Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2016/control_loops/python/arm.py b/y2016/control_loops/python/arm.py
index 5c5793b..96975bb 100755
--- a/y2016/control_loops/python/arm.py
+++ b/y2016/control_loops/python/arm.py
@@ -18,414 +18,439 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
 
 
 class Arm(control_loop.ControlLoop):
-  def __init__(self, name="Arm", J=None):
-    super(Arm, self).__init__(name=name)
-    self._shoulder = Shoulder(name=name, J=J)
-    self._shooter = Wrist(name=name)
-    self.shoulder_Kv = self._shoulder.Kv / self._shoulder.G
 
-    # Do a coordinate transformation.
-    # X_shooter_grounded = X_shooter + X_shoulder
-    # dX_shooter_grounded/dt = A_shooter * X_shooter + A_shoulder * X_shoulder +
-    #                          B_shoulder * U_shoulder + B_shooter * U_shooter
-    # dX_shooter_grounded/dt = A_shooter * (X_shooter_grounded - X_shoulder) +
-    #                          A_shoulder * X_shoulder + B_shooter * U_shooter + B_shoulder * U_shoulder
-    # X = [X_shoulder; X_shooter + X_shoulder]
-    # dX/dt = [A_shoulder                       0] [X_shoulder        ] + [B_shoulder         0] [U_shoulder]
-    #         [(A_shoulder - A_shooter) A_shooter] [X_shooter_grounded] + [B_shoulder B_shooter] [ U_shooter]
-    # Y_shooter_grounded = Y_shooter + Y_shoulder
+    def __init__(self, name="Arm", J=None):
+        super(Arm, self).__init__(name=name)
+        self._shoulder = Shoulder(name=name, J=J)
+        self._shooter = Wrist(name=name)
+        self.shoulder_Kv = self._shoulder.Kv / self._shoulder.G
 
-    self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
-    self.A_continuous[0:2, 0:2] = self._shoulder.A_continuous
-    self.A_continuous[2:4, 0:2] = (self._shoulder.A_continuous -
-                                   self._shooter.A_continuous)
-    self.A_continuous[2:4, 2:4] = self._shooter.A_continuous
+        # Do a coordinate transformation.
+        # X_shooter_grounded = X_shooter + X_shoulder
+        # dX_shooter_grounded/dt = A_shooter * X_shooter + A_shoulder * X_shoulder +
+        #                          B_shoulder * U_shoulder + B_shooter * U_shooter
+        # dX_shooter_grounded/dt = A_shooter * (X_shooter_grounded - X_shoulder) +
+        #                          A_shoulder * X_shoulder + B_shooter * U_shooter + B_shoulder * U_shoulder
+        # X = [X_shoulder; X_shooter + X_shoulder]
+        # dX/dt = [A_shoulder                       0] [X_shoulder        ] + [B_shoulder         0] [U_shoulder]
+        #         [(A_shoulder - A_shooter) A_shooter] [X_shooter_grounded] + [B_shoulder B_shooter] [ U_shooter]
+        # Y_shooter_grounded = Y_shooter + Y_shoulder
 
-    self.B_continuous = numpy.matrix(numpy.zeros((4, 2)))
-    self.B_continuous[0:2, 0:1] = self._shoulder.B_continuous
-    self.B_continuous[2:4, 1:2] = self._shooter.B_continuous
-    self.B_continuous[2:4, 0:1] = self._shoulder.B_continuous
+        self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
+        self.A_continuous[0:2, 0:2] = self._shoulder.A_continuous
+        self.A_continuous[2:4, 0:2] = (
+            self._shoulder.A_continuous - self._shooter.A_continuous)
+        self.A_continuous[2:4, 2:4] = self._shooter.A_continuous
 
-    self.C = numpy.matrix(numpy.zeros((2, 4)))
-    self.C[0:1, 0:2] = self._shoulder.C
-    self.C[1:2, 0:2] = -self._shoulder.C
-    self.C[1:2, 2:4] = self._shooter.C
+        self.B_continuous = numpy.matrix(numpy.zeros((4, 2)))
+        self.B_continuous[0:2, 0:1] = self._shoulder.B_continuous
+        self.B_continuous[2:4, 1:2] = self._shooter.B_continuous
+        self.B_continuous[2:4, 0:1] = self._shoulder.B_continuous
 
-    # D is 0 for all our loops.
-    self.D = numpy.matrix(numpy.zeros((2, 2)))
+        self.C = numpy.matrix(numpy.zeros((2, 4)))
+        self.C[0:1, 0:2] = self._shoulder.C
+        self.C[1:2, 0:2] = -self._shoulder.C
+        self.C[1:2, 2:4] = self._shooter.C
 
-    self.dt = 0.005
+        # D is 0 for all our loops.
+        self.D = numpy.matrix(numpy.zeros((2, 2)))
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.dt = 0.005
 
-    # Cost of error
-    self.Q = numpy.matrix(numpy.zeros((4, 4)))
-    q_pos_shoulder = 0.014
-    q_vel_shoulder = 4.00
-    q_pos_shooter = 0.014
-    q_vel_shooter = 4.00
-    self.Q[0, 0] = 1.0 / q_pos_shoulder ** 2.0
-    self.Q[1, 1] = 1.0 / q_vel_shoulder ** 2.0
-    self.Q[2, 2] = 1.0 / q_pos_shooter ** 2.0
-    self.Q[3, 3] = 1.0 / q_vel_shooter ** 2.0
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.Qff = numpy.matrix(numpy.zeros((4, 4)))
-    qff_pos_shoulder = 0.005
-    qff_vel_shoulder = 1.00
-    qff_pos_shooter = 0.005
-    qff_vel_shooter = 1.00
-    self.Qff[0, 0] = 1.0 / qff_pos_shoulder ** 2.0
-    self.Qff[1, 1] = 1.0 / qff_vel_shoulder ** 2.0
-    self.Qff[2, 2] = 1.0 / qff_pos_shooter ** 2.0
-    self.Qff[3, 3] = 1.0 / qff_vel_shooter ** 2.0
+        # Cost of error
+        self.Q = numpy.matrix(numpy.zeros((4, 4)))
+        q_pos_shoulder = 0.014
+        q_vel_shoulder = 4.00
+        q_pos_shooter = 0.014
+        q_vel_shooter = 4.00
+        self.Q[0, 0] = 1.0 / q_pos_shoulder**2.0
+        self.Q[1, 1] = 1.0 / q_vel_shoulder**2.0
+        self.Q[2, 2] = 1.0 / q_pos_shooter**2.0
+        self.Q[3, 3] = 1.0 / q_vel_shooter**2.0
 
-    # Cost of control effort
-    self.R = numpy.matrix(numpy.zeros((2, 2)))
-    r_voltage = 1.0 / 12.0
-    self.R[0, 0] = r_voltage ** 2.0
-    self.R[1, 1] = r_voltage ** 2.0
+        self.Qff = numpy.matrix(numpy.zeros((4, 4)))
+        qff_pos_shoulder = 0.005
+        qff_vel_shoulder = 1.00
+        qff_pos_shooter = 0.005
+        qff_vel_shooter = 1.00
+        self.Qff[0, 0] = 1.0 / qff_pos_shoulder**2.0
+        self.Qff[1, 1] = 1.0 / qff_vel_shoulder**2.0
+        self.Qff[2, 2] = 1.0 / qff_pos_shooter**2.0
+        self.Qff[3, 3] = 1.0 / qff_vel_shooter**2.0
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        # Cost of control effort
+        self.R = numpy.matrix(numpy.zeros((2, 2)))
+        r_voltage = 1.0 / 12.0
+        self.R[0, 0] = r_voltage**2.0
+        self.R[1, 1] = r_voltage**2.0
 
-    glog.debug('Shoulder K')
-    glog.debug(repr(self._shoulder.K))
-    glog.debug('Poles are %s',
-        repr(numpy.linalg.eig(self._shoulder.A -
-                              self._shoulder.B * self._shoulder.K)[0]))
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    # Compute controller gains.
-    # self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
-    self.K = numpy.matrix(numpy.zeros((2, 4)))
-    self.K[0:1, 0:2] = self._shoulder.K
-    self.K[1:2, 0:2] = (
-        -self.Kff[1:2, 2:4] * self.B[2:4, 0:1] * self._shoulder.K
-        + self.Kff[1:2, 2:4] * self.A[2:4, 0:2])
-    self.K[1:2, 2:4] = self._shooter.K
+        glog.debug('Shoulder K')
+        glog.debug(repr(self._shoulder.K))
+        glog.debug(
+            'Poles are %s',
+            repr(
+                numpy.linalg.eig(self._shoulder.A -
+                                 self._shoulder.B * self._shoulder.K)[0]))
 
-    glog.debug('Arm controller %s', repr(self.K))
+        # Compute controller gains.
+        # self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        self.K = numpy.matrix(numpy.zeros((2, 4)))
+        self.K[0:1, 0:2] = self._shoulder.K
+        self.K[1:2, 0:2] = (
+            -self.Kff[1:2, 2:4] * self.B[2:4, 0:1] * self._shoulder.K +
+            self.Kff[1:2, 2:4] * self.A[2:4, 0:2])
+        self.K[1:2, 2:4] = self._shooter.K
 
-    # Cost of error
-    self.Q = numpy.matrix(numpy.zeros((4, 4)))
-    q_pos_shoulder = 0.05
-    q_vel_shoulder = 2.65
-    q_pos_shooter = 0.05
-    q_vel_shooter = 2.65
-    self.Q[0, 0] = q_pos_shoulder ** 2.0
-    self.Q[1, 1] = q_vel_shoulder ** 2.0
-    self.Q[2, 2] = q_pos_shooter ** 2.0
-    self.Q[3, 3] = q_vel_shooter ** 2.0
+        glog.debug('Arm controller %s', repr(self.K))
 
-    # Cost of control effort
-    self.R = numpy.matrix(numpy.zeros((2, 2)))
-    r_voltage = 0.025
-    self.R[0, 0] = r_voltage ** 2.0
-    self.R[1, 1] = r_voltage ** 2.0
+        # Cost of error
+        self.Q = numpy.matrix(numpy.zeros((4, 4)))
+        q_pos_shoulder = 0.05
+        q_vel_shoulder = 2.65
+        q_pos_shooter = 0.05
+        q_vel_shooter = 2.65
+        self.Q[0, 0] = q_pos_shoulder**2.0
+        self.Q[1, 1] = q_vel_shoulder**2.0
+        self.Q[2, 2] = q_pos_shooter**2.0
+        self.Q[3, 3] = q_vel_shooter**2.0
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        # Cost of control effort
+        self.R = numpy.matrix(numpy.zeros((2, 2)))
+        r_voltage = 0.025
+        self.R[0, 0] = r_voltage**2.0
+        self.R[1, 1] = r_voltage**2.0
 
-    self.U_max = numpy.matrix([[12.0], [12.0]])
-    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0], [12.0]])
+        self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+        self.InitializeState()
 
 
 class IntegralArm(Arm):
-  def __init__(self, name="IntegralArm", J=None):
-    super(IntegralArm, self).__init__(name=name, J=J)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="IntegralArm", J=None):
+        super(IntegralArm, self).__init__(name=name, J=J)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((6, 6)))
-    self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented
-    self.A_continuous[0:4, 4:6] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((6, 2)))
-    self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((6, 6)))
+        self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented
+        self.A_continuous[0:4, 4:6] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((2, 6)))
-    self.C[0:2, 0:4] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((6, 2)))
+        self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((2, 6)))
+        self.C[0:2, 0:4] = self.C_unaugmented
 
-    q_pos_shoulder = 0.10
-    q_vel_shoulder = 0.005
-    q_voltage_shoulder = 3.5
-    q_pos_shooter = 0.08
-    q_vel_shooter = 2.00
-    q_voltage_shooter = 1.0
-    self.Q = numpy.matrix(numpy.zeros((6, 6)))
-    self.Q[0, 0] = q_pos_shoulder ** 2.0
-    self.Q[1, 1] = q_vel_shoulder ** 2.0
-    self.Q[2, 2] = q_pos_shooter ** 2.0
-    self.Q[3, 3] = q_vel_shooter ** 2.0
-    self.Q[4, 4] = q_voltage_shoulder ** 2.0
-    self.Q[5, 5] = q_voltage_shooter ** 2.0
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.R = numpy.matrix(numpy.zeros((2, 2)))
-    r_pos = 0.05
-    self.R[0, 0] = r_pos ** 2.0
-    self.R[1, 1] = r_pos ** 2.0
+        q_pos_shoulder = 0.10
+        q_vel_shoulder = 0.005
+        q_voltage_shoulder = 3.5
+        q_pos_shooter = 0.08
+        q_vel_shooter = 2.00
+        q_voltage_shooter = 1.0
+        self.Q = numpy.matrix(numpy.zeros((6, 6)))
+        self.Q[0, 0] = q_pos_shoulder**2.0
+        self.Q[1, 1] = q_vel_shoulder**2.0
+        self.Q[2, 2] = q_pos_shooter**2.0
+        self.Q[3, 3] = q_vel_shooter**2.0
+        self.Q[4, 4] = q_voltage_shoulder**2.0
+        self.Q[5, 5] = q_voltage_shooter**2.0
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        self.R = numpy.matrix(numpy.zeros((2, 2)))
+        r_pos = 0.05
+        self.R[0, 0] = r_pos**2.0
+        self.R[1, 1] = r_pos**2.0
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((2, 6)))
-    self.K[0:2, 0:4] = self.K_unaugmented
-    self.K[0, 4] = 1
-    self.K[1, 5] = 1
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((2, 2)))), axis=1)
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((2, 6)))
+        self.K[0:2, 0:4] = self.K_unaugmented
+        self.K[0, 4] = 1
+        self.K[1, 5] = 1
 
-    self.InitializeState()
+        self.Kff = numpy.concatenate(
+            (self.Kff, numpy.matrix(numpy.zeros((2, 2)))), axis=1)
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x_shoulder = []
-    self.v_shoulder = []
-    self.a_shoulder = []
-    self.x_hat_shoulder = []
-    self.u_shoulder = []
-    self.offset_shoulder = []
-    self.x_shooter = []
-    self.v_shooter = []
-    self.a_shooter = []
-    self.x_hat_shooter = []
-    self.u_shooter = []
-    self.offset_shooter = []
-    self.goal_x_shoulder = []
-    self.goal_v_shoulder = []
-    self.goal_x_shooter = []
-    self.goal_v_shooter = []
 
-  def run_test(self, arm, end_goal,
-               iterations=200, controller=None, observer=None):
-    """Runs the plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x_shoulder = []
+        self.v_shoulder = []
+        self.a_shoulder = []
+        self.x_hat_shoulder = []
+        self.u_shoulder = []
+        self.offset_shoulder = []
+        self.x_shooter = []
+        self.v_shooter = []
+        self.a_shooter = []
+        self.x_hat_shooter = []
+        self.u_shooter = []
+        self.offset_shooter = []
+        self.goal_x_shoulder = []
+        self.goal_v_shoulder = []
+        self.goal_x_shooter = []
+        self.goal_v_shooter = []
 
-      Args:
-        arm: Arm object to use.
-        end_goal: numpy.Matrix[6, 1], end goal state.
-        iterations: Number of timesteps to run the model for.
-        controller: Arm object to get K from, or None if we should
-            use arm.
-        observer: Arm object to use for the observer, or None if we should
-            use the actual state.
-    """
+    def run_test(self,
+                 arm,
+                 end_goal,
+                 iterations=200,
+                 controller=None,
+                 observer=None):
+        """Runs the plant with an initial condition and goal.
 
-    if controller is None:
-      controller = arm
+        Args:
+            arm: Arm object to use.
+            end_goal: numpy.Matrix[6, 1], end goal state.
+            iterations: Number of timesteps to run the model for.
+            controller: Arm object to get K from, or None if we should
+                use arm.
+            observer: Arm object to use for the observer, or None if we should
+                use the actual state.
+        """
 
-    vbat = 12.0
+        if controller is None:
+            controller = arm
 
-    if self.t:
-      initial_t = self.t[-1] + arm.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    goal = numpy.concatenate((arm.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0)
+        if self.t:
+            initial_t = self.t[-1] + arm.dt
+        else:
+            initial_t = 0
 
-    shoulder_profile = TrapezoidProfile(arm.dt)
-    shoulder_profile.set_maximum_acceleration(12.0)
-    shoulder_profile.set_maximum_velocity(10.0)
-    shoulder_profile.SetGoal(goal[0, 0])
-    shooter_profile = TrapezoidProfile(arm.dt)
-    shooter_profile.set_maximum_acceleration(50.0)
-    shooter_profile.set_maximum_velocity(10.0)
-    shooter_profile.SetGoal(goal[2, 0])
+        goal = numpy.concatenate((arm.X, numpy.matrix(numpy.zeros((2, 1)))),
+                                 axis=0)
 
-    U_last = numpy.matrix(numpy.zeros((2, 1)))
-    for i in xrange(iterations):
-      X_hat = arm.X
+        shoulder_profile = TrapezoidProfile(arm.dt)
+        shoulder_profile.set_maximum_acceleration(12.0)
+        shoulder_profile.set_maximum_velocity(10.0)
+        shoulder_profile.SetGoal(goal[0, 0])
+        shooter_profile = TrapezoidProfile(arm.dt)
+        shooter_profile.set_maximum_acceleration(50.0)
+        shooter_profile.set_maximum_velocity(10.0)
+        shooter_profile.SetGoal(goal[2, 0])
 
-      if observer is not None:
-        observer.Y = arm.Y
-        observer.CorrectObserver(U_last)
-        self.offset_shoulder.append(observer.X_hat[4, 0])
-        self.offset_shooter.append(observer.X_hat[5, 0])
+        U_last = numpy.matrix(numpy.zeros((2, 1)))
+        for i in xrange(iterations):
+            X_hat = arm.X
 
-        X_hat = observer.X_hat
-        self.x_hat_shoulder.append(observer.X_hat[0, 0])
-        self.x_hat_shooter.append(observer.X_hat[2, 0])
+            if observer is not None:
+                observer.Y = arm.Y
+                observer.CorrectObserver(U_last)
+                self.offset_shoulder.append(observer.X_hat[4, 0])
+                self.offset_shooter.append(observer.X_hat[5, 0])
 
-      next_shoulder_goal = shoulder_profile.Update(end_goal[0, 0], end_goal[1, 0])
-      next_shooter_goal = shooter_profile.Update(end_goal[2, 0], end_goal[3, 0])
+                X_hat = observer.X_hat
+                self.x_hat_shoulder.append(observer.X_hat[0, 0])
+                self.x_hat_shooter.append(observer.X_hat[2, 0])
 
-      next_goal = numpy.concatenate(
-          (next_shoulder_goal,
-           next_shooter_goal,
-           numpy.matrix(numpy.zeros((2, 1)))),
-          axis=0)
-      self.goal_x_shoulder.append(goal[0, 0])
-      self.goal_v_shoulder.append(goal[1, 0])
-      self.goal_x_shooter.append(goal[2, 0])
-      self.goal_v_shooter.append(goal[3, 0])
+            next_shoulder_goal = shoulder_profile.Update(
+                end_goal[0, 0], end_goal[1, 0])
+            next_shooter_goal = shooter_profile.Update(end_goal[2, 0],
+                                                       end_goal[3, 0])
 
-      ff_U = controller.Kff * (next_goal - observer.A * goal)
+            next_goal = numpy.concatenate(
+                (next_shoulder_goal, next_shooter_goal,
+                 numpy.matrix(numpy.zeros((2, 1)))),
+                axis=0)
+            self.goal_x_shoulder.append(goal[0, 0])
+            self.goal_v_shoulder.append(goal[1, 0])
+            self.goal_x_shooter.append(goal[2, 0])
+            self.goal_v_shooter.append(goal[3, 0])
 
-      U_uncapped = controller.K * (goal - X_hat) + ff_U
-      U = U_uncapped.copy()
+            ff_U = controller.Kff * (next_goal - observer.A * goal)
 
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
-      self.x_shoulder.append(arm.X[0, 0])
-      self.x_shooter.append(arm.X[2, 0])
+            U_uncapped = controller.K * (goal - X_hat) + ff_U
+            U = U_uncapped.copy()
 
-      if self.v_shoulder:
-        last_v_shoulder = self.v_shoulder[-1]
-      else:
-        last_v_shoulder = 0
-      self.v_shoulder.append(arm.X[1, 0])
-      self.a_shoulder.append(
-          (self.v_shoulder[-1] - last_v_shoulder) / arm.dt)
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
+            self.x_shoulder.append(arm.X[0, 0])
+            self.x_shooter.append(arm.X[2, 0])
 
-      if self.v_shooter:
-        last_v_shooter = self.v_shooter[-1]
-      else:
-        last_v_shooter = 0
-      self.v_shooter.append(arm.X[3, 0])
-      self.a_shooter.append(
-          (self.v_shooter[-1] - last_v_shooter) / arm.dt)
+            if self.v_shoulder:
+                last_v_shoulder = self.v_shoulder[-1]
+            else:
+                last_v_shoulder = 0
+            self.v_shoulder.append(arm.X[1, 0])
+            self.a_shoulder.append(
+                (self.v_shoulder[-1] - last_v_shoulder) / arm.dt)
 
-      if i % 40 == 0:
-        # Test that if we move the shoulder, the shooter stays perfect.
-        #observer.X_hat[0, 0] += 0.20
-        #arm.X[0, 0] += 0.20
-        pass
-      U_error = numpy.matrix([[2.0], [2.0]])
-      # Kick it and see what happens.
-      #if (initial_t + i * arm.dt) % 0.4 > 0.2:
-        #U_error = numpy.matrix([[4.0], [0.0]])
-      #else:
-        #U_error = numpy.matrix([[-4.0], [0.0]])
+            if self.v_shooter:
+                last_v_shooter = self.v_shooter[-1]
+            else:
+                last_v_shooter = 0
+            self.v_shooter.append(arm.X[3, 0])
+            self.a_shooter.append(
+                (self.v_shooter[-1] - last_v_shooter) / arm.dt)
 
-      arm.Update(U + U_error)
+            if i % 40 == 0:
+                # Test that if we move the shoulder, the shooter stays perfect.
+                #observer.X_hat[0, 0] += 0.20
+                #arm.X[0, 0] += 0.20
+                pass
+            U_error = numpy.matrix([[2.0], [2.0]])
+            # Kick it and see what happens.
+            #if (initial_t + i * arm.dt) % 0.4 > 0.2:
+            #U_error = numpy.matrix([[4.0], [0.0]])
+            #else:
+            #U_error = numpy.matrix([[-4.0], [0.0]])
 
-      if observer is not None:
-        observer.PredictObserver(U)
+            arm.Update(U + U_error)
 
-      self.t.append(initial_t + i * arm.dt)
-      self.u_shoulder.append(U[0, 0])
-      self.u_shooter.append(U[1, 0])
+            if observer is not None:
+                observer.PredictObserver(U)
 
-      ff_U -= U_uncapped - U
-      goal = controller.A * goal + controller.B * ff_U
+            self.t.append(initial_t + i * arm.dt)
+            self.u_shoulder.append(U[0, 0])
+            self.u_shooter.append(U[1, 0])
 
-      if U[0, 0] != U_uncapped[0, 0]:
-        glog.debug('Moving shoulder %s', repr(initial_t + i * arm.dt))
-        glog.debug('U error %s', repr(U_uncapped - U))
-        glog.debug('goal change is %s',
-                   repr(next_shoulder_goal -
-                        numpy.matrix([[goal[0, 0]], [goal[1, 0]]])))
-        shoulder_profile.MoveCurrentState(
-            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
-      if U[1, 0] != U_uncapped[1, 0]:
-        glog.debug('Moving shooter %s', repr(initial_t + i * arm.dt))
-        glog.debug('U error %s', repr(U_uncapped - U))
-        shooter_profile.MoveCurrentState(
-            numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
-      U_last = U
-    glog.debug('goal_error %s', repr(end_goal - goal))
-    glog.debug('error %s', repr(observer.X_hat - end_goal))
+            ff_U -= U_uncapped - U
+            goal = controller.A * goal + controller.B * ff_U
 
+            if U[0, 0] != U_uncapped[0, 0]:
+                glog.debug('Moving shoulder %s', repr(initial_t + i * arm.dt))
+                glog.debug('U error %s', repr(U_uncapped - U))
+                glog.debug(
+                    'goal change is %s',
+                    repr(next_shoulder_goal -
+                         numpy.matrix([[goal[0, 0]], [goal[1, 0]]])))
+                shoulder_profile.MoveCurrentState(
+                    numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+            if U[1, 0] != U_uncapped[1, 0]:
+                glog.debug('Moving shooter %s', repr(initial_t + i * arm.dt))
+                glog.debug('U error %s', repr(U_uncapped - U))
+                shooter_profile.MoveCurrentState(
+                    numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
+            U_last = U
+        glog.debug('goal_error %s', repr(end_goal - goal))
+        glog.debug('error %s', repr(observer.X_hat - end_goal))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.x_shoulder, label='x shoulder')
-    pylab.plot(self.t, self.goal_x_shoulder, label='goal x shoulder')
-    pylab.plot(self.t, self.x_hat_shoulder, label='x_hat shoulder')
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.x_shoulder, label='x shoulder')
+        pylab.plot(self.t, self.goal_x_shoulder, label='goal x shoulder')
+        pylab.plot(self.t, self.x_hat_shoulder, label='x_hat shoulder')
 
-    pylab.plot(self.t, self.x_shooter, label='x shooter')
-    pylab.plot(self.t, self.x_hat_shooter, label='x_hat shooter')
-    pylab.plot(self.t, self.goal_x_shooter, label='goal x shooter')
-    pylab.plot(self.t, map(operator.add, self.x_shooter, self.x_shoulder),
-               label='x shooter ground')
-    pylab.plot(self.t, map(operator.add, self.x_hat_shooter, self.x_hat_shoulder),
-               label='x_hat shooter ground')
-    pylab.legend()
+        pylab.plot(self.t, self.x_shooter, label='x shooter')
+        pylab.plot(self.t, self.x_hat_shooter, label='x_hat shooter')
+        pylab.plot(self.t, self.goal_x_shooter, label='goal x shooter')
+        pylab.plot(
+            self.t,
+            map(operator.add, self.x_shooter, self.x_shoulder),
+            label='x shooter ground')
+        pylab.plot(
+            self.t,
+            map(operator.add, self.x_hat_shooter, self.x_hat_shoulder),
+            label='x_hat shooter ground')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u_shoulder, label='u shoulder')
-    pylab.plot(self.t, self.offset_shoulder, label='voltage_offset shoulder')
-    pylab.plot(self.t, self.u_shooter, label='u shooter')
-    pylab.plot(self.t, self.offset_shooter, label='voltage_offset shooter')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u_shoulder, label='u shoulder')
+        pylab.plot(
+            self.t, self.offset_shoulder, label='voltage_offset shoulder')
+        pylab.plot(self.t, self.u_shooter, label='u shooter')
+        pylab.plot(self.t, self.offset_shooter, label='voltage_offset shooter')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a_shoulder, label='a_shoulder')
-    pylab.plot(self.t, self.a_shooter, label='a_shooter')
-    pylab.legend()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a_shoulder, label='a_shoulder')
+        pylab.plot(self.t, self.a_shooter, label='a_shooter')
+        pylab.legend()
 
-    pylab.show()
+        pylab.show()
 
 
 def main(argv):
-  argv = FLAGS(argv)
-  glog.init()
+    argv = FLAGS(argv)
+    glog.init()
 
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  J_accelerating = 18
-  J_decelerating = 7
+    J_accelerating = 18
+    J_decelerating = 7
 
-  arm = Arm(name='AcceleratingArm', J=J_accelerating)
-  arm_integral_controller = IntegralArm(
-      name='AcceleratingIntegralArm', J=J_accelerating)
-  arm_observer = IntegralArm()
+    arm = Arm(name='AcceleratingArm', J=J_accelerating)
+    arm_integral_controller = IntegralArm(
+        name='AcceleratingIntegralArm', J=J_accelerating)
+    arm_observer = IntegralArm()
 
-  # Test moving the shoulder with constant separation.
-  initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
-  R = numpy.matrix([[numpy.pi / 2.0],
-                    [0.0],
-                    [0.0], #[numpy.pi / 2.0],
-                    [0.0],
-                    [0.0],
-                    [0.0]])
-  arm.X = initial_X[0:4, 0]
-  arm_observer.X = initial_X
+    # Test moving the shoulder with constant separation.
+    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
+    R = numpy.matrix([
+        [numpy.pi / 2.0],
+        [0.0],
+        [0.0],  #[numpy.pi / 2.0],
+        [0.0],
+        [0.0],
+        [0.0]
+    ])
+    arm.X = initial_X[0:4, 0]
+    arm_observer.X = initial_X
 
-  scenario_plotter.run_test(arm=arm,
-                            end_goal=R,
-                            iterations=300,
-                            controller=arm_integral_controller,
-                            observer=arm_observer)
+    scenario_plotter.run_test(
+        arm=arm,
+        end_goal=R,
+        iterations=300,
+        controller=arm_integral_controller,
+        observer=arm_observer)
 
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name for the wrist and integral wrist.')
-  else:
-    namespaces = ['y2016', 'control_loops', 'superstructure']
-    decelerating_arm = Arm(name='DeceleratingArm', J=J_decelerating)
-    loop_writer = control_loop.ControlLoopWriter(
-        'Arm', [arm, decelerating_arm], namespaces=namespaces)
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 5:
+        glog.fatal(
+            'Expected .h file name and .cc file name for the wrist and integral wrist.'
+        )
+    else:
+        namespaces = ['y2016', 'control_loops', 'superstructure']
+        decelerating_arm = Arm(name='DeceleratingArm', J=J_decelerating)
+        loop_writer = control_loop.ControlLoopWriter(
+            'Arm', [arm, decelerating_arm], namespaces=namespaces)
+        loop_writer.Write(argv[1], argv[2])
 
-    decelerating_integral_arm_controller = IntegralArm(
-        name='DeceleratingIntegralArm', J=J_decelerating)
+        decelerating_integral_arm_controller = IntegralArm(
+            name='DeceleratingIntegralArm', J=J_decelerating)
 
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralArm',
-        [arm_integral_controller, decelerating_integral_arm_controller],
-        namespaces=namespaces)
-    integral_loop_writer.AddConstant(control_loop.Constant("kV_shoulder", "%f",
-          arm_integral_controller.shoulder_Kv))
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralArm',
+            [arm_integral_controller, decelerating_integral_arm_controller],
+            namespaces=namespaces)
+        integral_loop_writer.AddConstant(
+            control_loop.Constant("kV_shoulder", "%f",
+                                  arm_integral_controller.shoulder_Kv))
+        integral_loop_writer.Write(argv[3], argv[4])
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
+
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    sys.exit(main(sys.argv))
diff --git a/y2016/control_loops/python/shooter.py b/y2016/control_loops/python/shooter.py
index 53793d0..b3c988c 100755
--- a/y2016/control_loops/python/shooter.py
+++ b/y2016/control_loops/python/shooter.py
@@ -13,262 +13,274 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 
+
 class VelocityShooter(control_loop.ControlLoop):
-  def __init__(self, name='VelocityShooter'):
-    super(VelocityShooter, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.71
-    # Stall Current in Amps
-    self.stall_current = 134
-    # Free Speed in RPM
-    self.free_speed = 18730.0
-    # Free Current in Amps
-    self.free_current = 0.7
-    # Moment of inertia of the shooter wheel in kg m^2
-    self.J = 0.00032
-    # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-              (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = 12.0 / 18.0
-    # Control loop time step
-    self.dt = 0.005
 
-    # State feedback matrices
-    # [angular velocity]
-    self.A_continuous = numpy.matrix(
-        [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1]])
-    self.D = numpy.matrix([[0]])
+    def __init__(self, name='VelocityShooter'):
+        super(VelocityShooter, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.71
+        # Stall Current in Amps
+        self.stall_current = 134
+        # Free Speed in RPM
+        self.free_speed = 18730.0
+        # Free Current in Amps
+        self.free_current = 0.7
+        # Moment of inertia of the shooter wheel in kg m^2
+        self.J = 0.00032
+        # Resistance of the motor, divided by 2 to account for the 2 motors
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = 12.0 / 18.0
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [angular velocity]
+        self.A_continuous = numpy.matrix(
+            [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+        self.B_continuous = numpy.matrix(
+            [[self.Kt / (self.J * self.G * self.R)]])
+        self.C = numpy.matrix([[1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.87])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.PlaceObserverPoles([0.3])
+        self.PlaceControllerPoles([.87])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
 
 class Shooter(VelocityShooter):
-  def __init__(self, name='Shooter'):
-    super(Shooter, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='Shooter'):
+        super(Shooter, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
-    self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
-    self.A_continuous[0, 1] = 1
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
-    self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+        self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
+        self.A_continuous[0, 1] = 1
 
-    # State feedback matrices
-    # [position, angular velocity]
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+        self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [position, angular velocity]
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    self.rpl = .45
-    self.ipl = 0.07
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 2)))
-    self.K[0, 1:2] = self.K_unaugmented
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 2)))
-    self.Kff[0, 1:2] = self.Kff_unaugmented
+        self.rpl = .45
+        self.ipl = 0.07
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl])
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 2)))
+        self.K[0, 1:2] = self.K_unaugmented
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 2)))
+        self.Kff[0, 1:2] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class IntegralShooter(Shooter):
-  def __init__(self, name="IntegralShooter"):
-    super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="IntegralShooter"):
+        super(IntegralShooter, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.08
-    q_vel = 4.00
-    q_voltage = 0.3
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.08
+        q_vel = 4.00
+        q_voltage = 0.3
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 3)))
-    self.Kff[0, 0:2] = self.Kff_unaugmented
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 3)))
+        self.Kff[0, 0:2] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, shooter, goal, iterations=200, controller_shooter=None,
-             observer_shooter=None):
-    """Runs the shooter plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
 
-      Args:
-        shooter: Shooter object to use.
-        goal: goal state.
-        iterations: Number of timesteps to run the model for.
-        controller_shooter: Shooter object to get K from, or None if we should
-            use shooter.
-        observer_shooter: Shooter object to use for the observer, or None if we
-            should use the actual state.
-    """
+    def run_test(self,
+                 shooter,
+                 goal,
+                 iterations=200,
+                 controller_shooter=None,
+                 observer_shooter=None):
+        """Runs the shooter plant with an initial condition and goal.
 
-    if controller_shooter is None:
-      controller_shooter = shooter
+        Args:
+            shooter: Shooter object to use.
+            goal: goal state.
+            iterations: Number of timesteps to run the model for.
+            controller_shooter: Shooter object to get K from, or None if we should
+                use shooter.
+            observer_shooter: Shooter object to use for the observer, or None if we
+                should use the actual state.
+        """
 
-    vbat = 12.0
+        if controller_shooter is None:
+            controller_shooter = shooter
 
-    if self.t:
-      initial_t = self.t[-1] + shooter.dt
-    else:
-      initial_t = 0
+        vbat = 12.0
 
-    for i in xrange(iterations):
-      X_hat = shooter.X
+        if self.t:
+            initial_t = self.t[-1] + shooter.dt
+        else:
+            initial_t = 0
 
-      if observer_shooter is not None:
-        X_hat = observer_shooter.X_hat
-        self.x_hat.append(observer_shooter.X_hat[1, 0])
+        for i in xrange(iterations):
+            X_hat = shooter.X
 
-      ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
+            if observer_shooter is not None:
+                X_hat = observer_shooter.X_hat
+                self.x_hat.append(observer_shooter.X_hat[1, 0])
 
-      U = controller_shooter.K * (goal - X_hat) + ff_U
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(shooter.X[0, 0])
+            ff_U = controller_shooter.Kff * (goal - observer_shooter.A * goal)
 
+            U = controller_shooter.K * (goal - X_hat) + ff_U
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(shooter.X[0, 0])
 
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-      self.v.append(shooter.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / shooter.dt)
+            self.v.append(shooter.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / shooter.dt)
 
-      if observer_shooter is not None:
-        observer_shooter.Y = shooter.Y
-        observer_shooter.CorrectObserver(U)
-        self.offset.append(observer_shooter.X_hat[2, 0])
+            if observer_shooter is not None:
+                observer_shooter.Y = shooter.Y
+                observer_shooter.CorrectObserver(U)
+                self.offset.append(observer_shooter.X_hat[2, 0])
 
-      applied_U = U.copy()
-      if i > 30:
-        applied_U += 2
-      shooter.Update(applied_U)
+            applied_U = U.copy()
+            if i > 30:
+                applied_U += 2
+            shooter.Update(applied_U)
 
-      if observer_shooter is not None:
-        observer_shooter.PredictObserver(U)
+            if observer_shooter is not None:
+                observer_shooter.PredictObserver(U)
 
-      self.t.append(initial_t + i * shooter.dt)
-      self.u.append(U[0, 0])
+            self.t.append(initial_t + i * shooter.dt)
+            self.u.append(U[0, 0])
 
-      glog.debug('Time: %f', self.t[-1])
+            glog.debug('Time: %f', self.t[-1])
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.v, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.v, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
 
-    pylab.show()
+        pylab.show()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  shooter = Shooter()
-  shooter_controller = IntegralShooter()
-  observer_shooter = IntegralShooter()
+    shooter = Shooter()
+    shooter_controller = IntegralShooter()
+    observer_shooter = IntegralShooter()
 
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[0.0], [100.0], [0.0]])
-  scenario_plotter.run_test(shooter, goal=R, controller_shooter=shooter_controller,
-                            observer_shooter=observer_shooter, iterations=200)
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[0.0], [100.0], [0.0]])
+    scenario_plotter.run_test(
+        shooter,
+        goal=R,
+        controller_shooter=shooter_controller,
+        observer_shooter=observer_shooter,
+        iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name')
-  else:
-    namespaces = ['y2016', 'control_loops', 'shooter']
-    shooter = Shooter('Shooter')
-    loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter],
-                                                 namespaces=namespaces)
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 5:
+        glog.fatal('Expected .h file name and .cc file name')
+    else:
+        namespaces = ['y2016', 'control_loops', 'shooter']
+        shooter = Shooter('Shooter')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Shooter', [shooter], namespaces=namespaces)
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_shooter = IntegralShooter('IntegralShooter')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralShooter', [integral_shooter], namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_shooter = IntegralShooter('IntegralShooter')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralShooter', [integral_shooter], namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    sys.exit(main(argv))