Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2014/control_loops/python/shooter.py b/y2014/control_loops/python/shooter.py
index 6a6bb3e..9287dae 100755
--- a/y2014/control_loops/python/shooter.py
+++ b/y2014/control_loops/python/shooter.py
@@ -13,272 +13,271 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 
+
 class SprungShooter(control_loop.ControlLoop):
-  def __init__(self, name="RawSprungShooter"):
-    super(SprungShooter, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = .4982
-    # Stall Current in Amps
-    self.stall_current = 85
-    # Free Speed in RPM
-    self.free_speed = 19300.0
-    # Free Current in Amps
-    self.free_current = 1.2
-    # Effective mass of the shooter in kg.
-    # This rough estimate should about include the effect of the masses
-    # of the gears. If this number is too low, the eigen values of self.A
-    # will start to become extremely small.
-    self.J = 200
-    # Resistance of the motor, divided by the number of motors.
-    self.R = 12.0 / self.stall_current / 2.0
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-               (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Spring constant for the springs, N/m
-    self.Ks = 2800.0
-    # Maximum extension distance (Distance from the 0 force point on the
-    # spring to the latch position.)
-    self.max_extension = 0.32385
-    # Gear ratio multiplied by radius of final sprocket.
-    self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
 
-    # Control loop time step
-    self.dt = 0.005
+    def __init__(self, name="RawSprungShooter"):
+        super(SprungShooter, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = .4982
+        # Stall Current in Amps
+        self.stall_current = 85
+        # Free Speed in RPM
+        self.free_speed = 19300.0
+        # Free Current in Amps
+        self.free_current = 1.2
+        # Effective mass of the shooter in kg.
+        # This rough estimate should about include the effect of the masses
+        # of the gears. If this number is too low, the eigen values of self.A
+        # will start to become extremely small.
+        self.J = 200
+        # Resistance of the motor, divided by the number of motors.
+        self.R = 12.0 / self.stall_current / 2.0
+        # Motor velocity constant
+        self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Spring constant for the springs, N/m
+        self.Ks = 2800.0
+        # Maximum extension distance (Distance from the 0 force point on the
+        # spring to the latch position.)
+        self.max_extension = 0.32385
+        # Gear ratio multiplied by radius of final sprocket.
+        self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (
+            3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
 
-    # State feedback matrices
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [-self.Ks / self.J,
-          -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        self.A_continuous = numpy.matrix(
+            [[0, 1],
+             [
+                 -self.Ks / self.J,
+                 -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)
+             ]])
+        self.B_continuous = numpy.matrix(
+            [[0], [self.Kt / (self.J * self.G * self.R)]])
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([0.45, 0.45])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl,
-                             self.rpl])
+        self.PlaceControllerPoles([0.45, 0.45])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles([self.rpl, self.rpl])
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 class Shooter(SprungShooter):
-  def __init__(self, name="RawShooter"):
-    super(Shooter, self).__init__(name)
 
-    # State feedback matrices
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [self.Kt / (self.J * self.G * self.R)]])
+    def __init__(self, name="RawShooter"):
+        super(Shooter, self).__init__(name)
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        self.A_continuous = numpy.matrix(
+            [[0, 1],
+             [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+        self.B_continuous = numpy.matrix(
+            [[0], [self.Kt / (self.J * self.G * self.R)]])
 
-    self.PlaceControllerPoles([0.45, 0.45])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl,
-                             self.rpl])
+        self.PlaceControllerPoles([0.45, 0.45])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles([self.rpl, self.rpl])
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 class SprungShooterDeltaU(SprungShooter):
-  def __init__(self, name="SprungShooter"):
-    super(SprungShooterDeltaU, self).__init__(name)
-    A_unaugmented = self.A
-    B_unaugmented = self.B
 
-    A_continuous_unaugmented = self.A_continuous
-    B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="SprungShooter"):
+        super(SprungShooterDeltaU, self).__init__(name)
+        A_unaugmented = self.A
+        B_unaugmented = self.B
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = B_continuous_unaugmented
+        A_continuous_unaugmented = self.A_continuous
+        B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[2, 0] = 1.0 / self.dt
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = B_continuous_unaugmented
 
-    self.A = numpy.matrix([[0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0],
-                           [0.0, 0.0, 1.0]])
-    self.A[0:2, 0:2] = A_unaugmented
-    self.A[0:2, 2] = B_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[2, 0] = 1.0 / self.dt
 
-    self.B = numpy.matrix([[0.0],
-                           [0.0],
-                           [1.0]])
+        self.A = numpy.matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
+                               [0.0, 0.0, 1.0]])
+        self.A[0:2, 0:2] = A_unaugmented
+        self.A[0:2, 2] = B_unaugmented
 
-    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
-    self.D = numpy.matrix([[0.0]])
+        self.B = numpy.matrix([[0.0], [0.0], [1.0]])
 
-    self.PlaceControllerPoles([0.50, 0.35, 0.80])
+        self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+        self.D = numpy.matrix([[0.0]])
 
-    glog.debug('K')
-    glog.debug(str(self.K))
-    glog.debug('Placed controller poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.PlaceControllerPoles([0.50, 0.35, 0.80])
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl, 0.90])
-    glog.debug('Placed observer poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
+        glog.debug('K')
+        glog.debug(str(self.K))
+        glog.debug('Placed controller poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl, 0.90])
+        glog.debug('Placed observer poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 class ShooterDeltaU(Shooter):
-  def __init__(self, name="Shooter"):
-    super(ShooterDeltaU, self).__init__(name)
-    A_unaugmented = self.A
-    B_unaugmented = self.B
 
-    A_continuous_unaugmented = self.A_continuous
-    B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="Shooter"):
+        super(ShooterDeltaU, self).__init__(name)
+        A_unaugmented = self.A
+        B_unaugmented = self.B
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = B_continuous_unaugmented
+        A_continuous_unaugmented = self.A_continuous
+        B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[2, 0] = 1.0 / self.dt
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = B_continuous_unaugmented
 
-    self.A = numpy.matrix([[0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0],
-                           [0.0, 0.0, 1.0]])
-    self.A[0:2, 0:2] = A_unaugmented
-    self.A[0:2, 2] = B_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[2, 0] = 1.0 / self.dt
 
-    self.B = numpy.matrix([[0.0],
-                           [0.0],
-                           [1.0]])
+        self.A = numpy.matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
+                               [0.0, 0.0, 1.0]])
+        self.A[0:2, 0:2] = A_unaugmented
+        self.A[0:2, 2] = B_unaugmented
 
-    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
-    self.D = numpy.matrix([[0.0]])
+        self.B = numpy.matrix([[0.0], [0.0], [1.0]])
 
-    self.PlaceControllerPoles([0.55, 0.45, 0.80])
+        self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+        self.D = numpy.matrix([[0.0]])
 
-    glog.debug('K')
-    glog.debug(str(self.K))
-    glog.debug('Placed controller poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.PlaceControllerPoles([0.55, 0.45, 0.80])
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl, 0.90])
-    glog.debug('Placed observer poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
+        glog.debug('K')
+        glog.debug(str(self.K))
+        glog.debug('Placed controller poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl, 0.90])
+        glog.debug('Placed observer poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 def ClipDeltaU(shooter, old_voltage, delta_u):
-  old_u = old_voltage
-  new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
-  return new_u - old_u
+    old_u = old_voltage
+    new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
+    return new_u - old_u
+
 
 def main(argv):
-  argv = FLAGS(argv)
+    argv = FLAGS(argv)
 
-  # Simulate the response of the system to a goal.
-  sprung_shooter = SprungShooterDeltaU()
-  raw_sprung_shooter = SprungShooter()
-  close_loop_x = []
-  close_loop_u = []
-  goal_position = -0.3
-  R = numpy.matrix([[goal_position],
-                    [0.0],
-                    [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] *
-                         goal_position]])
-  voltage = numpy.matrix([[0.0]])
-  for _ in xrange(500):
-    U = sprung_shooter.K * (R - sprung_shooter.X_hat)
-    U = ClipDeltaU(sprung_shooter, voltage, U)
-    sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
-    sprung_shooter.UpdateObserver(U)
-    voltage += U
-    raw_sprung_shooter.Update(voltage)
-    close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
-    close_loop_u.append(voltage[0, 0])
+    # Simulate the response of the system to a goal.
+    sprung_shooter = SprungShooterDeltaU()
+    raw_sprung_shooter = SprungShooter()
+    close_loop_x = []
+    close_loop_u = []
+    goal_position = -0.3
+    R = numpy.matrix(
+        [[goal_position], [0.0],
+         [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] * goal_position]])
+    voltage = numpy.matrix([[0.0]])
+    for _ in xrange(500):
+        U = sprung_shooter.K * (R - sprung_shooter.X_hat)
+        U = ClipDeltaU(sprung_shooter, voltage, U)
+        sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
+        sprung_shooter.UpdateObserver(U)
+        voltage += U
+        raw_sprung_shooter.Update(voltage)
+        close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
+        close_loop_u.append(voltage[0, 0])
 
-  if FLAGS.plot:
-    pylab.plot(range(500), close_loop_x)
-    pylab.plot(range(500), close_loop_u)
-    pylab.show()
+    if FLAGS.plot:
+        pylab.plot(range(500), close_loop_x)
+        pylab.plot(range(500), close_loop_u)
+        pylab.show()
 
-  shooter = ShooterDeltaU()
-  raw_shooter = Shooter()
-  close_loop_x = []
-  close_loop_u = []
-  goal_position = -0.3
-  R = numpy.matrix([[goal_position], [0.0], [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
-  voltage = numpy.matrix([[0.0]])
-  for _ in xrange(500):
-    U = shooter.K * (R - shooter.X_hat)
-    U = ClipDeltaU(shooter, voltage, U)
-    shooter.Y = raw_shooter.Y + 0.01
-    shooter.UpdateObserver(U)
-    voltage += U
-    raw_shooter.Update(voltage)
-    close_loop_x.append(raw_shooter.X[0, 0] * 10)
-    close_loop_u.append(voltage[0, 0])
+    shooter = ShooterDeltaU()
+    raw_shooter = Shooter()
+    close_loop_x = []
+    close_loop_u = []
+    goal_position = -0.3
+    R = numpy.matrix([[goal_position], [0.0],
+                      [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
+    voltage = numpy.matrix([[0.0]])
+    for _ in xrange(500):
+        U = shooter.K * (R - shooter.X_hat)
+        U = ClipDeltaU(shooter, voltage, U)
+        shooter.Y = raw_shooter.Y + 0.01
+        shooter.UpdateObserver(U)
+        voltage += U
+        raw_shooter.Update(voltage)
+        close_loop_x.append(raw_shooter.X[0, 0] * 10)
+        close_loop_u.append(voltage[0, 0])
 
-  if FLAGS.plot:
-    pylab.plot(range(500), close_loop_x)
-    pylab.plot(range(500), close_loop_u)
-    pylab.show()
+    if FLAGS.plot:
+        pylab.plot(range(500), close_loop_x)
+        pylab.plot(range(500), close_loop_u)
+        pylab.show()
 
-  # Write the generated constants out to a file.
-  unaug_sprung_shooter = SprungShooter("RawSprungShooter")
-  unaug_shooter = Shooter("RawShooter")
-  namespaces = ['y2014', 'control_loops', 'shooter']
-  unaug_loop_writer = control_loop.ControlLoopWriter("RawShooter",
-                                                     [unaug_sprung_shooter,
-                                                      unaug_shooter],
-                                                     namespaces=namespaces)
-  unaug_loop_writer.Write(argv[4], argv[3])
+    # Write the generated constants out to a file.
+    unaug_sprung_shooter = SprungShooter("RawSprungShooter")
+    unaug_shooter = Shooter("RawShooter")
+    namespaces = ['y2014', 'control_loops', 'shooter']
+    unaug_loop_writer = control_loop.ControlLoopWriter(
+        "RawShooter", [unaug_sprung_shooter, unaug_shooter],
+        namespaces=namespaces)
+    unaug_loop_writer.Write(argv[4], argv[3])
 
-  sprung_shooter = SprungShooterDeltaU()
-  shooter = ShooterDeltaU()
-  loop_writer = control_loop.ControlLoopWriter("Shooter",
-                                               [sprung_shooter, shooter],
-                                               namespaces=namespaces)
+    sprung_shooter = SprungShooterDeltaU()
+    shooter = ShooterDeltaU()
+    loop_writer = control_loop.ControlLoopWriter(
+        "Shooter", [sprung_shooter, shooter], namespaces=namespaces)
 
-  loop_writer.AddConstant(control_loop.Constant("kMaxExtension", "%f",
-                                                  sprung_shooter.max_extension))
-  loop_writer.AddConstant(control_loop.Constant("kSpringConstant", "%f",
-                                                  sprung_shooter.Ks))
-  loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
-                                                sprung_shooter.dt))
-  loop_writer.Write(argv[2], argv[1])
+    loop_writer.AddConstant(
+        control_loop.Constant("kMaxExtension", "%f",
+                              sprung_shooter.max_extension))
+    loop_writer.AddConstant(
+        control_loop.Constant("kSpringConstant", "%f", sprung_shooter.Ks))
+    loop_writer.AddConstant(
+        control_loop.Constant("kDt", "%f", sprung_shooter.dt))
+    loop_writer.Write(argv[2], argv[1])
+
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    sys.exit(main(sys.argv))