linear_velocity = 0.1;
} else if (::std::abs(linear_angular(0)) > kMinVelocity) {
linear_velocity = linear_angular(0);
} else if (linear_angular(0) > 0) {
linear_velocity = kMinVelocity;
} else if (linear_angular(0) < 0) {
linear_velocity = -kMinVelocity;
}
::Eigen::Matrix<double, 5, 5> result = ::Eigen::Matrix<double, 5, 5>::Zero();
result(0, 2) = -sintheta * linear_velocity;
result(0, 3) = 0.5 * costheta;
result(0, 4) = 0.5 * costheta;
result(1, 2) = costheta * linear_velocity;
result(1, 3) = 0.5 * sintheta;
result(1, 4) = 0.5 * sintheta;
result(2, 3) = Tlr_to_la_(1, 0);
result(2, 4) = Tlr_to_la_(1, 1);
result.block<2, 2>(3, 3) =
velocity_drivetrain_->plant().coefficients().A_continuous;
return result;
}
::Eigen::Matrix<double, 5, 2> Trajectory::BLinearizedContinuous() const {
::Eigen::Matrix<double, 5, 2> result = ::Eigen::Matrix<double, 5, 2>::Zero();
result.block<2, 2>(3, 0) =
velocity_drivetrain_->plant().coefficients().B_continuous;
return result;
}
void Trajectory::AB(const ::Eigen::Matrix<double, 5, 1> &state,
::std::chrono::nanoseconds dt,
::Eigen::Matrix<double, 5, 5> *A,
::Eigen::Matrix<double, 5, 2> *B) const {
::Eigen::Matrix<double, 5, 5> A_linearized_continuous =
ALinearizedContinuous(state);
::Eigen::Matrix<double, 5, 2> B_linearized_continuous =
BLinearizedContinuous();
// Now, convert it to discrete.
controls::C2D(A_linearized_continuous, B_linearized_continuous,
dt, A, B);
}
::Eigen::Matrix<double, 2, 5> Trajectory::KForState(
const ::Eigen::Matrix<double, 5, 1> &state, ::std::chrono::nanoseconds dt,
const ::Eigen::DiagonalMatrix<double, 5> &Q,
const ::Eigen::DiagonalMatrix<double, 2> &R) const {
::Eigen::Matrix<double, 5, 5> A;
::Eigen::Matrix<double, 5, 2> B;
AB(state, dt, &A, &B);
::Eigen::Matrix<double, 5, 5> S = ::Eigen::Matrix<double, 5, 5>::Zero();
::Eigen::Matrix<double, 2, 5> K = ::Eigen::Matrix<double, 2, 5>::Zero();
int info = ::frc971::controls::dlqr<5, 2>(A, B, Q, R, &K, &S);
if (info == 0) {
LOG_MATRIX(INFO, "K", K);
} else {
LOG(ERROR, "Failed to solve %d, controllability: %d\n", info,
controls::Controllability(A, B));
// TODO(austin): Can we be more clever here? Use the last one? We should
// collect more info about when this breaks down from logs.
K = ::Eigen::Matrix<double, 2, 5>::Zero();
}
::Eigen::EigenSolver<::Eigen::Matrix<double, 5, 5>> eigensolver(A - B * K);
const auto eigenvalues = eigensolver.eigenvalues();
LOG(DEBUG,
"Eigenvalues: (%f + %fj), (%f + %fj), (%f + %fj), (%f + %fj), (%f + "
"%fj)\n",
eigenvalues(0).real(), eigenvalues(0).imag(), eigenvalues(1).real(),
eigenvalues(1).imag(), eigenvalues(2).real(), eigenvalues(2).imag(),
eigenvalues(3).real(), eigenvalues(3).imag(), eigenvalues(4).real(),
eigenvalues(4).imag());
return K;
}
const ::Eigen::Matrix<double, 5, 1> Trajectory::GoalState(double distance,
double velocity) {
::Eigen::Matrix<double, 5, 1> result;
result.block<2, 1>(0, 0) = spline_->XY(distance);
result(2, 0) = spline_->Theta(distance);
result.block<2, 1>(3, 0) = Tla_to_lr_ *
(::Eigen::Matrix<double, 2, 1>() << velocity,
spline_->DThetaDt(distance, velocity))
.finished();
return result;
}
::std::vector<::Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA(
::std::chrono::nanoseconds dt) {
double dt_float =
::std::chrono::duration_cast<::std::chrono::duration<double>>(dt).count();
double t = 0.0;
::Eigen::Matrix<double, 2, 1> state = ::Eigen::Matrix<double, 2, 1>::Zero();
::std::vector<::Eigen::Matrix<double, 3, 1>> result;
result.emplace_back(FFAcceleration(0));
result.back()(1) = 0.0;
while (state(0) < length() - 1e-4) {
t += dt_float;
// TODO(austin): This feels like something that should be pulled out into
// a library for re-use.
state = RungeKutta(
[this](const ::Eigen::Matrix<double, 2, 1> x) {
::Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0));
return (::Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished();
},
state, dt_float);
result.emplace_back(FFAcceleration(state(0)));
state(1) = result.back()(1);
}
return result;
}
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971