Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2017/control_loops/python/column.py b/y2017/control_loops/python/column.py
index 1f8bd76..70cd649 100755
--- a/y2017/control_loops/python/column.py
+++ b/y2017/control_loops/python/column.py
@@ -14,383 +14,413 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
 
 
 class ColumnController(control_loop.ControlLoop):
-  def __init__(self, name='Column'):
-    super(ColumnController, self).__init__(name)
-    self.turret = turret.Turret(name + 'Turret')
-    self.indexer = indexer.Indexer(name + 'Indexer')
 
-    # Control loop time step
-    self.dt = 0.005
+    def __init__(self, name='Column'):
+        super(ColumnController, self).__init__(name)
+        self.turret = turret.Turret(name + 'Turret')
+        self.indexer = indexer.Indexer(name + 'Indexer')
 
-    # State is [position_indexer,
-    #           velocity_indexer,
-    #           position_shooter,
-    #           velocity_shooter]
-    # Input is [volts_indexer, volts_shooter]
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 2)))
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A_continuous[0, 0] = -(self.indexer.Kt / self.indexer.Kv / (self.indexer.J * self.indexer.resistance * self.indexer.G * self.indexer.G) +
-                                self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G))
-    self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / (self.indexer.J * self.turret.resistance * self.turret.G * self.turret.G)
-    self.B_continuous[0, 0] = self.indexer.Kt / (self.indexer.J * self.indexer.resistance * self.indexer.G)
-    self.B_continuous[0, 1] = -self.turret.Kt / (self.indexer.J * self.turret.resistance * self.turret.G)
+        # State is [position_indexer,
+        #           velocity_indexer,
+        #           position_shooter,
+        #           velocity_shooter]
+        # Input is [volts_indexer, volts_shooter]
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 2)))
 
-    self.A_continuous[1, 2] = 1
+        self.A_continuous[0, 0] = -(
+            self.indexer.Kt / self.indexer.Kv /
+            (self.indexer.J * self.indexer.resistance * self.indexer.G *
+             self.indexer.G) + self.turret.Kt / self.turret.Kv /
+            (self.indexer.J * self.turret.resistance * self.turret.G *
+             self.turret.G))
+        self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / (
+            self.indexer.J * self.turret.resistance * self.turret.G *
+            self.turret.G)
+        self.B_continuous[0, 0] = self.indexer.Kt / (
+            self.indexer.J * self.indexer.resistance * self.indexer.G)
+        self.B_continuous[0, 1] = -self.turret.Kt / (
+            self.indexer.J * self.turret.resistance * self.turret.G)
 
-    self.A_continuous[2, 0] = self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G)
-    self.A_continuous[2, 2] = -self.turret.Kt / self.turret.Kv / (self.turret.J * self.turret.resistance * self.turret.G * self.turret.G)
+        self.A_continuous[1, 2] = 1
 
-    self.B_continuous[2, 1] = self.turret.Kt / (self.turret.J * self.turret.resistance * self.turret.G)
+        self.A_continuous[2, 0] = self.turret.Kt / self.turret.Kv / (
+            self.turret.J * self.turret.resistance * self.turret.G *
+            self.turret.G)
+        self.A_continuous[2, 2] = -self.turret.Kt / self.turret.Kv / (
+            self.turret.J * self.turret.resistance * self.turret.G *
+            self.turret.G)
 
-    self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]])
-    self.D = numpy.matrix([[0, 0], [0, 0]])
+        self.B_continuous[2, 1] = self.turret.Kt / (
+            self.turret.J * self.turret.resistance * self.turret.G)
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]])
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    q_indexer_vel = 13.0
-    q_pos = 0.05
-    q_vel = 0.8
-    self.Q = numpy.matrix([[(1.0 / (q_indexer_vel ** 2.0)), 0.0, 0.0],
-                           [0.0, (1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
-                           [0.0, (1.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        q_indexer_vel = 13.0
+        q_pos = 0.05
+        q_vel = 0.8
+        self.Q = numpy.matrix([[(1.0 / (q_indexer_vel**2.0)), 0.0, 0.0],
+                               [0.0, (1.0 / (q_pos**2.0)), 0.0],
+                               [0.0, 0.0, (1.0 / (q_vel**2.0))]])
 
-    glog.debug('Controller poles are ' + repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.R = numpy.matrix([[(1.0 / (12.0**2.0)), 0.0],
+                               [0.0, (1.0 / (12.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    q_vel_indexer_ff = 0.000005
-    q_pos_ff = 0.0000005
-    q_vel_ff = 0.00008
-    self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff ** 2.0)), 0.0, 0.0],
-                             [0.0, (1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, 0.0, (1.0 / (q_vel_ff ** 2.0))]])
+        glog.debug('Controller poles are ' +
+                   repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        q_vel_indexer_ff = 0.000005
+        q_pos_ff = 0.0000005
+        q_vel_ff = 0.00008
+        self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff**2.0)), 0.0, 0.0],
+                                 [0.0, (1.0 / (q_pos_ff**2.0)), 0.0],
+                                 [0.0, 0.0, (1.0 / (q_vel_ff**2.0))]])
 
-    self.U_max = numpy.matrix([[12.0], [12.0]])
-    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0], [12.0]])
+        self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+        self.InitializeState()
 
 
 class Column(ColumnController):
-  def __init__(self, name='Column', disable_indexer=False):
-    super(Column, self).__init__(name)
-    A_continuous = numpy.matrix(numpy.zeros((4, 4)))
-    B_continuous = numpy.matrix(numpy.zeros((4, 2)))
 
-    A_continuous[0, 1] = 1
-    A_continuous[1:, 1:] = self.A_continuous
-    B_continuous[1:, :] = self.B_continuous
+    def __init__(self, name='Column', disable_indexer=False):
+        super(Column, self).__init__(name)
+        A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+        B_continuous = numpy.matrix(numpy.zeros((4, 2)))
 
-    self.A_continuous = A_continuous
-    self.B_continuous = B_continuous
+        A_continuous[0, 1] = 1
+        A_continuous[1:, 1:] = self.A_continuous
+        B_continuous[1:, :] = self.B_continuous
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.A_continuous = A_continuous
+        self.B_continuous = B_continuous
 
-    self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]])
-    self.D = numpy.matrix([[0, 0], [0, 0]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    orig_K = self.K
-    self.K = numpy.matrix(numpy.zeros((2, 4)))
-    self.K[:, 1:] = orig_K
+        self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]])
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    glog.debug('K is ' + repr(self.K))
-    # TODO(austin): Do we want to damp velocity out or not when disabled?
-    #if disable_indexer:
-    #  self.K[0, 1] = 0.0
-    #  self.K[1, 1] = 0.0
+        orig_K = self.K
+        self.K = numpy.matrix(numpy.zeros((2, 4)))
+        self.K[:, 1:] = orig_K
 
-    orig_Kff = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((2, 4)))
-    self.Kff[:, 1:] = orig_Kff
+        glog.debug('K is ' + repr(self.K))
+        # TODO(austin): Do we want to damp velocity out or not when disabled?
+        #if disable_indexer:
+        #  self.K[0, 1] = 0.0
+        #  self.K[1, 1] = 0.0
 
-    q_pos = 0.12
-    q_vel = 2.00
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0, 0.0],
-                           [0.0, 0.0, (q_pos ** 2.0), 0.0],
-                           [0.0, 0.0, 0.0, (q_vel ** 2.0)]])
+        orig_Kff = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((2, 4)))
+        self.Kff[:, 1:] = orig_Kff
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0],
-                           [0.0, (r_pos ** 2.0)]])
+        q_pos = 0.12
+        q_vel = 2.00
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0, 0.0],
+                               [0.0, 0.0, (q_pos**2.0), 0.0],
+                               [0.0, 0.0, 0.0, (q_vel**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]])
 
-    self.InitializeState()
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
+
+        self.InitializeState()
 
 
 class IntegralColumn(Column):
-  def __init__(self, name='IntegralColumn', voltage_error_noise=None,
-               disable_indexer=False):
-    super(IntegralColumn, self).__init__(name)
 
-    A_continuous = numpy.matrix(numpy.zeros((6, 6)))
-    A_continuous[0:4, 0:4] = self.A_continuous
-    A_continuous[0:4:, 4:6] = self.B_continuous
+    def __init__(self,
+                 name='IntegralColumn',
+                 voltage_error_noise=None,
+                 disable_indexer=False):
+        super(IntegralColumn, self).__init__(name)
 
-    B_continuous = numpy.matrix(numpy.zeros((6, 2)))
-    B_continuous[0:4, :] = self.B_continuous
+        A_continuous = numpy.matrix(numpy.zeros((6, 6)))
+        A_continuous[0:4, 0:4] = self.A_continuous
+        A_continuous[0:4:, 4:6] = self.B_continuous
 
-    self.A_continuous = A_continuous
-    self.B_continuous = B_continuous
+        B_continuous = numpy.matrix(numpy.zeros((6, 2)))
+        B_continuous[0:4, :] = self.B_continuous
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.A_continuous = A_continuous
+        self.B_continuous = B_continuous
 
-    C = numpy.matrix(numpy.zeros((2, 6)))
-    C[0:2, 0:4] = self.C
-    self.C = C
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.D = numpy.matrix([[0, 0], [0, 0]])
+        C = numpy.matrix(numpy.zeros((2, 6)))
+        C[0:2, 0:4] = self.C
+        self.C = C
 
-    orig_K = self.K
-    self.K = numpy.matrix(numpy.zeros((2, 6)))
-    self.K[:, 0:4] = orig_K
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    # TODO(austin): I'm not certain this is ideal.  If someone spins the bottom
-    # at a constant rate, we'll learn a voltage offset.  That should translate
-    # directly to a voltage on the turret to hold it steady.  I'm also not
-    # convinced we care that much.  If the indexer is off, it'll stop rather
-    # quickly anyways, so this is mostly a moot point.
-    if not disable_indexer:
-      self.K[0, 4] = 1
-    self.K[1, 5] = 1
+        orig_K = self.K
+        self.K = numpy.matrix(numpy.zeros((2, 6)))
+        self.K[:, 0:4] = orig_K
 
-    orig_Kff = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((2, 6)))
-    self.Kff[:, 0:4] = orig_Kff
+        # TODO(austin): I'm not certain this is ideal.  If someone spins the bottom
+        # at a constant rate, we'll learn a voltage offset.  That should translate
+        # directly to a voltage on the turret to hold it steady.  I'm also not
+        # convinced we care that much.  If the indexer is off, it'll stop rather
+        # quickly anyways, so this is mostly a moot point.
+        if not disable_indexer:
+            self.K[0, 4] = 1
+        self.K[1, 5] = 1
 
-    q_pos = 0.40
-    q_vel = 2.00
-    q_voltage = 8.0
-    if voltage_error_noise is not None:
-      q_voltage = voltage_error_noise
+        orig_Kff = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((2, 6)))
+        self.Kff[:, 0:4] = orig_Kff
 
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0],
-                           [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
-                           [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0)]])
+        q_pos = 0.40
+        q_vel = 2.00
+        q_voltage = 8.0
+        if voltage_error_noise is not None:
+            q_voltage = voltage_error_noise
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0],
-                           [0.0, (r_pos ** 2.0)]])
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0, 0.0, 0.0, 0.0],
+                               [0.0, 0.0, (q_pos**2.0), 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, (q_vel**2.0), 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, (q_voltage**2.0), 0.0],
+                               [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]])
 
-    self.InitializeState()
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.xi = []
-    self.xt = []
-    self.vi = []
-    self.vt = []
-    self.ai = []
-    self.at = []
-    self.x_hat = []
-    self.ui = []
-    self.ut = []
-    self.ui_fb = []
-    self.ut_fb = []
-    self.offseti = []
-    self.offsett = []
-    self.turret_error = []
 
-  def run_test(self, column, end_goal,
-             controller_column,
-             observer_column=None,
-             iterations=200):
-    """Runs the column plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.xi = []
+        self.xt = []
+        self.vi = []
+        self.vt = []
+        self.ai = []
+        self.at = []
+        self.x_hat = []
+        self.ui = []
+        self.ut = []
+        self.ui_fb = []
+        self.ut_fb = []
+        self.offseti = []
+        self.offsett = []
+        self.turret_error = []
 
-      Args:
-        column: column object to use.
-        end_goal: end_goal state.
-        controller_column: Intake object to get K from, or None if we should
-            use column.
-        observer_column: Intake object to use for the observer, or None if we should
-            use the actual state.
-        iterations: Number of timesteps to run the model for.
-    """
+    def run_test(self,
+                 column,
+                 end_goal,
+                 controller_column,
+                 observer_column=None,
+                 iterations=200):
+        """Runs the column plant with an initial condition and goal.
 
-    if controller_column is None:
-      controller_column = column
+        Args:
+            column: column object to use.
+            end_goal: end_goal state.
+            controller_column: Intake object to get K from, or None if we should
+                use column.
+            observer_column: Intake object to use for the observer, or None if we should
+                use the actual state.
+            iterations: Number of timesteps to run the model for.
+        """
 
-    vbat = 12.0
+        if controller_column is None:
+            controller_column = column
 
-    if self.t:
-      initial_t = self.t[-1] + column.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0)
+        if self.t:
+            initial_t = self.t[-1] + column.dt
+        else:
+            initial_t = 0
 
-    profile = TrapezoidProfile(column.dt)
-    profile.set_maximum_acceleration(10.0)
-    profile.set_maximum_velocity(3.0)
-    profile.SetGoal(goal[2, 0])
+        goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))),
+                                 axis=0)
 
-    U_last = numpy.matrix(numpy.zeros((2, 1)))
-    for i in xrange(iterations):
-      observer_column.Y = column.Y
-      observer_column.CorrectObserver(U_last)
+        profile = TrapezoidProfile(column.dt)
+        profile.set_maximum_acceleration(10.0)
+        profile.set_maximum_velocity(3.0)
+        profile.SetGoal(goal[2, 0])
 
-      self.offseti.append(observer_column.X_hat[4, 0])
-      self.offsett.append(observer_column.X_hat[5, 0])
-      self.x_hat.append(observer_column.X_hat[0, 0])
+        U_last = numpy.matrix(numpy.zeros((2, 1)))
+        for i in xrange(iterations):
+            observer_column.Y = column.Y
+            observer_column.CorrectObserver(U_last)
 
-      next_goal = numpy.concatenate(
-          (end_goal[0:2, :],
-           profile.Update(end_goal[2, 0], end_goal[3, 0]),
-           end_goal[4:6, :]),
-          axis=0)
+            self.offseti.append(observer_column.X_hat[4, 0])
+            self.offsett.append(observer_column.X_hat[5, 0])
+            self.x_hat.append(observer_column.X_hat[0, 0])
 
-      ff_U = controller_column.Kff * (next_goal - observer_column.A * goal)
-      fb_U = controller_column.K * (goal - observer_column.X_hat)
-      self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0)
-      self.ui_fb.append(fb_U[0, 0])
-      self.ut_fb.append(fb_U[1, 0])
+            next_goal = numpy.concatenate(
+                (end_goal[0:2, :], profile.Update(
+                    end_goal[2, 0], end_goal[3, 0]), end_goal[4:6, :]),
+                axis=0)
 
-      U_uncapped = ff_U + fb_U
+            ff_U = controller_column.Kff * (
+                next_goal - observer_column.A * goal)
+            fb_U = controller_column.K * (goal - observer_column.X_hat)
+            self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0)
+            self.ui_fb.append(fb_U[0, 0])
+            self.ut_fb.append(fb_U[1, 0])
 
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
-      self.xi.append(column.X[0, 0])
-      self.xt.append(column.X[2, 0])
+            U_uncapped = ff_U + fb_U
 
-      if self.vi:
-        last_vi = self.vi[-1]
-      else:
-        last_vi = 0
-      if self.vt:
-        last_vt = self.vt[-1]
-      else:
-        last_vt = 0
+            U = U_uncapped.copy()
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
+            self.xi.append(column.X[0, 0])
+            self.xt.append(column.X[2, 0])
 
-      self.vi.append(column.X[1, 0])
-      self.vt.append(column.X[3, 0])
-      self.ai.append((self.vi[-1] - last_vi) / column.dt)
-      self.at.append((self.vt[-1] - last_vt) / column.dt)
+            if self.vi:
+                last_vi = self.vi[-1]
+            else:
+                last_vi = 0
+            if self.vt:
+                last_vt = self.vt[-1]
+            else:
+                last_vt = 0
 
-      offset = 0.0
-      if i > 100:
-        offset = 1.0
-      column.Update(U + numpy.matrix([[0.0], [offset]]))
+            self.vi.append(column.X[1, 0])
+            self.vt.append(column.X[3, 0])
+            self.ai.append((self.vi[-1] - last_vi) / column.dt)
+            self.at.append((self.vt[-1] - last_vt) / column.dt)
 
-      observer_column.PredictObserver(U)
+            offset = 0.0
+            if i > 100:
+                offset = 1.0
+            column.Update(U + numpy.matrix([[0.0], [offset]]))
 
-      self.t.append(initial_t + i * column.dt)
-      self.ui.append(U[0, 0])
-      self.ut.append(U[1, 0])
+            observer_column.PredictObserver(U)
 
-      ff_U -= U_uncapped - U
-      goal = controller_column.A * goal + controller_column.B * ff_U
+            self.t.append(initial_t + i * column.dt)
+            self.ui.append(U[0, 0])
+            self.ut.append(U[1, 0])
 
-      if U[1, 0] != U_uncapped[1, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
+            ff_U -= U_uncapped - U
+            goal = controller_column.A * goal + controller_column.B * ff_U
 
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr((end_goal - goal).T))
-    glog.debug('error %s', repr((observer_column.X_hat - end_goal).T))
+            if U[1, 0] != U_uncapped[1, 0]:
+                profile.MoveCurrentState(
+                    numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.xi, label='x_indexer')
-    pylab.plot(self.t, self.xt, label='x_turret')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.plot(self.t, self.turret_error, label='turret_error * 100')
-    pylab.legend()
+        glog.debug('Time: %f', self.t[-1])
+        glog.debug('goal_error %s', repr((end_goal - goal).T))
+        glog.debug('error %s', repr((observer_column.X_hat - end_goal).T))
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.ui, label='u_indexer')
-    pylab.plot(self.t, self.ui_fb, label='u_indexer_fb')
-    pylab.plot(self.t, self.ut, label='u_turret')
-    pylab.plot(self.t, self.ut_fb, label='u_turret_fb')
-    pylab.plot(self.t, self.offseti, label='voltage_offset_indexer')
-    pylab.plot(self.t, self.offsett, label='voltage_offset_turret')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.xi, label='x_indexer')
+        pylab.plot(self.t, self.xt, label='x_turret')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.plot(self.t, self.turret_error, label='turret_error * 100')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.ai, label='a_indexer')
-    pylab.plot(self.t, self.at, label='a_turret')
-    pylab.plot(self.t, self.vi, label='v_indexer')
-    pylab.plot(self.t, self.vt, label='v_turret')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.ui, label='u_indexer')
+        pylab.plot(self.t, self.ui_fb, label='u_indexer_fb')
+        pylab.plot(self.t, self.ut, label='u_turret')
+        pylab.plot(self.t, self.ut_fb, label='u_turret_fb')
+        pylab.plot(self.t, self.offseti, label='voltage_offset_indexer')
+        pylab.plot(self.t, self.offsett, label='voltage_offset_turret')
+        pylab.legend()
 
-    pylab.show()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.ai, label='a_indexer')
+        pylab.plot(self.t, self.at, label='a_turret')
+        pylab.plot(self.t, self.vi, label='v_indexer')
+        pylab.plot(self.t, self.vt, label='v_turret')
+        pylab.legend()
+
+        pylab.show()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  column = Column()
-  column_controller = IntegralColumn()
-  observer_column = IntegralColumn()
+    column = Column()
+    column_controller = IntegralColumn()
+    observer_column = IntegralColumn()
 
-  initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-  R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]])
-  scenario_plotter.run_test(column, end_goal=R, controller_column=column_controller,
-                            observer_column=observer_column, iterations=400)
+    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+    R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]])
+    scenario_plotter.run_test(
+        column,
+        end_goal=R,
+        controller_column=column_controller,
+        observer_column=observer_column,
+        iterations=400)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  if len(argv) != 7:
-    glog.fatal('Expected .h file name and .cc file names')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'column']
-    column = Column('Column')
-    loop_writer = control_loop.ControlLoopWriter('Column', [column],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kIndexerFreeSpeed', '%f', column.indexer.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kIndexerOutputRatio', '%f', column.indexer.G))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kTurretFreeSpeed', '%f', column.turret.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kTurretOutputRatio', '%f', column.turret.G))
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 7:
+        glog.fatal('Expected .h file name and .cc file names')
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'column']
+        column = Column('Column')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Column', [column], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kIndexerFreeSpeed', '%f',
+                                  column.indexer.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kIndexerOutputRatio', '%f',
+                                  column.indexer.G))
+        loop_writer.AddConstant(
+            control_loop.Constant('kTurretFreeSpeed', '%f',
+                                  column.turret.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kTurretOutputRatio', '%f', column.turret.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    # IntegralColumn controller 1 will disable the indexer.
-    integral_column = IntegralColumn('IntegralColumn')
-    disabled_integral_column = IntegralColumn('DisabledIntegralColumn',
-                                              disable_indexer=True)
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralColumn', [integral_column, disabled_integral_column],
-        namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        # IntegralColumn controller 1 will disable the indexer.
+        integral_column = IntegralColumn('IntegralColumn')
+        disabled_integral_column = IntegralColumn(
+            'DisabledIntegralColumn', disable_indexer=True)
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralColumn', [integral_column, disabled_integral_column],
+            namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
 
-    stuck_integral_column = IntegralColumn('StuckIntegralColumn', voltage_error_noise=8.0)
-    stuck_integral_loop_writer = control_loop.ControlLoopWriter(
-        'StuckIntegralColumn', [stuck_integral_column], namespaces=namespaces)
-    stuck_integral_loop_writer.Write(argv[5], argv[6])
+        stuck_integral_column = IntegralColumn(
+            'StuckIntegralColumn', voltage_error_noise=8.0)
+        stuck_integral_loop_writer = control_loop.ControlLoopWriter(
+            'StuckIntegralColumn', [stuck_integral_column],
+            namespaces=namespaces)
+        stuck_integral_loop_writer.Write(argv[5], argv[6])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))