blob: 5566533d6444910973147e809931682ad36d3f34 [file] [log] [blame]
#ifndef FRC971_ZEROING_ZEROING_H_
#define FRC971_ZEROING_ZEROING_H_
#include <cstdint>
#include <vector>
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/constants.h"
// TODO(pschrader): Create an error API to flag faults/errors etc..
//
// TODO(pschrader): Flag an error if encoder index pulse is not n revolutions
// away from the last one (i.e. got extra counts from noise, etc..)
//
// TODO(pschrader): Flag error if the pot disagrees too much with the encoder
// after being zeroed.
//
// TODO(pschrader): Watch the offset over long periods of time and flag if it
// gets too far away from the initial value.
namespace frc971 {
namespace zeroing {
// Estimates the position with encoder,
// the pot and the indices.
class ZeroingEstimator {
public:
ZeroingEstimator(const constants::Values::ZeroingConstants &constants);
// Update the internal logic with the next sensor values.
void UpdateEstimate(const PotAndIndexPosition &info);
// Reset the internal logic so it needs to be re-zeroed.
void Reset();
// Returns true if the logic considers the corresponding mechanism to be
// zeroed. It return false otherwise. For example, right after a call to
// Reset() this returns false.
bool zeroed() const { return zeroed_; }
// Return the estimated position of the corresponding mechanism. This value
// is in SI units. For example, the estimator for the elevator would return a
// value in meters for the height relative to absolute zero.
double position() const { return pos_; }
// Return the estimated starting position of the corresponding mechansim. In
// some contexts we refer to this as the "offset".
double offset() const { return start_pos_; }
// Returns a number between 0 and 1 that represents the percentage of the
// samples being used in the moving average filter. A value of 0.0 means that
// no samples are being used. A value of 1.0 means that the filter is using
// as many samples as it has room for. For example, after a Reset() this
// value returns 0.0. As more samples get added with UpdateEstimate(...) the
// return value starts increasing to 1.0.
double offset_ratio_ready() const {
return start_pos_samples_.size() / static_cast<double>(max_sample_count_);
}
private:
// The estimated position.
double pos_;
// The distance between two consecutive index positions.
double index_diff_;
// The next position in 'start_pos_samples_' to be used to store the next
// sample.
int samples_idx_;
// Last 'max_sample_count_' samples for start positions.
std::vector<double> start_pos_samples_;
// The number of the last samples of start position to consider in the
// estimation.
size_t max_sample_count_;
// The estimated starting position of the mechanism. We also call this the
// 'offset' in some contexts.
double start_pos_;
// The absolute position of any index pulse on the mechanism. This is used to
// account for the various ways the encoders get mounted into the robot.
double known_index_pos_;
// Flag for triggering logic that takes note of the current index pulse count
// after a reset. See `index_pulse_count_after_reset_'.
bool wait_for_index_pulse_;
// After a reset we keep track of the index pulse count with this. Only after
// the index pulse count changes (i.e. increments at least once or wraps
// around) will we consider the mechanism zeroed.
uint32_t index_pulse_count_after_reset_;
// Marker to track whether we're fully zeroed yet or not.
bool zeroed_;
};
} // namespace zeroing
} // namespace frc971
#endif // FRC971_ZEROING_ZEROING_H_