blob: 77adc832f3c43883f790a4b72b929790e325a75d [file] [log] [blame]
#include "y2019/vision/target_finder.h"
#include "ceres/ceres.h"
#include <math.h>
using ceres::NumericDiffCostFunction;
using ceres::CENTRAL;
using ceres::CostFunction;
using ceres::Problem;
using ceres::Solver;
using ceres::Solve;
namespace y2019 {
namespace vision {
static constexpr double kInchesToMeters = 0.0254;
using namespace aos::vision;
using aos::vision::Vector;
Target Target::MakeTemplate() {
Target out;
// This is how off-vertical the tape is.
const double theta = 14.5 * M_PI / 180.0;
const double tape_offset = 4 * kInchesToMeters;
const double tape_width = 2 * kInchesToMeters;
const double tape_length = 5.5 * kInchesToMeters;
const double s = sin(theta);
const double c = cos(theta);
out.right.top = Vector<2>(tape_offset, 0.0);
out.right.inside = Vector<2>(tape_offset + tape_width * c, tape_width * s);
out.right.bottom = Vector<2>(tape_offset + tape_width * c + tape_length * s,
tape_width * s - tape_length * c);
out.right.outside =
Vector<2>(tape_offset + tape_length * s, -tape_length * c);
out.right.is_right = true;
out.left.top = Vector<2>(-out.right.top.x(), out.right.top.y());
out.left.inside = Vector<2>(-out.right.inside.x(), out.right.inside.y());
out.left.bottom = Vector<2>(-out.right.bottom.x(), out.right.bottom.y());
out.left.outside = Vector<2>(-out.right.outside.x(), out.right.outside.y());
return out;
}
std::array<Vector<2>, 8> Target::toPointList() const {
return std::array<Vector<2>, 8>{{right.top, right.inside, right.bottom,
right.outside, left.top, left.inside,
left.bottom, left.outside}};
}
Vector<2> Project(Vector<2> pt, const IntrinsicParams &intrinsics,
const ExtrinsicParams &extrinsics) {
double y = extrinsics.y;
double z = extrinsics.z;
double r1 = extrinsics.r1;
double r2 = extrinsics.r2;
double rup = intrinsics.mount_angle;
double fl = intrinsics.focal_length;
::Eigen::Matrix<double, 1, 3> pts{pt.x(), pt.y() + y, 0.0};
{
double theta = r1;
double s = sin(theta);
double c = cos(theta);
pts = (::Eigen::Matrix<double, 3, 3>() << c, 0, -s, 0, 1, 0, s, 0,
c).finished() *
pts.transpose();
}
pts(2) += z;
{
double theta = r2;
double s = sin(theta);
double c = cos(theta);
pts = (::Eigen::Matrix<double, 3, 3>() << c, 0, -s, 0, 1, 0, s, 0,
c).finished() *
pts.transpose();
}
// TODO: Apply 15 degree downward rotation.
{
double theta = rup;
double s = sin(theta);
double c = cos(theta);
pts = (::Eigen::Matrix<double, 3, 3>() << 1, 0, 0, 0, c, -s, 0, s,
c).finished() *
pts.transpose();
}
// TODO: Final image projection.
::Eigen::Matrix<double, 1, 3> res = pts;
float scale = fl / res.z();
return Vector<2>(res.x() * scale + 320.0, 240.0 - res.y() * scale);
}
Target Project(const Target &target, const IntrinsicParams &intrinsics,
const ExtrinsicParams &extrinsics) {
auto project = [&](Vector<2> pt) {
return Project(pt, intrinsics, extrinsics);
};
Target new_targ;
new_targ.right.is_right = true;
new_targ.right.top = project(target.right.top);
new_targ.right.inside = project(target.right.inside);
new_targ.right.bottom = project(target.right.bottom);
new_targ.right.outside = project(target.right.outside);
new_targ.left.top = project(target.left.top);
new_targ.left.inside = project(target.left.inside);
new_targ.left.bottom = project(target.left.bottom);
new_targ.left.outside = project(target.left.outside);
return new_targ;
}
// Used at runtime on a single image given camera parameters.
struct RuntimeCostFunctor {
RuntimeCostFunctor(Vector<2> result, Vector<2> template_pt,
IntrinsicParams intrinsics)
: result(result), template_pt(template_pt), intrinsics(intrinsics) {}
bool operator()(const double *const x, double *residual) const {
auto extrinsics = ExtrinsicParams::get(x);
auto pt = result - Project(template_pt, intrinsics, extrinsics);
residual[0] = pt.x();
residual[1] = pt.y();
return true;
}
Vector<2> result;
Vector<2> template_pt;
IntrinsicParams intrinsics;
};
IntermediateResult TargetFinder::ProcessTargetToResult(const Target &target,
bool verbose) {
// Memory for the ceres solver.
double params[ExtrinsicParams::kNumParams];
default_extrinsics_.set(&params[0]);
Problem problem;
auto target_value = target.toPointList();
auto template_value = target_template_.toPointList();
for (size_t i = 0; i < 8; ++i) {
auto a = template_value[i];
auto b = target_value[i];
problem.AddResidualBlock(
new NumericDiffCostFunction<RuntimeCostFunctor, CENTRAL, 2, 4>(
new RuntimeCostFunctor(b, a, intrinsics_)),
NULL, &params[0]);
}
Solver::Options options;
options.minimizer_progress_to_stdout = false;
Solver::Summary summary;
Solve(options, &problem, &summary);
IntermediateResult IR;
IR.extrinsics = ExtrinsicParams::get(&params[0]);
IR.solver_error = summary.final_cost;
if (verbose) {
std::cout << summary.BriefReport() << "\n";
std::cout << "y = " << IR.extrinsics.y / kInchesToMeters << ";\n";
std::cout << "z = " << IR.extrinsics.z / kInchesToMeters << ";\n";
std::cout << "r1 = " << IR.extrinsics.r1 * 180 / M_PI << ";\n";
std::cout << "r2 = " << IR.extrinsics.r2 * 180 / M_PI << ";\n";
std::cout << "rup = " << intrinsics_.mount_angle * 180 / M_PI << ";\n";
std::cout << "fl = " << intrinsics_.focal_length << ";\n";
std::cout << "error = " << summary.final_cost << ";\n";
}
return IR;
}
} // namespace vision
} // namespace y2019