Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2016/control_loops/python/shooter.py b/y2016/control_loops/python/shooter.py
index 53793d0..b3c988c 100755
--- a/y2016/control_loops/python/shooter.py
+++ b/y2016/control_loops/python/shooter.py
@@ -13,262 +13,274 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 
+
 class VelocityShooter(control_loop.ControlLoop):
-  def __init__(self, name='VelocityShooter'):
-    super(VelocityShooter, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.71
-    # Stall Current in Amps
-    self.stall_current = 134
-    # Free Speed in RPM
-    self.free_speed = 18730.0
-    # Free Current in Amps
-    self.free_current = 0.7
-    # Moment of inertia of the shooter wheel in kg m^2
-    self.J = 0.00032
-    # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-              (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = 12.0 / 18.0
-    # Control loop time step
-    self.dt = 0.005
 
-    # State feedback matrices
-    # [angular velocity]
-    self.A_continuous = numpy.matrix(
-        [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1]])
-    self.D = numpy.matrix([[0]])
+    def __init__(self, name='VelocityShooter'):
+        super(VelocityShooter, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.71
+        # Stall Current in Amps
+        self.stall_current = 134
+        # Free Speed in RPM
+        self.free_speed = 18730.0
+        # Free Current in Amps
+        self.free_current = 0.7
+        # Moment of inertia of the shooter wheel in kg m^2
+        self.J = 0.00032
+        # Resistance of the motor, divided by 2 to account for the 2 motors
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = 12.0 / 18.0
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [angular velocity]
+        self.A_continuous = numpy.matrix(
+            [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+        self.B_continuous = numpy.matrix(
+            [[self.Kt / (self.J * self.G * self.R)]])
+        self.C = numpy.matrix([[1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.87])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.PlaceObserverPoles([0.3])
+        self.PlaceControllerPoles([.87])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
 
 class Shooter(VelocityShooter):
-  def __init__(self, name='Shooter'):
-    super(Shooter, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='Shooter'):
+        super(Shooter, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
-    self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
-    self.A_continuous[0, 1] = 1
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
-    self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+        self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
+        self.A_continuous[0, 1] = 1
 
-    # State feedback matrices
-    # [position, angular velocity]
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+        self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [position, angular velocity]
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    self.rpl = .45
-    self.ipl = 0.07
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 2)))
-    self.K[0, 1:2] = self.K_unaugmented
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 2)))
-    self.Kff[0, 1:2] = self.Kff_unaugmented
+        self.rpl = .45
+        self.ipl = 0.07
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl])
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 2)))
+        self.K[0, 1:2] = self.K_unaugmented
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 2)))
+        self.Kff[0, 1:2] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class IntegralShooter(Shooter):
-  def __init__(self, name="IntegralShooter"):
-    super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="IntegralShooter"):
+        super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.08
-    q_vel = 4.00
-    q_voltage = 0.3
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.08
+        q_vel = 4.00
+        q_voltage = 0.3
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 3)))
-    self.Kff[0, 0:2] = self.Kff_unaugmented
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 3)))
+        self.Kff[0, 0:2] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, shooter, goal, iterations=200, controller_shooter=None,
-             observer_shooter=None):
-    """Runs the shooter plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
 
-      Args:
-        shooter: Shooter object to use.
-        goal: goal state.
-        iterations: Number of timesteps to run the model for.
-        controller_shooter: Shooter object to get K from, or None if we should
-            use shooter.
-        observer_shooter: Shooter object to use for the observer, or None if we
-            should use the actual state.
-    """
+    def run_test(self,
+                 shooter,
+                 goal,
+                 iterations=200,
+                 controller_shooter=None,
+                 observer_shooter=None):
+        """Runs the shooter plant with an initial condition and goal.
 
-    if controller_shooter is None:
-      controller_shooter = shooter
+        Args:
+            shooter: Shooter object to use.
+            goal: goal state.
+            iterations: Number of timesteps to run the model for.
+            controller_shooter: Shooter object to get K from, or None if we should
+                use shooter.
+            observer_shooter: Shooter object to use for the observer, or None if we
+                should use the actual state.
+        """
 
-    vbat = 12.0
+        if controller_shooter is None:
+            controller_shooter = shooter
 
-    if self.t:
-      initial_t = self.t[-1] + shooter.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    for i in xrange(iterations):
-      X_hat = shooter.X
+        if self.t:
+            initial_t = self.t[-1] + shooter.dt
+        else:
+            initial_t = 0
 
-      if observer_shooter is not None:
-        X_hat = observer_shooter.X_hat
-        self.x_hat.append(observer_shooter.X_hat[1, 0])
+        for i in xrange(iterations):
+            X_hat = shooter.X
 
-      ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
+            if observer_shooter is not None:
+                X_hat = observer_shooter.X_hat
+                self.x_hat.append(observer_shooter.X_hat[1, 0])
 
-      U = controller_shooter.K * (goal - X_hat) + ff_U
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(shooter.X[0, 0])
+            ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
 
+            U = controller_shooter.K * (goal - X_hat) + ff_U
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(shooter.X[0, 0])
 
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-      self.v.append(shooter.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / shooter.dt)
+            self.v.append(shooter.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / shooter.dt)
 
-      if observer_shooter is not None:
-        observer_shooter.Y = shooter.Y
-        observer_shooter.CorrectObserver(U)
-        self.offset.append(observer_shooter.X_hat[2, 0])
+            if observer_shooter is not None:
+                observer_shooter.Y = shooter.Y
+                observer_shooter.CorrectObserver(U)
+                self.offset.append(observer_shooter.X_hat[2, 0])
 
-      applied_U = U.copy()
-      if i > 30:
-        applied_U += 2
-      shooter.Update(applied_U)
+            applied_U = U.copy()
+            if i > 30:
+                applied_U += 2
+            shooter.Update(applied_U)
 
-      if observer_shooter is not None:
-        observer_shooter.PredictObserver(U)
+            if observer_shooter is not None:
+                observer_shooter.PredictObserver(U)
 
-      self.t.append(initial_t + i * shooter.dt)
-      self.u.append(U[0, 0])
+            self.t.append(initial_t + i * shooter.dt)
+            self.u.append(U[0, 0])
 
-      glog.debug('Time: %f', self.t[-1])
+            glog.debug('Time: %f', self.t[-1])
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.v, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.v, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
 
-    pylab.show()
+        pylab.show()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  shooter = Shooter()
-  shooter_controller = IntegralShooter()
-  observer_shooter = IntegralShooter()
+    shooter = Shooter()
+    shooter_controller = IntegralShooter()
+    observer_shooter = IntegralShooter()
 
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[0.0], [100.0], [0.0]])
-  scenario_plotter.run_test(shooter, goal=R, controller_shooter=shooter_controller,
-                            observer_shooter=observer_shooter, iterations=200)
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[0.0], [100.0], [0.0]])
+    scenario_plotter.run_test(
+        shooter,
+        goal=R,
+        controller_shooter=shooter_controller,
+        observer_shooter=observer_shooter,
+        iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name')
-  else:
-    namespaces = ['y2016', 'control_loops', 'shooter']
-    shooter = Shooter('Shooter')
-    loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter],
-                                                 namespaces=namespaces)
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 5:
+        glog.fatal('Expected .h file name and .cc file name')
+    else:
+        namespaces = ['y2016', 'control_loops', 'shooter']
+        shooter = Shooter('Shooter')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Shooter', [shooter], namespaces=namespaces)
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_shooter = IntegralShooter('IntegralShooter')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralShooter', [integral_shooter], namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_shooter = IntegralShooter('IntegralShooter')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralShooter', [integral_shooter], namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    sys.exit(main(argv))