blob: 293be55bbe7acd6dd821e34e535ae2e47f00eb4b [file] [log] [blame]
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <chrono>
#include <thread>
#include <mutex>
#include <functional>
#include <array>
#include <cmath>
#include "Counter.h"
#include "Encoder.h"
#include "VictorSP.h"
#include "Servo.h"
#include "Relay.h"
#include "DriverStation.h"
#include "AnalogInput.h"
#include "Compressor.h"
#include "DigitalGlitchFilter.h"
#undef ERROR
#include "aos/common/logging/logging.h"
#include "aos/common/logging/queue_logging.h"
#include "aos/common/time.h"
#include "aos/common/util/log_interval.h"
#include "aos/common/util/phased_loop.h"
#include "aos/common/util/wrapping_counter.h"
#include "aos/common/stl_mutex.h"
#include "aos/linux_code/init.h"
#include "aos/common/messages/robot_state.q.h"
#include "aos/common/commonmath.h"
#include "frc971/autonomous/auto.q.h"
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "y2017/constants.h"
#include "y2017/control_loops/superstructure/superstructure.q.h"
#include "frc971/wpilib/wpilib_robot_base.h"
#include "frc971/wpilib/joystick_sender.h"
#include "frc971/wpilib/loop_output_handler.h"
#include "frc971/wpilib/buffered_solenoid.h"
#include "frc971/wpilib/buffered_pcm.h"
#include "frc971/wpilib/dma_edge_counting.h"
#include "frc971/wpilib/interrupt_edge_counting.h"
#include "frc971/wpilib/encoder_and_potentiometer.h"
#include "frc971/wpilib/logging.q.h"
#include "frc971/wpilib/wpilib_interface.h"
#include "frc971/wpilib/pdp_fetcher.h"
#include "frc971/wpilib/ADIS16448.h"
#include "frc971/wpilib/dma.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using ::frc971::control_loops::drivetrain_queue;
using ::y2017::control_loops::superstructure_queue;
using ::y2017::constants::Values;
namespace y2017 {
namespace wpilib {
namespace {
constexpr double kMaxBringupPower = 12.0;
// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
// DMA stuff and then removing the * 2.0 in *_translate.
// The low bit is direction.
// TODO(brian): Replace this with ::std::make_unique once all our toolchains
// have support.
template <class T, class... U>
std::unique_ptr<T> make_unique(U &&... u) {
return std::unique_ptr<T>(new T(std::forward<U>(u)...));
}
// TODO(brian): Use ::std::max instead once we have C++14 so that can be
// constexpr.
template <typename T>
constexpr T max(T a, T b) {
return (a > b) ? a : b;
}
template <typename T, typename... Rest>
constexpr T max(T a, T b, T c, Rest... rest) {
return max(max(a, b), c, rest...);
}
double drivetrain_translate(int32_t in) {
return static_cast<double>(in) /
Values::kDrivetrainEncoderCountsPerRevolution *
Values::kDrivetrainEncoderRatio * 2.0 * M_PI;
}
double drivetrain_velocity_translate(double in) {
return (1.0 / in) / Values::kDrivetrainCyclesPerRevolution *
Values::kDrivetrainEncoderRatio * 2.0 * M_PI;
}
// TODO(Travis): Make sure the number of turns is right.
double intake_pot_translate(double voltage) {
return voltage * Values::kIntakePotRatio * (3.0 /*turns*/ / 5.0 /*volts*/) *
(2 * M_PI /*radians*/);
}
constexpr double kMaxFastEncoderPulsesPerSecond =
max(Values::kMaxDrivetrainEncoderPulsesPerSecond,
Values::kMaxShooterEncoderPulsesPerSecond);
static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
"fast encoders are too fast");
constexpr double kMaxMediumEncoderPulsesPerSecond =
max(Values::kMaxIntakeEncoderPulsesPerSecond,
Values::kMaxTurretEncoderPulsesPerSecond,
Values::kMaxIndexerEncoderPulsesPerSecond);
static_assert(kMaxMediumEncoderPulsesPerSecond <= 400000,
"medium encoders are too fast");
constexpr double kMaxSlowEncoderPulsesPerSecond =
Values::kMaxHoodEncoderPulsesPerSecond;
static_assert(kMaxSlowEncoderPulsesPerSecond <= 100000,
"slow encoders are too fast");
static_assert(kMaxSlowEncoderPulsesPerSecond < kMaxMediumEncoderPulsesPerSecond,
"slow encoders are faster than medium?");
// Handles reading the duty cycle on a DigitalInput.
class DutyCycleReader {
public:
void set_input(::std::unique_ptr<DigitalInput> input) {
high_counter_.reset(new Counter(input.get()));
high_counter_->SetMaxPeriod(kMaxPeriod);
high_counter_->SetSemiPeriodMode(true);
period_length_counter_.reset(new Counter(input.get()));
period_length_counter_->SetMaxPeriod(kMaxPeriod);
period_length_counter_->SetUpSourceEdge(true, false);
input_ = ::std::move(input);
}
double Read() const {
const double high_time = high_counter_->GetPeriod();
const double period_length = period_length_counter_->GetPeriod();
if (!::std::isfinite(high_time) || !::std::isfinite(period_length)) {
return ::std::numeric_limits<double>::quiet_NaN();
}
return high_time / period_length;
}
private:
static constexpr ::std::chrono::nanoseconds kNominalPeriod =
::std::chrono::microseconds(4096);
static constexpr double kMaxPeriod =
(::std::chrono::duration_cast<::std::chrono::duration<double>>(
kNominalPeriod) *
2).count();
::std::unique_ptr<Counter> high_counter_, period_length_counter_;
::std::unique_ptr<DigitalInput> input_;
};
class AbsoluteEncoderAndPotentiometer {
public:
void set_absolute_pwm(::std::unique_ptr<DigitalInput> input) {
duty_cycle_.set_input(::std::move(input));
}
void set_encoder(::std::unique_ptr<Encoder> encoder) {
encoder_ = ::std::move(encoder);
}
void set_potentiometer(::std::unique_ptr<AnalogInput> potentiometer) {
potentiometer_ = ::std::move(potentiometer);
}
double ReadAbsoluteEncoder() const { return duty_cycle_.Read(); }
int32_t ReadRelativeEncoder() const { return encoder_->GetRaw(); }
double ReadPotentiometerVoltage() const {
return potentiometer_->GetVoltage();
}
private:
DutyCycleReader duty_cycle_;
::std::unique_ptr<Encoder> encoder_;
::std::unique_ptr<AnalogInput> potentiometer_;
};
// Class to send position messages with sensor readings to our loops.
class SensorReader {
public:
SensorReader() {
// Set to filter out anything shorter than 1/4 of the minimum pulse width
// we should ever see.
fast_encoder_filter_.SetPeriodNanoSeconds(
static_cast<int>(1 / 4.0 /* built-in tolerance */ /
kMaxFastEncoderPulsesPerSecond * 1e9 +
0.5));
medium_encoder_filter_.SetPeriodNanoSeconds(
static_cast<int>(1 / 4.0 /* built-in tolerance */ /
kMaxMediumEncoderPulsesPerSecond * 1e9 +
0.5));
hall_filter_.SetPeriodNanoSeconds(100000);
}
void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
drivetrain_left_encoder_ = ::std::move(encoder);
}
void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
drivetrain_right_encoder_ = ::std::move(encoder);
}
void set_shooter_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
shooter_encoder_ = ::std::move(encoder);
}
void set_intake_encoder(::std::unique_ptr<Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
intake_encoder_.set_encoder(::std::move(encoder));
}
void set_intake_potentiometer(::std::unique_ptr<AnalogInput> potentiometer) {
intake_encoder_.set_potentiometer(::std::move(potentiometer));
}
void set_intake_absolute(::std::unique_ptr<DigitalInput> input) {
intake_encoder_.set_absolute_pwm(::std::move(input));
}
void set_indexer_encoder(::std::unique_ptr<Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
indexer_counter_.set_encoder(encoder.get());
indexer_encoder_ = ::std::move(encoder);
}
void set_indexer_hall(::std::unique_ptr<DigitalInput> input) {
hall_filter_.Add(input.get());
indexer_counter_.set_input(input.get());
indexer_hall_ = ::std::move(input);
}
void set_turret_encoder(::std::unique_ptr<Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
turret_counter_.set_encoder(encoder.get());
turret_encoder_ = ::std::move(encoder);
}
void set_turret_hall(::std::unique_ptr<DigitalInput> input) {
hall_filter_.Add(input.get());
turret_counter_.set_input(input.get());
turret_hall_ = ::std::move(input);
}
void set_hood_encoder(::std::unique_ptr<Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
hood_encoder_.set_encoder(::std::move(encoder));
}
void set_hood_index(::std::unique_ptr<DigitalInput> index) {
medium_encoder_filter_.Add(index.get());
hood_encoder_.set_index(::std::move(index));
}
void set_autonomous_mode(int i, ::std::unique_ptr<DigitalInput> sensor) {
autonomous_modes_.at(i) = ::std::move(sensor);
}
// All of the DMA-related set_* calls must be made before this, and it doesn't
// hurt to do all of them.
void set_dma(::std::unique_ptr<DMA> dma) {
dma_synchronizer_.reset(
new ::frc971::wpilib::DMASynchronizer(::std::move(dma)));
dma_synchronizer_->Add(&indexer_counter_);
dma_synchronizer_->Add(&hood_encoder_);
dma_synchronizer_->Add(&turret_counter_);
}
void operator()() {
::aos::SetCurrentThreadName("SensorReader");
my_pid_ = getpid();
ds_ =
&DriverStation::GetInstance();
dma_synchronizer_->Start();
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(0));
::aos::SetCurrentThreadRealtimePriority(40);
while (run_) {
{
const int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
}
}
RunIteration();
}
}
void RunIteration() {
::frc971::wpilib::SendRobotState(my_pid_, ds_);
const auto values = constants::GetValues();
{
auto drivetrain_message = drivetrain_queue.position.MakeMessage();
drivetrain_message->right_encoder =
drivetrain_translate(drivetrain_right_encoder_->GetRaw());
drivetrain_message->right_speed =
drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
drivetrain_message->left_encoder =
-drivetrain_translate(drivetrain_left_encoder_->GetRaw());
drivetrain_message->left_speed =
drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
drivetrain_message.Send();
}
dma_synchronizer_->RunIteration();
{
auto superstructure_message = superstructure_queue.position.MakeMessage();
CopyPosition(intake_encoder_, &superstructure_message->intake,
Values::kIntakeEncoderCountsPerRevolution,
Values::kIntakeEncoderRatio, intake_pot_translate, true,
values.intake.pot_offset);
CopyPosition(indexer_counter_, &superstructure_message->column.indexer,
Values::kIndexerEncoderCountsPerRevolution,
Values::kIndexerEncoderRatio, false);
superstructure_message->theta_shooter =
encoder_translate(shooter_encoder_->GetRaw(),
Values::kShooterEncoderCountsPerRevolution,
Values::kShooterEncoderRatio);
CopyPosition(hood_encoder_, &superstructure_message->hood,
Values::kHoodEncoderCountsPerRevolution,
Values::kHoodEncoderRatio, true);
CopyPosition(turret_counter_, &superstructure_message->column.turret,
Values::kTurretEncoderCountsPerRevolution,
Values::kTurretEncoderRatio, false);
superstructure_message.Send();
}
{
auto auto_mode_message = ::frc971::autonomous::auto_mode.MakeMessage();
auto_mode_message->mode = 0;
for (size_t i = 0; i < autonomous_modes_.size(); ++i) {
if (autonomous_modes_[i]->Get()) {
auto_mode_message->mode |= 1 << i;
}
}
LOG_STRUCT(DEBUG, "auto mode", *auto_mode_message);
auto_mode_message.Send();
}
}
void Quit() { run_ = false; }
private:
double encoder_translate(int32_t value, double counts_per_revolution,
double ratio) {
return static_cast<double>(value) / counts_per_revolution * ratio *
(2.0 * M_PI);
}
void CopyPosition(const ::frc971::wpilib::DMAEncoder &encoder,
::frc971::IndexPosition *position,
double encoder_counts_per_revolution, double encoder_ratio,
bool reverse) {
const double multiplier = reverse ? -1.0 : 1.0;
position->encoder =
multiplier * encoder_translate(encoder.polled_encoder_value(),
encoder_counts_per_revolution,
encoder_ratio);
position->latched_encoder =
multiplier * encoder_translate(encoder.last_encoder_value(),
encoder_counts_per_revolution,
encoder_ratio);
position->index_pulses = encoder.index_posedge_count();
}
void CopyPosition(const AbsoluteEncoderAndPotentiometer &encoder,
::frc971::PotAndAbsolutePosition *position,
double encoder_counts_per_revolution, double encoder_ratio,
::std::function<double(double)> potentiometer_translate,
bool reverse, double pot_offset) {
const double multiplier = reverse ? -1.0 : 1.0;
position->pot = multiplier * potentiometer_translate(
encoder.ReadPotentiometerVoltage()) +
pot_offset;
position->encoder =
multiplier * encoder_translate(encoder.ReadRelativeEncoder(),
encoder_counts_per_revolution,
encoder_ratio);
position->absolute_encoder =
(reverse ? (1.0 - encoder.ReadAbsoluteEncoder())
: encoder.ReadAbsoluteEncoder()) *
encoder_ratio * (2.0 * M_PI);
}
void CopyPosition(const ::frc971::wpilib::DMAEdgeCounter &counter,
::frc971::HallEffectAndPosition *position,
double encoder_counts_per_revolution, double encoder_ratio,
bool reverse) {
const double multiplier = reverse ? -1.0 : 1.0;
position->position =
multiplier * encoder_translate(counter.polled_encoder(),
encoder_counts_per_revolution,
encoder_ratio);
position->current = !counter.polled_value();
position->posedge_count = counter.negative_count();
position->negedge_count = counter.positive_count();
position->posedge_value =
multiplier * encoder_translate(counter.last_negative_encoder_value(),
encoder_counts_per_revolution,
encoder_ratio);
position->negedge_value =
multiplier * encoder_translate(counter.last_positive_encoder_value(),
encoder_counts_per_revolution,
encoder_ratio);
}
int32_t my_pid_;
DriverStation *ds_;
::std::unique_ptr<::frc971::wpilib::DMASynchronizer> dma_synchronizer_;
DigitalGlitchFilter fast_encoder_filter_, medium_encoder_filter_,
hall_filter_;
::std::unique_ptr<Encoder> drivetrain_left_encoder_,
drivetrain_right_encoder_;
AbsoluteEncoderAndPotentiometer intake_encoder_;
::std::unique_ptr<Encoder> indexer_encoder_;
::std::unique_ptr<DigitalInput> indexer_hall_;
::frc971::wpilib::DMAEdgeCounter indexer_counter_;
::std::unique_ptr<Encoder> turret_encoder_;
::std::unique_ptr<DigitalInput> turret_hall_;
::frc971::wpilib::DMAEdgeCounter turret_counter_;
::frc971::wpilib::DMAEncoder hood_encoder_;
::std::unique_ptr<Encoder> shooter_encoder_;
::std::array<::std::unique_ptr<DigitalInput>, 4> autonomous_modes_;
::std::atomic<bool> run_{true};
};
class SolenoidWriter {
public:
SolenoidWriter()
: superstructure_(".y2017.control_loops.superstructure_queue.output") {}
::frc971::wpilib::BufferedPcm *pcm() { return &pcm_; }
void set_lights(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
lights_ = ::std::move(s);
}
void set_rgb_light(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
rgb_lights_ = ::std::move(s);
}
void operator()() {
::aos::SetCurrentThreadName("Solenoids");
::aos::SetCurrentThreadRealtimePriority(27);
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
::std::chrono::milliseconds(1));
while (run_) {
{
const int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
}
}
{
superstructure_.FetchLatest();
if (superstructure_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *superstructure_);
lights_->Set(superstructure_->lights_on);
rgb_lights_->Set(superstructure_->red_light_on |
superstructure_->green_light_on |
superstructure_->blue_light_on);
}
}
pcm_.Flush();
}
}
void Quit() { run_ = false; }
private:
::frc971::wpilib::BufferedPcm pcm_;
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> lights_, rgb_lights_;
::aos::Queue<
::y2017::control_loops::SuperstructureQueue::Output>
superstructure_;
::std::atomic<bool> run_{true};
};
class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
void set_drivetrain_left_victor(::std::unique_ptr<VictorSP> t) {
drivetrain_left_victor_ = ::std::move(t);
}
void set_drivetrain_right_victor(::std::unique_ptr<VictorSP> t) {
drivetrain_right_victor_ = ::std::move(t);
}
private:
virtual void Read() override {
::frc971::control_loops::drivetrain_queue.output.FetchAnother();
}
virtual void Write() override {
auto &queue = ::frc971::control_loops::drivetrain_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
drivetrain_left_victor_->SetSpeed(-queue->left_voltage / 12.0);
drivetrain_right_victor_->SetSpeed(queue->right_voltage / 12.0);
}
virtual void Stop() override {
LOG(WARNING, "drivetrain output too old\n");
drivetrain_left_victor_->SetDisabled();
drivetrain_right_victor_->SetDisabled();
}
::std::unique_ptr<VictorSP> drivetrain_left_victor_, drivetrain_right_victor_;
};
class SuperstructureWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
void set_intake_victor(::std::unique_ptr<VictorSP> t) {
intake_victor_ = ::std::move(t);
}
void set_intake_rollers_victor(::std::unique_ptr<VictorSP> t) {
intake_rollers_victor_ = ::std::move(t);
}
void set_indexer_victor(::std::unique_ptr<VictorSP> t) {
indexer_victor_ = ::std::move(t);
}
void set_indexer_roller_victor(::std::unique_ptr<VictorSP> t) {
indexer_roller_victor_ = ::std::move(t);
}
void set_gear_servo(::std::unique_ptr<::frc::Servo> t) {
gear_servo_ = ::std::move(t);
}
void set_shooter_victor(::std::unique_ptr<VictorSP> t) {
shooter_victor_ = ::std::move(t);
}
void set_turret_victor(::std::unique_ptr<VictorSP> t) {
turret_victor_ = ::std::move(t);
}
void set_hood_victor(::std::unique_ptr<VictorSP> t) {
hood_victor_ = ::std::move(t);
}
void set_red_light(::std::unique_ptr<DigitalOutput> t) {
red_light_ = ::std::move(t);
}
void set_green_light(::std::unique_ptr<DigitalOutput> t) {
green_light_ = ::std::move(t);
}
void set_blue_light(::std::unique_ptr<DigitalOutput> t) {
blue_light_ = ::std::move(t);
}
private:
virtual void Read() override {
::y2017::control_loops::superstructure_queue.output.FetchAnother();
}
virtual void Write() override {
auto &queue = ::y2017::control_loops::superstructure_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
intake_victor_->SetSpeed(::aos::Clip(queue->voltage_intake,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
intake_rollers_victor_->SetSpeed(queue->voltage_intake_rollers / 12.0);
indexer_victor_->SetSpeed(-queue->voltage_indexer / 12.0);
indexer_roller_victor_->SetSpeed(queue->voltage_indexer_rollers / 12.0);
turret_victor_->SetSpeed(::aos::Clip(-queue->voltage_turret,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
hood_victor_->SetSpeed(
::aos::Clip(queue->voltage_hood, -kMaxBringupPower, kMaxBringupPower) /
12.0);
shooter_victor_->SetSpeed(queue->voltage_shooter / 12.0);
red_light_->Set(queue->red_light_on);
green_light_->Set(queue->green_light_on);
blue_light_->Set(queue->blue_light_on);
gear_servo_->Set(queue->gear_servo);
}
virtual void Stop() override {
LOG(WARNING, "Superstructure output too old.\n");
intake_victor_->SetDisabled();
intake_rollers_victor_->SetDisabled();
indexer_victor_->SetDisabled();
indexer_roller_victor_->SetDisabled();
turret_victor_->SetDisabled();
hood_victor_->SetDisabled();
shooter_victor_->SetDisabled();
gear_servo_->SetOffline();
red_light_->Set(true);
green_light_->Set(true);
blue_light_->Set(true);
}
::std::unique_ptr<VictorSP> intake_victor_, intake_rollers_victor_,
indexer_victor_, indexer_roller_victor_, shooter_victor_,
turret_victor_, hood_victor_;
::std::unique_ptr<::frc::Servo> gear_servo_;
::std::unique_ptr<DigitalOutput> red_light_, green_light_, blue_light_;
};
class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
public:
::std::unique_ptr<Encoder> make_encoder(int index) {
return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
Encoder::k4X);
}
void Run() override {
::aos::InitNRT();
::aos::SetCurrentThreadName("StartCompetition");
::frc971::wpilib::JoystickSender joystick_sender;
::std::thread joystick_thread(::std::ref(joystick_sender));
::frc971::wpilib::PDPFetcher pdp_fetcher;
::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
SensorReader reader;
// TODO(campbell): Update port numbers
reader.set_drivetrain_left_encoder(make_encoder(0));
reader.set_drivetrain_right_encoder(make_encoder(1));
reader.set_intake_encoder(make_encoder(3));
reader.set_intake_absolute(make_unique<DigitalInput>(0));
reader.set_intake_potentiometer(make_unique<AnalogInput>(4));
reader.set_indexer_encoder(make_encoder(5));
reader.set_indexer_hall(make_unique<DigitalInput>(4));
reader.set_turret_encoder(make_encoder(6));
reader.set_turret_hall(make_unique<DigitalInput>(2));
reader.set_hood_encoder(make_encoder(4));
reader.set_hood_index(make_unique<DigitalInput>(1));
reader.set_shooter_encoder(make_encoder(2));
reader.set_autonomous_mode(0, make_unique<DigitalInput>(9));
reader.set_autonomous_mode(1, make_unique<DigitalInput>(8));
reader.set_autonomous_mode(2, make_unique<DigitalInput>(7));
reader.set_autonomous_mode(3, make_unique<DigitalInput>(6));
reader.set_dma(make_unique<DMA>());
::std::thread reader_thread(::std::ref(reader));
auto imu_trigger = make_unique<DigitalInput>(3);
::frc971::wpilib::ADIS16448 imu(SPI::Port::kOnboardCS1, imu_trigger.get());
imu.SetDummySPI(SPI::Port::kOnboardCS2);
auto imu_reset = make_unique<DigitalOutput>(6);
imu.set_reset(imu_reset.get());
::std::thread imu_thread(::std::ref(imu));
DrivetrainWriter drivetrain_writer;
drivetrain_writer.set_drivetrain_left_victor(
::std::unique_ptr<VictorSP>(new VictorSP(7)));
drivetrain_writer.set_drivetrain_right_victor(
::std::unique_ptr<VictorSP>(new VictorSP(3)));
::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
SuperstructureWriter superstructure_writer;
superstructure_writer.set_intake_victor(
::std::unique_ptr<VictorSP>(new VictorSP(1)));
superstructure_writer.set_intake_rollers_victor(
::std::unique_ptr<VictorSP>(new VictorSP(4)));
superstructure_writer.set_indexer_victor(
::std::unique_ptr<VictorSP>(new VictorSP(6)));
superstructure_writer.set_indexer_roller_victor(
::std::unique_ptr<VictorSP>(new VictorSP(5)));
superstructure_writer.set_turret_victor(
::std::unique_ptr<VictorSP>(new VictorSP(9)));
superstructure_writer.set_hood_victor(
::std::unique_ptr<VictorSP>(new VictorSP(2)));
superstructure_writer.set_shooter_victor(
::std::unique_ptr<VictorSP>(new VictorSP(8)));
superstructure_writer.set_gear_servo(
::std::unique_ptr<Servo>(new Servo(0)));
superstructure_writer.set_red_light(
::std::unique_ptr<DigitalOutput>(new DigitalOutput(5)));
superstructure_writer.set_green_light(
::std::unique_ptr<DigitalOutput>(new DigitalOutput(24)));
superstructure_writer.set_blue_light(
::std::unique_ptr<DigitalOutput>(new DigitalOutput(25)));
::std::thread superstructure_writer_thread(
::std::ref(superstructure_writer));
SolenoidWriter solenoid_writer;
solenoid_writer.set_lights(solenoid_writer.pcm()->MakeSolenoid(0));
solenoid_writer.set_rgb_light(solenoid_writer.pcm()->MakeSolenoid(1));
::std::thread solenoid_thread(::std::ref(solenoid_writer));
// Wait forever. Not much else to do...
while (true) {
const int r = select(0, nullptr, nullptr, nullptr, nullptr);
if (r != 0) {
PLOG(WARNING, "infinite select failed");
} else {
PLOG(WARNING, "infinite select succeeded??\n");
}
}
LOG(ERROR, "Exiting WPILibRobot\n");
joystick_sender.Quit();
joystick_thread.join();
pdp_fetcher.Quit();
pdp_fetcher_thread.join();
reader.Quit();
reader_thread.join();
imu.Quit();
imu_thread.join();
drivetrain_writer.Quit();
drivetrain_writer_thread.join();
superstructure_writer.Quit();
superstructure_writer_thread.join();
::aos::Cleanup();
}
};
} // namespace
} // namespace wpilib
} // namespace y2017
AOS_ROBOT_CLASS(::y2017::wpilib::WPILibRobot);