Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2017/control_loops/python/hood.py b/y2017/control_loops/python/hood.py
index fb5aa4e..58bd15e 100755
--- a/y2017/control_loops/python/hood.py
+++ b/y2017/control_loops/python/hood.py
@@ -12,329 +12,339 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
+
 
 class Hood(control_loop.ControlLoop):
-  def __init__(self, name='Hood'):
-    super(Hood, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.43
-    # Stall Current in Amps
-    self.stall_current = 53.0
-    self.free_speed_rpm = 13180.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60
-    # Free Current in Amps
-    self.free_current = 1.8
 
-    # Resistance of the motor
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-               (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # First axle gear ratio off the motor
-    self.G1 = (12.0 / 60.0)
-    # Second axle gear ratio off the motor
-    self.G2 = self.G1 * (14.0 / 36.0)
-    # Third axle gear ratio off the motor
-    self.G3 = self.G2 * (14.0 / 36.0)
-    # The last gear reduction (encoder -> hood angle)
-    self.last_G = (20.0 / 345.0)
-    # Gear ratio
-    self.G = (12.0 / 60.0) * (14.0 / 36.0) * (14.0 / 36.0) * self.last_G
+    def __init__(self, name='Hood'):
+        super(Hood, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.43
+        # Stall Current in Amps
+        self.stall_current = 53.0
+        self.free_speed_rpm = 13180.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60
+        # Free Current in Amps
+        self.free_current = 1.8
 
-    # 36 tooth gear inertia in kg * m^2
-    self.big_gear_inertia = 0.5 * 0.039 * ((36.0 / 40.0 * 0.025) ** 2)
+        # Resistance of the motor
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # First axle gear ratio off the motor
+        self.G1 = (12.0 / 60.0)
+        # Second axle gear ratio off the motor
+        self.G2 = self.G1 * (14.0 / 36.0)
+        # Third axle gear ratio off the motor
+        self.G3 = self.G2 * (14.0 / 36.0)
+        # The last gear reduction (encoder -> hood angle)
+        self.last_G = (20.0 / 345.0)
+        # Gear ratio
+        self.G = (12.0 / 60.0) * (14.0 / 36.0) * (14.0 / 36.0) * self.last_G
 
-    # Motor inertia in kg * m^2
-    self.motor_inertia = 0.000006
-    glog.debug(self.big_gear_inertia)
+        # 36 tooth gear inertia in kg * m^2
+        self.big_gear_inertia = 0.5 * 0.039 * ((36.0 / 40.0 * 0.025)**2)
 
-    # Moment of inertia, measured in CAD.
-    # Extra mass to compensate for friction is added on.
-    self.J = 0.08 + 2.3 + \
-             self.big_gear_inertia * ((self.G1 / self.G) ** 2) + \
-             self.big_gear_inertia * ((self.G2 / self.G) ** 2) + \
-             self.motor_inertia * ((1.0 / self.G) ** 2.0)
-    glog.debug('J effective %f', self.J)
+        # Motor inertia in kg * m^2
+        self.motor_inertia = 0.000006
+        glog.debug(self.big_gear_inertia)
 
-    # Control loop time step
-    self.dt = 0.005
+        # Moment of inertia, measured in CAD.
+        # Extra mass to compensate for friction is added on.
+        self.J = 0.08 + 2.3 + \
+                 self.big_gear_inertia * ((self.G1 / self.G) ** 2) + \
+                 self.big_gear_inertia * ((self.G2 / self.G) ** 2) + \
+                 self.motor_inertia * ((1.0 / self.G) ** 2.0)
+        glog.debug('J effective %f', self.J)
 
-    # State is [position, velocity]
-    # Input is [Voltage]
+        # Control loop time step
+        self.dt = 0.005
 
-    C1 = self.Kt / (self.R * self.J * self.Kv * self.G * self.G)
-    C2 = self.Kt / (self.J * self.R * self.G)
+        # State is [position, velocity]
+        # Input is [Voltage]
 
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -C1]])
+        C1 = self.Kt / (self.R * self.J * self.Kv * self.G * self.G)
+        C2 = self.Kt / (self.J * self.R * self.G)
 
-    # Start with the unmodified input
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [C2]])
+        self.A_continuous = numpy.matrix([[0, 1], [0, -C1]])
 
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        # Start with the unmodified input
+        self.B_continuous = numpy.matrix([[0], [C2]])
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    controllability = controls.ctrb(self.A, self.B)
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    glog.debug('Free speed is %f',
-               -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
-    glog.debug(repr(self.A_continuous))
+        controllability = controls.ctrb(self.A, self.B)
 
-    # Calculate the LQR controller gain
-    q_pos = 0.015
-    q_vel = 0.40
-    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_vel ** 2.0))]])
+        glog.debug('Free speed is %f',
+                   -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
+        glog.debug(repr(self.A_continuous))
 
-    self.R = numpy.matrix([[(5.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        # Calculate the LQR controller gain
+        q_pos = 0.015
+        q_vel = 0.40
+        self.Q = numpy.matrix([[(1.0 / (q_pos**2.0)), 0.0],
+                               [0.0, (1.0 / (q_vel**2.0))]])
 
-    # Calculate the feed forwards gain.
-    q_pos_ff = 0.005
-    q_vel_ff = 1.0
-    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
+        self.R = numpy.matrix([[(5.0 / (12.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        # Calculate the feed forwards gain.
+        q_pos_ff = 0.005
+        q_vel_ff = 1.0
+        self.Qff = numpy.matrix([[(1.0 / (q_pos_ff**2.0)), 0.0],
+                                 [0.0, (1.0 / (q_vel_ff**2.0))]])
 
-    glog.debug('K %s', repr(self.K))
-    glog.debug('Poles are %s',
-               repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    q_pos = 0.10
-    q_vel = 1.65
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
-                           [0.0, (q_vel ** 2.0)]])
+        glog.debug('K %s', repr(self.K))
+        glog.debug('Poles are %s',
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    r_volts = 0.025
-    self.R = numpy.matrix([[(r_volts ** 2.0)]])
+        q_pos = 0.10
+        q_vel = 1.65
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0], [0.0, (q_vel**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        r_volts = 0.025
+        self.R = numpy.matrix([[(r_volts**2.0)]])
 
-    glog.debug('Kal %s', repr(self.KalmanGain))
-    self.L = self.A * self.KalmanGain
-    glog.debug('KalL is %s', repr(self.L))
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
 
-    # The box formed by U_min and U_max must encompass all possible values,
-    # or else Austin's code gets angry.
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        glog.debug('Kal %s', repr(self.KalmanGain))
+        self.L = self.A * self.KalmanGain
+        glog.debug('KalL is %s', repr(self.L))
 
-    self.InitializeState()
+        # The box formed by U_min and U_max must encompass all possible values,
+        # or else Austin's code gets angry.
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
+
 
 class IntegralHood(Hood):
-  def __init__(self, name='IntegralHood'):
-    super(IntegralHood, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='IntegralHood'):
+        super(IntegralHood, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.01
-    q_vel = 4.0
-    q_voltage = 4.0
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    r_pos = 0.001
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.01
+        q_vel = 4.0
+        q_voltage = 4.0
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.001
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
 
-    self.InitializeState()
+        self.Kff = numpy.concatenate(
+            (self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+
+        self.InitializeState()
+
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.v_hat = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, hood, end_goal,
-             controller_hood,
-             observer_hood=None,
-             iterations=200):
-    """Runs the hood plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.v_hat = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
 
-      Args:
-        hood: hood object to use.
-        end_goal: end_goal state.
-        controller_hood: Hood object to get K from, or None if we should
-            use hood.
-        observer_hood: Hood object to use for the observer, or None if we should
-            use the actual state.
-        iterations: Number of timesteps to run the model for.
-    """
+    def run_test(self,
+                 hood,
+                 end_goal,
+                 controller_hood,
+                 observer_hood=None,
+                 iterations=200):
+        """Runs the hood plant with an initial condition and goal.
 
-    if controller_hood is None:
-      controller_hood = hood
+        Args:
+            hood: hood object to use.
+            end_goal: end_goal state.
+            controller_hood: Hood object to get K from, or None if we should
+                use hood.
+            observer_hood: Hood object to use for the observer, or None if we should
+                use the actual state.
+            iterations: Number of timesteps to run the model for.
+        """
 
-    vbat = 12.0
+        if controller_hood is None:
+            controller_hood = hood
 
-    if self.t:
-      initial_t = self.t[-1] + hood.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    goal = numpy.concatenate((hood.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
+        if self.t:
+            initial_t = self.t[-1] + hood.dt
+        else:
+            initial_t = 0
 
-    profile = TrapezoidProfile(hood.dt)
-    profile.set_maximum_acceleration(10.0)
-    profile.set_maximum_velocity(1.0)
-    profile.SetGoal(goal[0, 0])
+        goal = numpy.concatenate((hood.X, numpy.matrix(numpy.zeros((1, 1)))),
+                                 axis=0)
 
-    U_last = numpy.matrix(numpy.zeros((1, 1)))
-    for i in xrange(iterations):
-      observer_hood.Y = hood.Y
-      observer_hood.CorrectObserver(U_last)
+        profile = TrapezoidProfile(hood.dt)
+        profile.set_maximum_acceleration(10.0)
+        profile.set_maximum_velocity(1.0)
+        profile.SetGoal(goal[0, 0])
 
-      self.offset.append(observer_hood.X_hat[2, 0])
-      self.x_hat.append(observer_hood.X_hat[0, 0])
+        U_last = numpy.matrix(numpy.zeros((1, 1)))
+        for i in xrange(iterations):
+            observer_hood.Y = hood.Y
+            observer_hood.CorrectObserver(U_last)
 
-      next_goal = numpy.concatenate(
-          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
-           numpy.matrix(numpy.zeros((1, 1)))),
-          axis=0)
+            self.offset.append(observer_hood.X_hat[2, 0])
+            self.x_hat.append(observer_hood.X_hat[0, 0])
 
-      ff_U = controller_hood.Kff * (next_goal - observer_hood.A * goal)
+            next_goal = numpy.concatenate(
+                (profile.Update(end_goal[0, 0], end_goal[1, 0]),
+                 numpy.matrix(numpy.zeros((1, 1)))),
+                axis=0)
 
-      U_uncapped = controller_hood.K * (goal - observer_hood.X_hat) + ff_U
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(hood.X[0, 0])
+            ff_U = controller_hood.Kff * (next_goal - observer_hood.A * goal)
 
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
+            U_uncapped = controller_hood.K * (goal - observer_hood.X_hat) + ff_U
+            U = U_uncapped.copy()
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(hood.X[0, 0])
 
-      self.v.append(hood.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / hood.dt)
-      self.v_hat.append(observer_hood.X_hat[1, 0])
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-      offset = 0.0
-      if i > 100:
-        offset = 2.0
-      hood.Update(U + offset)
+            self.v.append(hood.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / hood.dt)
+            self.v_hat.append(observer_hood.X_hat[1, 0])
 
-      observer_hood.PredictObserver(U)
+            offset = 0.0
+            if i > 100:
+                offset = 2.0
+            hood.Update(U + offset)
 
-      self.t.append(initial_t + i * hood.dt)
-      self.u.append(U[0, 0])
+            observer_hood.PredictObserver(U)
 
-      ff_U -= U_uncapped - U
-      goal = controller_hood.A * goal + controller_hood.B * ff_U
+            self.t.append(initial_t + i * hood.dt)
+            self.u.append(U[0, 0])
 
-      if U[0, 0] != U_uncapped[0, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+            ff_U -= U_uncapped - U
+            goal = controller_hood.A * goal + controller_hood.B * ff_U
 
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr(end_goal - goal))
-    glog.debug('error %s', repr(observer_hood.X_hat - end_goal))
+            if U[0, 0] != U_uncapped[0, 0]:
+                profile.MoveCurrentState(
+                    numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.x, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.plot(self.t, self.v, label='v')
-    pylab.plot(self.t, self.v_hat, label='v_hat')
-    pylab.legend()
+        glog.debug('Time: %f', self.t[-1])
+        glog.debug('goal_error %s', repr(end_goal - goal))
+        glog.debug('error %s', repr(observer_hood.X_hat - end_goal))
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.x, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.plot(self.t, self.v, label='v')
+        pylab.plot(self.t, self.v_hat, label='v_hat')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
 
-    pylab.show()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
+
+        pylab.show()
 
 
 def main(argv):
 
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  hood = Hood()
-  hood_controller = IntegralHood()
-  observer_hood = IntegralHood()
+    hood = Hood()
+    hood_controller = IntegralHood()
+    observer_hood = IntegralHood()
 
-  # Test moving the hood with constant separation.
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[numpy.pi/4.0], [0.0], [0.0]])
-  scenario_plotter.run_test(hood, end_goal=R,
-                            controller_hood=hood_controller,
-                            observer_hood=observer_hood, iterations=200)
+    # Test moving the hood with constant separation.
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[numpy.pi / 4.0], [0.0], [0.0]])
+    scenario_plotter.run_test(
+        hood,
+        end_goal=R,
+        controller_hood=hood_controller,
+        observer_hood=observer_hood,
+        iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  # Write the generated constants out to a file.
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name for the hood and integral hood.')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'hood']
-    hood = Hood('Hood')
-    loop_writer = control_loop.ControlLoopWriter('Hood', [hood],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', hood.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', hood.G))
-    loop_writer.Write(argv[1], argv[2])
+    # Write the generated constants out to a file.
+    if len(argv) != 5:
+        glog.fatal(
+            'Expected .h file name and .cc file name for the hood and integral hood.'
+        )
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'hood']
+        hood = Hood('Hood')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Hood', [hood], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', hood.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', hood.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_hood = IntegralHood('IntegralHood')
-    integral_loop_writer = control_loop.ControlLoopWriter('IntegralHood', [integral_hood],
-                                                          namespaces=namespaces)
-    integral_loop_writer.AddConstant(control_loop.Constant('kLastReduction', '%f',
-          integral_hood.last_G))
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_hood = IntegralHood('IntegralHood')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralHood', [integral_hood], namespaces=namespaces)
+        integral_loop_writer.AddConstant(
+            control_loop.Constant('kLastReduction', '%f', integral_hood.last_G))
+        integral_loop_writer.Write(argv[3], argv[4])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))