| #include "aos/events/simulated_network_bridge.h" |
| |
| #include "aos/events/event_loop.h" |
| #include "aos/events/simulated_event_loop.h" |
| |
| namespace aos { |
| namespace message_bridge { |
| |
| // This class delays messages forwarded between two factories. |
| // |
| // The basic design is that we need to use the distributed_clock to convert |
| // monotonic times from the source to the destination node. We also use a |
| // fetcher to manage the queue of data, and a timer to schedule the sends. |
| class RawMessageDelayer { |
| public: |
| RawMessageDelayer(aos::NodeEventLoopFactory *fetch_node_factory, |
| aos::NodeEventLoopFactory *send_node_factory, |
| aos::EventLoop *send_event_loop, |
| std::unique_ptr<aos::RawFetcher> fetcher, |
| std::unique_ptr<aos::RawSender> sender) |
| : fetch_node_factory_(fetch_node_factory), |
| send_node_factory_(send_node_factory), |
| send_event_loop_(send_event_loop), |
| fetcher_(std::move(fetcher)), |
| sender_(std::move(sender)) { |
| timer_ = send_event_loop_->AddTimer([this]() { Send(); }); |
| |
| Schedule(); |
| } |
| |
| const Channel *channel() const { return fetcher_->channel(); } |
| |
| // Kicks us to re-fetch and schedule the timer. |
| void Schedule() { |
| // Keep pulling messages out of the fetcher until we find one in the future. |
| while (true) { |
| if (fetcher_->context().data == nullptr || sent_) { |
| sent_ = !fetcher_->FetchNext(); |
| } |
| if (sent_) { |
| break; |
| } |
| if (fetcher_->context().monotonic_event_time + |
| send_node_factory_->network_delay() + |
| send_node_factory_->send_delay() > |
| fetch_node_factory_->monotonic_now()) { |
| break; |
| } |
| |
| // TODO(austin): Not cool. We want to actually forward these. This means |
| // we need a more sophisticated concept of what is running. |
| LOG(WARNING) << "Not forwarding message on " |
| << configuration::CleanedChannelToString(fetcher_->channel()) |
| << " because we aren't running. Set at " |
| << fetcher_->context().monotonic_event_time << " now is " |
| << fetch_node_factory_->monotonic_now(); |
| sent_ = true; |
| } |
| |
| if (fetcher_->context().data == nullptr) { |
| return; |
| } |
| |
| if (sent_) { |
| return; |
| } |
| |
| // Compute the time to publish this message. |
| const monotonic_clock::time_point monotonic_delivered_time = |
| DeliveredTime(fetcher_->context()); |
| |
| CHECK_GE(monotonic_delivered_time, send_node_factory_->monotonic_now()) |
| << ": Trying to deliver message in the past..."; |
| |
| timer_->Setup(monotonic_delivered_time); |
| } |
| |
| private: |
| // Acutally sends the message, and reschedules. |
| void Send() { |
| // Compute the time to publish this message. |
| const monotonic_clock::time_point monotonic_delivered_time = |
| DeliveredTime(fetcher_->context()); |
| |
| CHECK_EQ(monotonic_delivered_time, send_node_factory_->monotonic_now()) |
| << ": Message to be sent at the wrong time."; |
| |
| // And also fill out the send times as well. |
| sender_->Send(fetcher_->context().data, fetcher_->context().size, |
| fetcher_->context().monotonic_event_time, |
| fetcher_->context().realtime_event_time, |
| fetcher_->context().queue_index); |
| |
| sent_ = true; |
| Schedule(); |
| } |
| |
| // Converts from time on the sending node to time on the receiving node. |
| monotonic_clock::time_point DeliveredTime(const Context &context) const { |
| const distributed_clock::time_point distributed_sent_time = |
| fetch_node_factory_->ToDistributedClock(context.monotonic_event_time); |
| |
| return aos::monotonic_clock::epoch() + |
| (distributed_sent_time - send_node_factory_->ToDistributedClock( |
| aos::monotonic_clock::epoch())) + |
| send_node_factory_->network_delay() + |
| send_node_factory_->send_delay(); |
| } |
| |
| // Factories used for time conversion. |
| aos::NodeEventLoopFactory *fetch_node_factory_; |
| aos::NodeEventLoopFactory *send_node_factory_; |
| |
| // Event loop which sending is scheduled on. |
| aos::EventLoop *send_event_loop_; |
| // Timer used to send. |
| aos::TimerHandler *timer_; |
| // Fetcher used to receive messages. |
| std::unique_ptr<aos::RawFetcher> fetcher_; |
| // Sender to send them back out. |
| std::unique_ptr<aos::RawSender> sender_; |
| // True if we have sent the message in the fetcher. |
| bool sent_ = false; |
| }; |
| |
| SimulatedMessageBridge::SimulatedMessageBridge( |
| SimulatedEventLoopFactory *simulated_event_loop_factory) { |
| CHECK( |
| configuration::MultiNode(simulated_event_loop_factory->configuration())); |
| |
| // Pre-build up event loops for every node. They are pretty cheap anyways. |
| for (const Node *node : simulated_event_loop_factory->nodes()) { |
| auto it = event_loop_map_.insert( |
| {node, |
| simulated_event_loop_factory->MakeEventLoop("message_bridge", node)}); |
| |
| CHECK(it.second); |
| |
| it.first->second->SkipTimingReport(); |
| it.first->second->SkipAosLog(); |
| } |
| |
| for (const Channel *channel : |
| *simulated_event_loop_factory->configuration()->channels()) { |
| if (!channel->has_destination_nodes()) { |
| continue; |
| } |
| |
| // Find the sending node. |
| const Node *node = |
| configuration::GetNode(simulated_event_loop_factory->configuration(), |
| channel->source_node()->string_view()); |
| auto source_event_loop = event_loop_map_.find(node); |
| CHECK(source_event_loop != event_loop_map_.end()); |
| |
| std::unique_ptr<DelayersVector> delayers = |
| std::make_unique<DelayersVector>(); |
| |
| // And then build up a RawMessageDelayer for each destination. |
| for (const Connection *connection : *channel->destination_nodes()) { |
| const Node *destination_node = |
| configuration::GetNode(simulated_event_loop_factory->configuration(), |
| connection->name()->string_view()); |
| auto destination_event_loop = event_loop_map_.find(destination_node); |
| CHECK(destination_event_loop != event_loop_map_.end()); |
| |
| delayers->emplace_back(std::make_unique<RawMessageDelayer>( |
| simulated_event_loop_factory->GetNodeEventLoopFactory(node), |
| simulated_event_loop_factory->GetNodeEventLoopFactory( |
| destination_node), |
| destination_event_loop->second.get(), |
| source_event_loop->second->MakeRawFetcher(channel), |
| destination_event_loop->second->MakeRawSender(channel))); |
| } |
| |
| // And register every delayer to be poked when a new message shows up. |
| source_event_loop->second->MakeRawWatcher( |
| channel, |
| [captured_delayers = delayers.get()](const Context &, const void *) { |
| for (std::unique_ptr<RawMessageDelayer> &delayer : |
| *captured_delayers) { |
| delayer->Schedule(); |
| } |
| }); |
| delayers_list_.emplace_back(std::move(delayers)); |
| } |
| } |
| |
| SimulatedMessageBridge::~SimulatedMessageBridge() {} |
| |
| void SimulatedMessageBridge::DisableForwarding(const Channel *channel) { |
| for (std::unique_ptr<std::vector<std::unique_ptr<RawMessageDelayer>>> |
| &delayers : delayers_list_) { |
| if (delayers->size() > 0) { |
| if ((*delayers)[0]->channel() == channel) { |
| for (std::unique_ptr<RawMessageDelayer> &delayer : *delayers) { |
| CHECK(delayer->channel() == channel); |
| } |
| |
| // If we clear the delayers list, nothing will be scheduled. Which is a |
| // success! |
| delayers->clear(); |
| } |
| } |
| } |
| } |
| |
| } // namespace message_bridge |
| } // namespace aos |