Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/y2014/control_loops/python/claw.py b/y2014/control_loops/python/claw.py
index 3ae9fe9..cade03d 100755
--- a/y2014/control_loops/python/claw.py
+++ b/y2014/control_loops/python/claw.py
@@ -13,493 +13,500 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
+
 
 class Claw(control_loop.ControlLoop):
-  def __init__(self, name="RawClaw"):
-    super(Claw, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 2.42
-    # Stall Current in Amps
-    self.stall_current = 133
-    # Free Speed in RPM
-    self.free_speed = 5500.0
-    # Free Current in Amps
-    self.free_current = 2.7
-    # Moment of inertia of the claw in kg m^2
-    self.J_top = 2.8
-    self.J_bottom = 3.0
 
-    # Resistance of the motor
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-               (13.5 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = 14.0 / 48.0 * 18.0 / 32.0 * 18.0 / 66.0 * 12.0 / 60.0
-    # Control loop time step
-    self.dt = 0.005
+    def __init__(self, name="RawClaw"):
+        super(Claw, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 2.42
+        # Stall Current in Amps
+        self.stall_current = 133
+        # Free Speed in RPM
+        self.free_speed = 5500.0
+        # Free Current in Amps
+        self.free_current = 2.7
+        # Moment of inertia of the claw in kg m^2
+        self.J_top = 2.8
+        self.J_bottom = 3.0
 
-    # State is [bottom position, bottom velocity, top - bottom position,
-    #           top - bottom velocity]
-    # Input is [bottom power, top power - bottom power * J_top / J_bottom]
-    # Motor time constants. difference_bottom refers to the constant for how the
-    # bottom velocity affects the difference of the top and bottom velocities.
-    self.common_motor_constant = -self.Kt / self.Kv / (self.G * self.G * self.R)
-    self.bottom_bottom = self.common_motor_constant / self.J_bottom
-    self.difference_bottom = -self.common_motor_constant * (1 / self.J_bottom
-                                                        - 1 / self.J_top)
-    self.difference_difference = self.common_motor_constant / self.J_top
-    # State feedback matrices
+        # Resistance of the motor
+        self.R = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+                   (13.5 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = 14.0 / 48.0 * 18.0 / 32.0 * 18.0 / 66.0 * 12.0 / 60.0
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A_continuous = numpy.matrix(
-        [[0, 0, 1, 0],
-         [0, 0, 0, 1],
-         [0, 0, self.bottom_bottom, 0],
-         [0, 0, self.difference_bottom, self.difference_difference]])
+        # State is [bottom position, bottom velocity, top - bottom position,
+        #           top - bottom velocity]
+        # Input is [bottom power, top power - bottom power * J_top / J_bottom]
+        # Motor time constants. difference_bottom refers to the constant for how the
+        # bottom velocity affects the difference of the top and bottom velocities.
+        self.common_motor_constant = -self.Kt / self.Kv / (
+            self.G * self.G * self.R)
+        self.bottom_bottom = self.common_motor_constant / self.J_bottom
+        self.difference_bottom = -self.common_motor_constant * (
+            1 / self.J_bottom - 1 / self.J_top)
+        self.difference_difference = self.common_motor_constant / self.J_top
+        # State feedback matrices
 
-    self.A_bottom_cont = numpy.matrix(
-        [[0, 1],
-         [0, self.bottom_bottom]])
+        self.A_continuous = numpy.matrix(
+            [[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, self.bottom_bottom, 0],
+             [0, 0, self.difference_bottom, self.difference_difference]])
 
-    self.A_diff_cont = numpy.matrix(
-        [[0, 1],
-         [0, self.difference_difference]])
+        self.A_bottom_cont = numpy.matrix([[0, 1], [0, self.bottom_bottom]])
 
-    self.motor_feedforward = self.Kt / (self.G * self.R)
-    self.motor_feedforward_bottom = self.motor_feedforward / self.J_bottom
-    self.motor_feedforward_difference = self.motor_feedforward / self.J_top
-    self.motor_feedforward_difference_bottom = (
-        self.motor_feedforward * (1 / self.J_bottom - 1 / self.J_top))
-    self.B_continuous = numpy.matrix(
-        [[0, 0],
-         [0, 0],
-         [self.motor_feedforward_bottom, 0],
-         [-self.motor_feedforward_bottom, self.motor_feedforward_difference]])
+        self.A_diff_cont = numpy.matrix([[0, 1],
+                                         [0, self.difference_difference]])
 
-    glog.debug('Cont X_ss %f', self.motor_feedforward / -self.common_motor_constant)
+        self.motor_feedforward = self.Kt / (self.G * self.R)
+        self.motor_feedforward_bottom = self.motor_feedforward / self.J_bottom
+        self.motor_feedforward_difference = self.motor_feedforward / self.J_top
+        self.motor_feedforward_difference_bottom = (
+            self.motor_feedforward * (1 / self.J_bottom - 1 / self.J_top))
+        self.B_continuous = numpy.matrix([[0, 0], [0, 0],
+                                          [self.motor_feedforward_bottom, 0],
+                                          [
+                                              -self.motor_feedforward_bottom,
+                                              self.motor_feedforward_difference
+                                          ]])
 
-    self.B_bottom_cont = numpy.matrix(
-        [[0],
-         [self.motor_feedforward_bottom]])
+        glog.debug('Cont X_ss %f',
+                   self.motor_feedforward / -self.common_motor_constant)
 
-    self.B_diff_cont = numpy.matrix(
-        [[0],
-         [self.motor_feedforward_difference]])
+        self.B_bottom_cont = numpy.matrix([[0],
+                                           [self.motor_feedforward_bottom]])
 
-    self.C = numpy.matrix([[1, 0, 0, 0],
-                           [1, 1, 0, 0]])
-    self.D = numpy.matrix([[0, 0],
-                           [0, 0]])
+        self.B_diff_cont = numpy.matrix([[0],
+                                         [self.motor_feedforward_difference]])
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0, 0, 0], [1, 1, 0, 0]])
+        self.D = numpy.matrix([[0, 0], [0, 0]])
 
-    self.A_bottom, self.B_bottom = controls.c2d(
-        self.A_bottom_cont, self.B_bottom_cont, self.dt)
-    self.A_diff, self.B_diff = controls.c2d(
-        self.A_diff_cont, self.B_diff_cont, self.dt)
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.K_bottom = controls.dplace(self.A_bottom, self.B_bottom,
-                                    [0.87 + 0.05j, 0.87 - 0.05j])
-    self.K_diff = controls.dplace(self.A_diff, self.B_diff,
-                                  [0.85 + 0.05j, 0.85 - 0.05j])
+        self.A_bottom, self.B_bottom = controls.c2d(self.A_bottom_cont,
+                                                    self.B_bottom_cont, self.dt)
+        self.A_diff, self.B_diff = controls.c2d(self.A_diff_cont,
+                                                self.B_diff_cont, self.dt)
 
-    glog.debug('K_diff %s', str(self.K_diff))
-    glog.debug('K_bottom %s', str(self.K_bottom))
+        self.K_bottom = controls.dplace(self.A_bottom, self.B_bottom,
+                                        [0.87 + 0.05j, 0.87 - 0.05j])
+        self.K_diff = controls.dplace(self.A_diff, self.B_diff,
+                                      [0.85 + 0.05j, 0.85 - 0.05j])
 
-    glog.debug('A')
-    glog.debug(self.A)
-    glog.debug('B')
-    glog.debug(self.B)
+        glog.debug('K_diff %s', str(self.K_diff))
+        glog.debug('K_bottom %s', str(self.K_bottom))
 
-    
-    self.Q = numpy.matrix([[(1.0 / (0.10 ** 2.0)), 0.0, 0.0, 0.0],
-                           [0.0, (1.0 / (0.06 ** 2.0)), 0.0, 0.0],
-                           [0.0, 0.0, 0.10, 0.0],
-                           [0.0, 0.0, 0.0, 0.1]])
+        glog.debug('A')
+        glog.debug(self.A)
+        glog.debug('B')
+        glog.debug(self.B)
 
-    self.R = numpy.matrix([[(1.0 / (40.0 ** 2.0)), 0.0],
-                           [0.0, (1.0 / (5.0 ** 2.0))]])
-    #self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        self.Q = numpy.matrix([[(1.0 / (0.10**2.0)), 0.0, 0.0, 0.0],
+                               [0.0, (1.0 / (0.06**2.0)), 0.0, 0.0],
+                               [0.0, 0.0, 0.10, 0.0], [0.0, 0.0, 0.0, 0.1]])
 
-    self.K = numpy.matrix([[self.K_bottom[0, 0], 0.0, self.K_bottom[0, 1], 0.0],
-                           [0.0, self.K_diff[0, 0], 0.0, self.K_diff[0, 1]]])
+        self.R = numpy.matrix([[(1.0 / (40.0**2.0)), 0.0],
+                               [0.0, (1.0 / (5.0**2.0))]])
+        #self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    # Compute the feed forwards aceleration term.
-    self.K[1, 0] = -self.B[1, 0] * self.K[0, 0] / self.B[1, 1]
+        self.K = numpy.matrix(
+            [[self.K_bottom[0, 0], 0.0, self.K_bottom[0, 1], 0.0],
+             [0.0, self.K_diff[0, 0], 0.0, self.K_diff[0, 1]]])
 
-    lstsq_A = numpy.identity(2)
-    lstsq_A[0, :] = self.B[1, :]
-    lstsq_A[1, :] = self.B[3, :]
-    glog.debug('System of Equations coefficients:')
-    glog.debug(str(lstsq_A))
-    glog.debug('det %s', str(numpy.linalg.det(lstsq_A)))
+        # Compute the feed forwards aceleration term.
+        self.K[1, 0] = -self.B[1, 0] * self.K[0, 0] / self.B[1, 1]
 
-    out_x = numpy.linalg.lstsq(
-                         lstsq_A,
-                         numpy.matrix([[self.A[1, 2]], [self.A[3, 2]]]))[0]
-    self.K[1, 2] = -lstsq_A[0, 0] * (self.K[0, 2] - out_x[0]) / lstsq_A[0, 1] + out_x[1]
+        lstsq_A = numpy.identity(2)
+        lstsq_A[0, :] = self.B[1, :]
+        lstsq_A[1, :] = self.B[3, :]
+        glog.debug('System of Equations coefficients:')
+        glog.debug(str(lstsq_A))
+        glog.debug('det %s', str(numpy.linalg.det(lstsq_A)))
 
-    glog.debug('K unaugmented')
-    glog.debug(str(self.K))
-    glog.debug('B * K unaugmented')
-    glog.debug(str(self.B * self.K))
-    F = self.A - self.B * self.K
-    glog.debug('A - B * K unaugmented')
-    glog.debug(str(F))
-    glog.debug('eigenvalues')
-    glog.debug(str(numpy.linalg.eig(F)[0]))
+        out_x = numpy.linalg.lstsq(
+            lstsq_A, numpy.matrix([[self.A[1, 2]], [self.A[3, 2]]]))[0]
+        self.K[1, 2] = -lstsq_A[0, 0] * (
+            self.K[0, 2] - out_x[0]) / lstsq_A[0, 1] + out_x[1]
 
-    self.rpl = .09
-    self.ipl = 0.030
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl,
-                             self.rpl - 1j * self.ipl])
+        glog.debug('K unaugmented')
+        glog.debug(str(self.K))
+        glog.debug('B * K unaugmented')
+        glog.debug(str(self.B * self.K))
+        F = self.A - self.B * self.K
+        glog.debug('A - B * K unaugmented')
+        glog.debug(str(F))
+        glog.debug('eigenvalues')
+        glog.debug(str(numpy.linalg.eig(F)[0]))
 
-    # The box formed by U_min and U_max must encompass all possible values,
-    # or else Austin's code gets angry.
-    self.U_max = numpy.matrix([[12.0], [12.0]])
-    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+        self.rpl = .09
+        self.ipl = 0.030
+        self.PlaceObserverPoles([
+            self.rpl + 1j * self.ipl, self.rpl + 1j * self.ipl,
+            self.rpl - 1j * self.ipl, self.rpl - 1j * self.ipl
+        ])
 
-    # For the tests that check the limits, these are (upper, lower) for both
-    # claws.
-    self.hard_pos_limits = None
-    self.pos_limits = None
+        # The box formed by U_min and U_max must encompass all possible values,
+        # or else Austin's code gets angry.
+        self.U_max = numpy.matrix([[12.0], [12.0]])
+        self.U_min = numpy.matrix([[-12.0], [-12.0]])
 
-    # Compute the steady state velocities for a given applied voltage.
-    # The top and bottom of the claw should spin at the same rate if the
-    # physics is right.
-    X_ss = numpy.matrix([[0], [0], [0.0], [0]])
-    
-    U = numpy.matrix([[1.0],[1.0]])
-    A = self.A
-    B = self.B
-    #X_ss[2, 0] = X_ss[2, 0] * A[2, 2] + B[2, 0] * U[0, 0]
-    X_ss[2, 0] = 1 / (1 - A[2, 2]) * B[2, 0] * U[0, 0]
-    #X_ss[3, 0] = X_ss[3, 0] * A[3, 3] + X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
-    #X_ss[3, 0] * (1 - A[3, 3]) = X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
-    X_ss[3, 0] = 1 / (1 - A[3, 3]) * (X_ss[2, 0] * A[3, 2] + B[3, 1] * U[1, 0] + B[3, 0] * U[0, 0])
-    #X_ss[3, 0] = 1 / (1 - A[3, 3]) / (1 - A[2, 2]) * B[2, 0] * U[0, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
-    X_ss[0, 0] = A[0, 2] * X_ss[2, 0] + B[0, 0] * U[0, 0]
-    X_ss[1, 0] = A[1, 2] * X_ss[2, 0] + A[1, 3] * X_ss[3, 0] + B[1, 0] * U[0, 0] + B[1, 1] * U[1, 0]
+        # For the tests that check the limits, these are (upper, lower) for both
+        # claws.
+        self.hard_pos_limits = None
+        self.pos_limits = None
 
-    glog.debug('X_ss %s', str(X_ss))
+        # Compute the steady state velocities for a given applied voltage.
+        # The top and bottom of the claw should spin at the same rate if the
+        # physics is right.
+        X_ss = numpy.matrix([[0], [0], [0.0], [0]])
 
-    self.InitializeState()
+        U = numpy.matrix([[1.0], [1.0]])
+        A = self.A
+        B = self.B
+        #X_ss[2, 0] = X_ss[2, 0] * A[2, 2] + B[2, 0] * U[0, 0]
+        X_ss[2, 0] = 1 / (1 - A[2, 2]) * B[2, 0] * U[0, 0]
+        #X_ss[3, 0] = X_ss[3, 0] * A[3, 3] + X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
+        #X_ss[3, 0] * (1 - A[3, 3]) = X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
+        X_ss[3, 0] = 1 / (1 - A[3, 3]) * (
+            X_ss[2, 0] * A[3, 2] + B[3, 1] * U[1, 0] + B[3, 0] * U[0, 0])
+        #X_ss[3, 0] = 1 / (1 - A[3, 3]) / (1 - A[2, 2]) * B[2, 0] * U[0, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
+        X_ss[0, 0] = A[0, 2] * X_ss[2, 0] + B[0, 0] * U[0, 0]
+        X_ss[1, 0] = (A[1, 2] * X_ss[2, 0]) + (A[1, 3] * X_ss[3, 0]) + (
+            B[1, 0] * U[0, 0]) + (B[1, 1] * U[1, 0])
+
+        glog.debug('X_ss %s', str(X_ss))
+
+        self.InitializeState()
 
 
 class ClawDeltaU(Claw):
-  def __init__(self, name="Claw"):
-    super(ClawDeltaU, self).__init__(name)
-    A_unaugmented = self.A
-    B_unaugmented = self.B
-    C_unaugmented = self.C
 
-    self.A = numpy.matrix([[0.0, 0.0, 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, 1.0]])
-    self.A[0:4, 0:4] = A_unaugmented
-    self.A[0:4, 4] = B_unaugmented[0:4, 0]
+    def __init__(self, name="Claw"):
+        super(ClawDeltaU, self).__init__(name)
+        A_unaugmented = self.A
+        B_unaugmented = self.B
+        C_unaugmented = self.C
 
-    self.B = numpy.matrix([[0.0, 0.0],
-                           [0.0, 0.0],
-                           [0.0, 0.0],
-                           [0.0, 0.0],
-                           [1.0, 0.0]])
-    self.B[0:4, 1] = B_unaugmented[0:4, 1]
+        self.A = numpy.matrix([[0.0, 0.0, 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, 1.0]])
+        self.A[0:4, 0:4] = A_unaugmented
+        self.A[0:4, 4] = B_unaugmented[0:4, 0]
 
-    self.C = numpy.concatenate((C_unaugmented, numpy.matrix([[0.0], [0.0]])),
-                               axis=1)
-    self.D = numpy.matrix([[0.0, 0.0],
-                           [0.0, 0.0]])
+        self.B = numpy.matrix([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
+                               [1.0, 0.0]])
+        self.B[0:4, 1] = B_unaugmented[0:4, 1]
 
-    #self.PlaceControllerPoles([0.55, 0.35, 0.55, 0.35, 0.80])
-    self.Q = numpy.matrix([[(1.0 / (0.04 ** 2.0)), 0.0, 0.0, 0.0, 0.0],
-                           [0.0, (1.0 / (0.01 ** 2)), 0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.01, 0.0, 0.0],
-                           [0.0, 0.0, 0.0, 0.08, 0.0],
-                           [0.0, 0.0, 0.0, 0.0, (1.0 / (10.0 ** 2))]])
+        self.C = numpy.concatenate(
+            (C_unaugmented, numpy.matrix([[0.0], [0.0]])), axis=1)
+        self.D = numpy.matrix([[0.0, 0.0], [0.0, 0.0]])
 
-    self.R = numpy.matrix([[0.000001, 0.0],
-                           [0.0, 1.0 / (10.0 ** 2.0)]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        #self.PlaceControllerPoles([0.55, 0.35, 0.55, 0.35, 0.80])
+        self.Q = numpy.matrix([[(1.0 / (0.04**2.0)), 0.0, 0.0, 0.0, 0.0],
+                               [0.0, (1.0 / (0.01**2)), 0.0, 0.0, 0.0],
+                               [0.0, 0.0, 0.01, 0.0, 0.0],
+                               [0.0, 0.0, 0.0, 0.08, 0.0],
+                               [0.0, 0.0, 0.0, 0.0, (1.0 / (10.0**2))]])
 
-    self.K = numpy.matrix([[50.0, 0.0, 10.0, 0.0, 1.0],
-                           [50.0, 0.0, 10.0, 0.0, 1.0]])
+        self.R = numpy.matrix([[0.000001, 0.0], [0.0, 1.0 / (10.0**2.0)]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    controllability = controls.ctrb(self.A, self.B)
-    glog.debug('Rank of augmented controllability matrix: %d',
-              numpy.linalg.matrix_rank(controllability))
+        self.K = numpy.matrix([[50.0, 0.0, 10.0, 0.0, 1.0],
+                               [50.0, 0.0, 10.0, 0.0, 1.0]])
 
-    glog.debug('K')
-    glog.debug(str(self.K))
-    glog.debug('Placed controller poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
-    glog.debug(str([numpy.abs(x) for x in
-                       numpy.linalg.eig(self.A - self.B * self.K)[0]]))
+        controllability = controls.ctrb(self.A, self.B)
+        glog.debug('Rank of augmented controllability matrix: %d',
+                   numpy.linalg.matrix_rank(controllability))
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl, 0.10, 0.09,
-                             self.rpl - 1j * self.ipl, 0.90])
-    #print "A is"
-    #print self.A
-    #print "L is"
-    #print self.L
-    #print "C is"
-    #print self.C
-    #print "A - LC is"
-    #print self.A - self.L * self.C
+        glog.debug('K')
+        glog.debug(str(self.K))
+        glog.debug('Placed controller poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        glog.debug(
+            str([
+                numpy.abs(x)
+                for x in numpy.linalg.eig(self.A - self.B * self.K)[0]
+            ]))
 
-    #print "Placed observer poles are"
-    #print numpy.linalg.eig(self.A - self.L * self.C)[0]
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles([
+            self.rpl + 1j * self.ipl, 0.10, 0.09, self.rpl - 1j * self.ipl, 0.90
+        ])
+        #print "A is"
+        #print self.A
+        #print "L is"
+        #print self.L
+        #print "C is"
+        #print self.C
+        #print "A - LC is"
+        #print self.A - self.L * self.C
 
-    self.U_max = numpy.matrix([[12.0], [12.0]])
-    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+        #print "Placed observer poles are"
+        #print numpy.linalg.eig(self.A - self.L * self.C)[0]
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0], [12.0]])
+        self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+        self.InitializeState()
+
 
 def ScaleU(claw, U, K, error):
-  """Clips U as necessary.
+    """Clips U as necessary.
 
     Args:
-      claw: claw object containing moments of inertia and U limits.
-      U: Input matrix to clip as necessary.
-  """
+        claw: claw object containing moments of inertia and U limits.
+        U: Input matrix to clip as necessary.
+    """
 
-  bottom_u = U[0, 0]
-  top_u = U[1, 0]
-  position_error = error[0:2, 0]
-  velocity_error = error[2:, 0]
+    bottom_u = U[0, 0]
+    top_u = U[1, 0]
+    position_error = error[0:2, 0]
+    velocity_error = error[2:, 0]
 
-  U_poly = polytope.HPolytope(
-      numpy.matrix([[1, 0],
-                    [-1, 0],
-                    [0, 1],
-                    [0, -1]]),
-      numpy.matrix([[12],
-                    [12],
-                    [12],
-                    [12]]))
+    U_poly = polytope.HPolytope(
+        numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]),
+        numpy.matrix([[12], [12], [12], [12]]))
 
-  if (bottom_u > claw.U_max[0, 0] or bottom_u < claw.U_min[0, 0] or
-      top_u > claw.U_max[0, 0] or top_u < claw.U_min[0, 0]):
+    if (bottom_u > claw.U_max[0, 0] or bottom_u < claw.U_min[0, 0] or
+            top_u > claw.U_max[0, 0] or top_u < claw.U_min[0, 0]):
 
-    position_K = K[:, 0:2]
-    velocity_K = K[:, 2:]
+        position_K = K[:, 0:2]
+        velocity_K = K[:, 2:]
 
-    # H * U <= k
-    # U = UPos + UVel
-    # H * (UPos + UVel) <= k
-    # H * UPos <= k - H * UVel
-    #
-    # Now, we can do a coordinate transformation and say the following.
-    #
-    # UPos = position_K * position_error
-    # (H * position_K) * position_error <= k - H * UVel
-    #
-    # Add in the constraint that 0 <= t <= 1
-    # Now, there are 2 ways this can go.  Either we have a region, or we don't
-    # have a region.  If we have a region, then pick the largest t and go for it.
-    # If we don't have a region, we need to pick a good comprimise.
+        # H * U <= k
+        # U = UPos + UVel
+        # H * (UPos + UVel) <= k
+        # H * UPos <= k - H * UVel
+        #
+        # Now, we can do a coordinate transformation and say the following.
+        #
+        # UPos = position_K * position_error
+        # (H * position_K) * position_error <= k - H * UVel
+        #
+        # Add in the constraint that 0 <= t <= 1
+        # Now, there are 2 ways this can go.  Either we have a region, or we don't
+        # have a region.  If we have a region, then pick the largest t and go for it.
+        # If we don't have a region, we need to pick a good comprimise.
 
-    pos_poly = polytope.HPolytope(
-        U_poly.H * position_K,
-        U_poly.k - U_poly.H * velocity_K * velocity_error)
+        pos_poly = polytope.HPolytope(
+            U_poly.H * position_K,
+            U_poly.k - U_poly.H * velocity_K * velocity_error)
 
-    # The actual angle for the line we call 45.
-    angle_45 = numpy.matrix([[numpy.sqrt(3), 1]])
-    if claw.pos_limits and claw.hard_pos_limits and claw.X[0, 0] + claw.X[1, 0] > claw.pos_limits[1]:
-      angle_45 = numpy.matrix([[1, 1]])
+        # The actual angle for the line we call 45.
+        angle_45 = numpy.matrix([[numpy.sqrt(3), 1]])
+        if claw.pos_limits and claw.hard_pos_limits and (
+                claw.X[0, 0] + claw.X[1, 0]) > claw.pos_limits[1]:
+            angle_45 = numpy.matrix([[1, 1]])
 
-    P = position_error
-    L45 = numpy.multiply(numpy.matrix([[numpy.sign(P[1, 0]), -numpy.sign(P[0, 0])]]), angle_45)
-    if L45[0, 1] == 0:
-      L45[0, 1] = 1
-    if L45[0, 0] == 0:
-      L45[0, 0] = 1
-    w45 = numpy.matrix([[0]])
+        P = position_error
+        L45 = numpy.multiply(
+            numpy.matrix([[numpy.sign(P[1, 0]), -numpy.sign(P[0, 0])]]),
+            angle_45)
+        if L45[0, 1] == 0:
+            L45[0, 1] = 1
+        if L45[0, 0] == 0:
+            L45[0, 0] = 1
+        w45 = numpy.matrix([[0]])
 
-    if numpy.abs(P[0, 0]) > numpy.abs(P[1, 0]):
-      LH = numpy.matrix([[0, 1]])
-    else:
-      LH = numpy.matrix([[1, 0]])
-    wh = LH * P
-    standard = numpy.concatenate((L45, LH))
-    W = numpy.concatenate((w45, wh))
-    intersection = numpy.linalg.inv(standard) * W
-    adjusted_pos_error_h, is_inside_h = polydrivetrain.DoCoerceGoal(pos_poly,
-        LH, wh, position_error)
-    adjusted_pos_error_45, is_inside_45 = polydrivetrain.DoCoerceGoal(pos_poly,
-        L45, w45, intersection)
-    if pos_poly.IsInside(intersection):
-      adjusted_pos_error = adjusted_pos_error_h
-    else:
-      if is_inside_h:
-        if numpy.linalg.norm(adjusted_pos_error_h) > numpy.linalg.norm(adjusted_pos_error_45):
-          adjusted_pos_error = adjusted_pos_error_h
+        if numpy.abs(P[0, 0]) > numpy.abs(P[1, 0]):
+            LH = numpy.matrix([[0, 1]])
         else:
-          adjusted_pos_error = adjusted_pos_error_45
-      else:
-        adjusted_pos_error = adjusted_pos_error_45
-    #print adjusted_pos_error
+            LH = numpy.matrix([[1, 0]])
+        wh = LH * P
+        standard = numpy.concatenate((L45, LH))
+        W = numpy.concatenate((w45, wh))
+        intersection = numpy.linalg.inv(standard) * W
+        adjusted_pos_error_h, is_inside_h = polydrivetrain.DoCoerceGoal(
+            pos_poly, LH, wh, position_error)
+        adjusted_pos_error_45, is_inside_45 = polydrivetrain.DoCoerceGoal(
+            pos_poly, L45, w45, intersection)
+        if pos_poly.IsInside(intersection):
+            adjusted_pos_error = adjusted_pos_error_h
+        else:
+            if is_inside_h:
+                if numpy.linalg.norm(adjusted_pos_error_h) > numpy.linalg.norm(
+                        adjusted_pos_error_45):
+                    adjusted_pos_error = adjusted_pos_error_h
+                else:
+                    adjusted_pos_error = adjusted_pos_error_45
+            else:
+                adjusted_pos_error = adjusted_pos_error_45
+        #print adjusted_pos_error
 
-    #print "Actual power is ", velocity_K * velocity_error + position_K * adjusted_pos_error
-    return velocity_K * velocity_error + position_K * adjusted_pos_error
+        #print "Actual power is ", velocity_K * velocity_error + position_K * adjusted_pos_error
+        return velocity_K * velocity_error + position_K * adjusted_pos_error
 
-    #U = Kpos * poserror + Kvel * velerror
-      
-    #scalar = claw.U_max[0, 0] / max(numpy.abs(top_u), numpy.abs(bottom_u))
+        #U = Kpos * poserror + Kvel * velerror
 
-    #top_u *= scalar
-    #bottom_u *= scalar
+        #scalar = claw.U_max[0, 0] / max(numpy.abs(top_u), numpy.abs(bottom_u))
 
-  return numpy.matrix([[bottom_u], [top_u]])
+        #top_u *= scalar
+        #bottom_u *= scalar
 
-def run_test(claw, initial_X, goal, max_separation_error=0.01, show_graph=True, iterations=200):
-  """Runs the claw plant on a given claw (claw) with an initial condition (initial_X) and goal (goal).
+    return numpy.matrix([[bottom_u], [top_u]])
+
+
+def run_test(claw,
+             initial_X,
+             goal,
+             max_separation_error=0.01,
+             show_graph=True,
+             iterations=200):
+    """Runs the claw plant on a given claw (claw) with an initial condition (initial_X) and goal (goal).
 
     The tests themselves are not terribly sophisticated; I just test for 
     whether the goal has been reached and whether the separation goes
     outside of the initial and goal values by more than max_separation_error.
     Prints out something for a failure of either condition and returns
     False if tests fail.
+
     Args:
-      claw: claw object to use.
-      initial_X: starting state.
-      goal: goal state.
-      show_graph: Whether or not to display a graph showing the changing
-           states and voltages.
-      iterations: Number of timesteps to run the model for."""
+        claw: claw object to use.
+        initial_X: starting state.
+        goal: goal state.
+        show_graph: Whether or not to display a graph showing the changing
+            states and voltages.
+        iterations: Number of timesteps to run the model for."""
 
-  claw.X = initial_X
+    claw.X = initial_X
 
-  # Various lists for graphing things.
-  t = []
-  x_bottom = []
-  x_top = []
-  u_bottom = []
-  u_top = []
-  x_separation = []
+    # Various lists for graphing things.
+    t = []
+    x_bottom = []
+    x_top = []
+    u_bottom = []
+    u_top = []
+    x_separation = []
 
-  tests_passed = True
+    tests_passed = True
 
-  # Bounds which separation should not exceed.
-  lower_bound = (initial_X[1, 0] if initial_X[1, 0] < goal[1, 0]
-                 else goal[1, 0]) - max_separation_error
-  upper_bound = (initial_X[1, 0] if initial_X[1, 0] > goal[1, 0]
-                 else goal[1, 0]) + max_separation_error
+    # Bounds which separation should not exceed.
+    lower_bound = (initial_X[1, 0] if initial_X[1, 0] < goal[1, 0] else
+                   goal[1, 0]) - max_separation_error
+    upper_bound = (initial_X[1, 0] if initial_X[1, 0] > goal[1, 0] else
+                   goal[1, 0]) + max_separation_error
 
-  for i in xrange(iterations):
-    U = claw.K * (goal - claw.X)
-    U = ScaleU(claw, U, claw.K, goal - claw.X)
-    claw.Update(U)
+    for i in xrange(iterations):
+        U = claw.K * (goal - claw.X)
+        U = ScaleU(claw, U, claw.K, goal - claw.X)
+        claw.Update(U)
 
-    if claw.X[1, 0] > upper_bound or claw.X[1, 0] < lower_bound:
-      tests_passed = False
-      glog.info('Claw separation was %f', claw.X[1, 0])
-      glog.info("Should have been between", lower_bound, "and", upper_bound)
+        if claw.X[1, 0] > upper_bound or claw.X[1, 0] < lower_bound:
+            tests_passed = False
+            glog.info('Claw separation was %f', claw.X[1, 0])
+            glog.info("Should have been between", lower_bound, "and",
+                      upper_bound)
 
-    if claw.hard_pos_limits and \
-      (claw.X[0, 0] > claw.hard_pos_limits[1] or
-          claw.X[0, 0] < claw.hard_pos_limits[0] or
-          claw.X[0, 0] + claw.X[1, 0] > claw.hard_pos_limits[1] or
-          claw.X[0, 0] + claw.X[1, 0] < claw.hard_pos_limits[0]):
-      tests_passed = False
-      glog.info('Claws at %f and %f', claw.X[0, 0], claw.X[0, 0] + claw.X[1, 0])
-      glog.info("Both should be in %s, definitely %s",
-                claw.pos_limits, claw.hard_pos_limits)
+        if claw.hard_pos_limits and \
+          (claw.X[0, 0] > claw.hard_pos_limits[1] or
+              claw.X[0, 0] < claw.hard_pos_limits[0] or
+              claw.X[0, 0] + claw.X[1, 0] > claw.hard_pos_limits[1] or
+              claw.X[0, 0] + claw.X[1, 0] < claw.hard_pos_limits[0]):
+            tests_passed = False
+            glog.info('Claws at %f and %f', claw.X[0, 0],
+                      claw.X[0, 0] + claw.X[1, 0])
+            glog.info("Both should be in %s, definitely %s", claw.pos_limits,
+                      claw.hard_pos_limits)
 
-    t.append(i * claw.dt)
-    x_bottom.append(claw.X[0, 0] * 10.0)
-    x_top.append((claw.X[1, 0] + claw.X[0, 0]) * 10.0)
-    u_bottom.append(U[0, 0])
-    u_top.append(U[1, 0])
-    x_separation.append(claw.X[1, 0] * 10.0)
+        t.append(i * claw.dt)
+        x_bottom.append(claw.X[0, 0] * 10.0)
+        x_top.append((claw.X[1, 0] + claw.X[0, 0]) * 10.0)
+        u_bottom.append(U[0, 0])
+        u_top.append(U[1, 0])
+        x_separation.append(claw.X[1, 0] * 10.0)
 
-  if show_graph:
-    pylab.plot(t, x_bottom, label='x bottom * 10')
-    pylab.plot(t, x_top, label='x top * 10')
-    pylab.plot(t, u_bottom, label='u bottom')
-    pylab.plot(t, u_top, label='u top')
-    pylab.plot(t, x_separation, label='separation * 10')
-    pylab.legend()
-    pylab.show()
+    if show_graph:
+        pylab.plot(t, x_bottom, label='x bottom * 10')
+        pylab.plot(t, x_top, label='x top * 10')
+        pylab.plot(t, u_bottom, label='u bottom')
+        pylab.plot(t, u_top, label='u top')
+        pylab.plot(t, x_separation, label='separation * 10')
+        pylab.legend()
+        pylab.show()
 
-  # Test to make sure that we are near the goal.
-  if numpy.max(abs(claw.X - goal)) > 1e-4:
-    tests_passed = False
-    glog.error('X was %s Expected %s', str(claw.X), str(goal))
+    # Test to make sure that we are near the goal.
+    if numpy.max(abs(claw.X - goal)) > 1e-4:
+        tests_passed = False
+        glog.error('X was %s Expected %s', str(claw.X), str(goal))
 
-  return tests_passed
+    return tests_passed
+
 
 def main(argv):
-  argv = FLAGS(argv)
+    argv = FLAGS(argv)
 
-  claw = Claw()
-  if FLAGS.plot:
-    # Test moving the claw with constant separation.
-    initial_X = numpy.matrix([[-1.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[1.0], [0.0], [0.0], [0.0]])
-    run_test(claw, initial_X, R)
+    claw = Claw()
+    if FLAGS.plot:
+        # Test moving the claw with constant separation.
+        initial_X = numpy.matrix([[-1.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[1.0], [0.0], [0.0], [0.0]])
+        run_test(claw, initial_X, R)
 
-    # Test just changing separation.
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[0.0], [1.0], [0.0], [0.0]])
-    run_test(claw, initial_X, R)
+        # Test just changing separation.
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[0.0], [1.0], [0.0], [0.0]])
+        run_test(claw, initial_X, R)
 
-    # Test changing both separation and position at once.
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[1.0], [1.0], [0.0], [0.0]])
-    run_test(claw, initial_X, R)
+        # Test changing both separation and position at once.
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[1.0], [1.0], [0.0], [0.0]])
+        run_test(claw, initial_X, R)
 
-    # Test a small separation error and a large position one.
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[2.0], [0.05], [0.0], [0.0]])
-    run_test(claw, initial_X, R)
+        # Test a small separation error and a large position one.
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[2.0], [0.05], [0.0], [0.0]])
+        run_test(claw, initial_X, R)
 
-    # Test a small separation error and a large position one.
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[-0.5], [1.0], [0.0], [0.0]])
-    run_test(claw, initial_X, R)
+        # Test a small separation error and a large position one.
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[-0.5], [1.0], [0.0], [0.0]])
+        run_test(claw, initial_X, R)
 
-    # Test opening with the top claw at the limit.
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[-1.5], [1.5], [0.0], [0.0]])
-    claw.hard_pos_limits = (-1.6, 0.1)
-    claw.pos_limits = (-1.5, 0.0)
-    run_test(claw, initial_X, R)
-    claw.pos_limits = None
+        # Test opening with the top claw at the limit.
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[-1.5], [1.5], [0.0], [0.0]])
+        claw.hard_pos_limits = (-1.6, 0.1)
+        claw.pos_limits = (-1.5, 0.0)
+        run_test(claw, initial_X, R)
+        claw.pos_limits = None
 
-    # Test opening with the bottom claw at the limit.
-    initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
-    R = numpy.matrix([[0], [1.5], [0.0], [0.0]])
-    claw.hard_pos_limits = (-0.1, 1.6)
-    claw.pos_limits = (0.0, 1.6)
-    run_test(claw, initial_X, R)
-    claw.pos_limits = None
+        # Test opening with the bottom claw at the limit.
+        initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
+        R = numpy.matrix([[0], [1.5], [0.0], [0.0]])
+        claw.hard_pos_limits = (-0.1, 1.6)
+        claw.pos_limits = (0.0, 1.6)
+        run_test(claw, initial_X, R)
+        claw.pos_limits = None
 
-  # Write the generated constants out to a file.
-  if len(argv) != 3:
-    glog.fatal('Expected .h file name and .cc file name for the claw.')
-  else:
-    namespaces = ['y2014', 'control_loops', 'claw']
-    claw = Claw('Claw')
-    loop_writer = control_loop.ControlLoopWriter('Claw', [claw],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant('kClawMomentOfInertiaRatio',
-      '%f', claw.J_top / claw.J_bottom))
-    loop_writer.AddConstant(control_loop.Constant('kDt', '%f',
-          claw.dt))
-    loop_writer.Write(argv[1], argv[2])
+    # Write the generated constants out to a file.
+    if len(argv) != 3:
+        glog.fatal('Expected .h file name and .cc file name for the claw.')
+    else:
+        namespaces = ['y2014', 'control_loops', 'claw']
+        claw = Claw('Claw')
+        loop_writer = control_loop.ControlLoopWriter(
+            'Claw', [claw], namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kClawMomentOfInertiaRatio', '%f',
+                                  claw.J_top / claw.J_bottom))
+        loop_writer.AddConstant(control_loop.Constant('kDt', '%f', claw.dt))
+        loop_writer.Write(argv[1], argv[2])
+
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    sys.exit(main(sys.argv))
diff --git a/y2014/control_loops/python/shooter.py b/y2014/control_loops/python/shooter.py
index 6a6bb3e..9287dae 100755
--- a/y2014/control_loops/python/shooter.py
+++ b/y2014/control_loops/python/shooter.py
@@ -13,272 +13,271 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 
+
 class SprungShooter(control_loop.ControlLoop):
-  def __init__(self, name="RawSprungShooter"):
-    super(SprungShooter, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = .4982
-    # Stall Current in Amps
-    self.stall_current = 85
-    # Free Speed in RPM
-    self.free_speed = 19300.0
-    # Free Current in Amps
-    self.free_current = 1.2
-    # Effective mass of the shooter in kg.
-    # This rough estimate should about include the effect of the masses
-    # of the gears. If this number is too low, the eigen values of self.A
-    # will start to become extremely small.
-    self.J = 200
-    # Resistance of the motor, divided by the number of motors.
-    self.R = 12.0 / self.stall_current / 2.0
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-               (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Spring constant for the springs, N/m
-    self.Ks = 2800.0
-    # Maximum extension distance (Distance from the 0 force point on the
-    # spring to the latch position.)
-    self.max_extension = 0.32385
-    # Gear ratio multiplied by radius of final sprocket.
-    self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
 
-    # Control loop time step
-    self.dt = 0.005
+    def __init__(self, name="RawSprungShooter"):
+        super(SprungShooter, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = .4982
+        # Stall Current in Amps
+        self.stall_current = 85
+        # Free Speed in RPM
+        self.free_speed = 19300.0
+        # Free Current in Amps
+        self.free_current = 1.2
+        # Effective mass of the shooter in kg.
+        # This rough estimate should about include the effect of the masses
+        # of the gears. If this number is too low, the eigen values of self.A
+        # will start to become extremely small.
+        self.J = 200
+        # Resistance of the motor, divided by the number of motors.
+        self.R = 12.0 / self.stall_current / 2.0
+        # Motor velocity constant
+        self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+                   (12.0 - self.R * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Spring constant for the springs, N/m
+        self.Ks = 2800.0
+        # Maximum extension distance (Distance from the 0 force point on the
+        # spring to the latch position.)
+        self.max_extension = 0.32385
+        # Gear ratio multiplied by radius of final sprocket.
+        self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (
+            3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
 
-    # State feedback matrices
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [-self.Ks / self.J,
-          -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        self.A_continuous = numpy.matrix(
+            [[0, 1],
+             [
+                 -self.Ks / self.J,
+                 -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)
+             ]])
+        self.B_continuous = numpy.matrix(
+            [[0], [self.Kt / (self.J * self.G * self.R)]])
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([0.45, 0.45])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl,
-                             self.rpl])
+        self.PlaceControllerPoles([0.45, 0.45])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles([self.rpl, self.rpl])
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 class Shooter(SprungShooter):
-  def __init__(self, name="RawShooter"):
-    super(Shooter, self).__init__(name)
 
-    # State feedback matrices
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [self.Kt / (self.J * self.G * self.R)]])
+    def __init__(self, name="RawShooter"):
+        super(Shooter, self).__init__(name)
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        self.A_continuous = numpy.matrix(
+            [[0, 1],
+             [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+        self.B_continuous = numpy.matrix(
+            [[0], [self.Kt / (self.J * self.G * self.R)]])
 
-    self.PlaceControllerPoles([0.45, 0.45])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl,
-                             self.rpl])
+        self.PlaceControllerPoles([0.45, 0.45])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles([self.rpl, self.rpl])
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 class SprungShooterDeltaU(SprungShooter):
-  def __init__(self, name="SprungShooter"):
-    super(SprungShooterDeltaU, self).__init__(name)
-    A_unaugmented = self.A
-    B_unaugmented = self.B
 
-    A_continuous_unaugmented = self.A_continuous
-    B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="SprungShooter"):
+        super(SprungShooterDeltaU, self).__init__(name)
+        A_unaugmented = self.A
+        B_unaugmented = self.B
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = B_continuous_unaugmented
+        A_continuous_unaugmented = self.A_continuous
+        B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[2, 0] = 1.0 / self.dt
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = B_continuous_unaugmented
 
-    self.A = numpy.matrix([[0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0],
-                           [0.0, 0.0, 1.0]])
-    self.A[0:2, 0:2] = A_unaugmented
-    self.A[0:2, 2] = B_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[2, 0] = 1.0 / self.dt
 
-    self.B = numpy.matrix([[0.0],
-                           [0.0],
-                           [1.0]])
+        self.A = numpy.matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
+                               [0.0, 0.0, 1.0]])
+        self.A[0:2, 0:2] = A_unaugmented
+        self.A[0:2, 2] = B_unaugmented
 
-    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
-    self.D = numpy.matrix([[0.0]])
+        self.B = numpy.matrix([[0.0], [0.0], [1.0]])
 
-    self.PlaceControllerPoles([0.50, 0.35, 0.80])
+        self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+        self.D = numpy.matrix([[0.0]])
 
-    glog.debug('K')
-    glog.debug(str(self.K))
-    glog.debug('Placed controller poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.PlaceControllerPoles([0.50, 0.35, 0.80])
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl, 0.90])
-    glog.debug('Placed observer poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
+        glog.debug('K')
+        glog.debug(str(self.K))
+        glog.debug('Placed controller poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl, 0.90])
+        glog.debug('Placed observer poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 class ShooterDeltaU(Shooter):
-  def __init__(self, name="Shooter"):
-    super(ShooterDeltaU, self).__init__(name)
-    A_unaugmented = self.A
-    B_unaugmented = self.B
 
-    A_continuous_unaugmented = self.A_continuous
-    B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="Shooter"):
+        super(ShooterDeltaU, self).__init__(name)
+        A_unaugmented = self.A
+        B_unaugmented = self.B
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = B_continuous_unaugmented
+        A_continuous_unaugmented = self.A_continuous
+        B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[2, 0] = 1.0 / self.dt
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = B_continuous_unaugmented
 
-    self.A = numpy.matrix([[0.0, 0.0, 0.0],
-                           [0.0, 0.0, 0.0],
-                           [0.0, 0.0, 1.0]])
-    self.A[0:2, 0:2] = A_unaugmented
-    self.A[0:2, 2] = B_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[2, 0] = 1.0 / self.dt
 
-    self.B = numpy.matrix([[0.0],
-                           [0.0],
-                           [1.0]])
+        self.A = numpy.matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
+                               [0.0, 0.0, 1.0]])
+        self.A[0:2, 0:2] = A_unaugmented
+        self.A[0:2, 2] = B_unaugmented
 
-    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
-    self.D = numpy.matrix([[0.0]])
+        self.B = numpy.matrix([[0.0], [0.0], [1.0]])
 
-    self.PlaceControllerPoles([0.55, 0.45, 0.80])
+        self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+        self.D = numpy.matrix([[0.0]])
 
-    glog.debug('K')
-    glog.debug(str(self.K))
-    glog.debug('Placed controller poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.PlaceControllerPoles([0.55, 0.45, 0.80])
 
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl, 0.90])
-    glog.debug('Placed observer poles are')
-    glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
+        glog.debug('K')
+        glog.debug(str(self.K))
+        glog.debug('Placed controller poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.rpl = .05
+        self.ipl = 0.008
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl, 0.90])
+        glog.debug('Placed observer poles are')
+        glog.debug(str(numpy.linalg.eig(self.A - self.L * self.C)[0]))
 
-    self.InitializeState()
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
 
 
 def ClipDeltaU(shooter, old_voltage, delta_u):
-  old_u = old_voltage
-  new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
-  return new_u - old_u
+    old_u = old_voltage
+    new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
+    return new_u - old_u
+
 
 def main(argv):
-  argv = FLAGS(argv)
+    argv = FLAGS(argv)
 
-  # Simulate the response of the system to a goal.
-  sprung_shooter = SprungShooterDeltaU()
-  raw_sprung_shooter = SprungShooter()
-  close_loop_x = []
-  close_loop_u = []
-  goal_position = -0.3
-  R = numpy.matrix([[goal_position],
-                    [0.0],
-                    [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] *
-                         goal_position]])
-  voltage = numpy.matrix([[0.0]])
-  for _ in xrange(500):
-    U = sprung_shooter.K * (R - sprung_shooter.X_hat)
-    U = ClipDeltaU(sprung_shooter, voltage, U)
-    sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
-    sprung_shooter.UpdateObserver(U)
-    voltage += U
-    raw_sprung_shooter.Update(voltage)
-    close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
-    close_loop_u.append(voltage[0, 0])
+    # Simulate the response of the system to a goal.
+    sprung_shooter = SprungShooterDeltaU()
+    raw_sprung_shooter = SprungShooter()
+    close_loop_x = []
+    close_loop_u = []
+    goal_position = -0.3
+    R = numpy.matrix(
+        [[goal_position], [0.0],
+         [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] * goal_position]])
+    voltage = numpy.matrix([[0.0]])
+    for _ in xrange(500):
+        U = sprung_shooter.K * (R - sprung_shooter.X_hat)
+        U = ClipDeltaU(sprung_shooter, voltage, U)
+        sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
+        sprung_shooter.UpdateObserver(U)
+        voltage += U
+        raw_sprung_shooter.Update(voltage)
+        close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
+        close_loop_u.append(voltage[0, 0])
 
-  if FLAGS.plot:
-    pylab.plot(range(500), close_loop_x)
-    pylab.plot(range(500), close_loop_u)
-    pylab.show()
+    if FLAGS.plot:
+        pylab.plot(range(500), close_loop_x)
+        pylab.plot(range(500), close_loop_u)
+        pylab.show()
 
-  shooter = ShooterDeltaU()
-  raw_shooter = Shooter()
-  close_loop_x = []
-  close_loop_u = []
-  goal_position = -0.3
-  R = numpy.matrix([[goal_position], [0.0], [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
-  voltage = numpy.matrix([[0.0]])
-  for _ in xrange(500):
-    U = shooter.K * (R - shooter.X_hat)
-    U = ClipDeltaU(shooter, voltage, U)
-    shooter.Y = raw_shooter.Y + 0.01
-    shooter.UpdateObserver(U)
-    voltage += U
-    raw_shooter.Update(voltage)
-    close_loop_x.append(raw_shooter.X[0, 0] * 10)
-    close_loop_u.append(voltage[0, 0])
+    shooter = ShooterDeltaU()
+    raw_shooter = Shooter()
+    close_loop_x = []
+    close_loop_u = []
+    goal_position = -0.3
+    R = numpy.matrix([[goal_position], [0.0],
+                      [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
+    voltage = numpy.matrix([[0.0]])
+    for _ in xrange(500):
+        U = shooter.K * (R - shooter.X_hat)
+        U = ClipDeltaU(shooter, voltage, U)
+        shooter.Y = raw_shooter.Y + 0.01
+        shooter.UpdateObserver(U)
+        voltage += U
+        raw_shooter.Update(voltage)
+        close_loop_x.append(raw_shooter.X[0, 0] * 10)
+        close_loop_u.append(voltage[0, 0])
 
-  if FLAGS.plot:
-    pylab.plot(range(500), close_loop_x)
-    pylab.plot(range(500), close_loop_u)
-    pylab.show()
+    if FLAGS.plot:
+        pylab.plot(range(500), close_loop_x)
+        pylab.plot(range(500), close_loop_u)
+        pylab.show()
 
-  # Write the generated constants out to a file.
-  unaug_sprung_shooter = SprungShooter("RawSprungShooter")
-  unaug_shooter = Shooter("RawShooter")
-  namespaces = ['y2014', 'control_loops', 'shooter']
-  unaug_loop_writer = control_loop.ControlLoopWriter("RawShooter",
-                                                     [unaug_sprung_shooter,
-                                                      unaug_shooter],
-                                                     namespaces=namespaces)
-  unaug_loop_writer.Write(argv[4], argv[3])
+    # Write the generated constants out to a file.
+    unaug_sprung_shooter = SprungShooter("RawSprungShooter")
+    unaug_shooter = Shooter("RawShooter")
+    namespaces = ['y2014', 'control_loops', 'shooter']
+    unaug_loop_writer = control_loop.ControlLoopWriter(
+        "RawShooter", [unaug_sprung_shooter, unaug_shooter],
+        namespaces=namespaces)
+    unaug_loop_writer.Write(argv[4], argv[3])
 
-  sprung_shooter = SprungShooterDeltaU()
-  shooter = ShooterDeltaU()
-  loop_writer = control_loop.ControlLoopWriter("Shooter",
-                                               [sprung_shooter, shooter],
-                                               namespaces=namespaces)
+    sprung_shooter = SprungShooterDeltaU()
+    shooter = ShooterDeltaU()
+    loop_writer = control_loop.ControlLoopWriter(
+        "Shooter", [sprung_shooter, shooter], namespaces=namespaces)
 
-  loop_writer.AddConstant(control_loop.Constant("kMaxExtension", "%f",
-                                                  sprung_shooter.max_extension))
-  loop_writer.AddConstant(control_loop.Constant("kSpringConstant", "%f",
-                                                  sprung_shooter.Ks))
-  loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
-                                                sprung_shooter.dt))
-  loop_writer.Write(argv[2], argv[1])
+    loop_writer.AddConstant(
+        control_loop.Constant("kMaxExtension", "%f",
+                              sprung_shooter.max_extension))
+    loop_writer.AddConstant(
+        control_loop.Constant("kSpringConstant", "%f", sprung_shooter.Ks))
+    loop_writer.AddConstant(
+        control_loop.Constant("kDt", "%f", sprung_shooter.dt))
+    loop_writer.Write(argv[2], argv[1])
+
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    sys.exit(main(sys.argv))