blob: bcf00d6743c12449d7d97962be89360aab8db2b6 [file] [log] [blame]
#ifndef FRC971_CONTROL_LOOPS_STATE_FEEDBACK_LOOP_H_
#define FRC971_CONTROL_LOOPS_STATE_FEEDBACK_LOOP_H_
#include <assert.h>
#include <vector>
#include <memory>
#include <iostream>
#include "Eigen/Dense"
#include "aos/common/logging/logging.h"
#include "aos/common/macros.h"
// For everything in this file, "inputs" and "outputs" are defined from the
// perspective of the plant. This means U is an input and Y is an output
// (because you give the plant U (powers) and it gives you back a Y (sensor
// values). This is the opposite of what they mean from the perspective of the
// controller (U is an output because that's what goes to the motors and Y is an
// input because that's what comes back from the sensors).
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct StateFeedbackPlantCoefficients final {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackPlantCoefficients(const StateFeedbackPlantCoefficients &other)
: A(other.A),
A_continuous(other.A_continuous),
B(other.B),
B_continuous(other.B_continuous),
C(other.C),
D(other.D),
U_min(other.U_min),
U_max(other.U_max) {}
StateFeedbackPlantCoefficients(
const Eigen::Matrix<double, number_of_states, number_of_states> &A,
const Eigen::Matrix<double, number_of_states, number_of_states>
&A_continuous,
const Eigen::Matrix<double, number_of_states, number_of_inputs> &B,
const Eigen::Matrix<double, number_of_states, number_of_inputs>
&B_continuous,
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C,
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D,
const Eigen::Matrix<double, number_of_inputs, 1> &U_max,
const Eigen::Matrix<double, number_of_inputs, 1> &U_min)
: A(A),
A_continuous(A_continuous),
B(B),
B_continuous(B_continuous),
C(C),
D(D),
U_min(U_min),
U_max(U_max) {}
const Eigen::Matrix<double, number_of_states, number_of_states> A;
const Eigen::Matrix<double, number_of_states, number_of_states> A_continuous;
const Eigen::Matrix<double, number_of_states, number_of_inputs> B;
const Eigen::Matrix<double, number_of_states, number_of_inputs> B_continuous;
const Eigen::Matrix<double, number_of_outputs, number_of_states> C;
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> D;
const Eigen::Matrix<double, number_of_inputs, 1> U_min;
const Eigen::Matrix<double, number_of_inputs, 1> U_max;
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class StateFeedbackPlant {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackPlant(
::std::vector<::std::unique_ptr<StateFeedbackPlantCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
*coefficients)
: coefficients_(::std::move(*coefficients)), plant_index_(0) {
Reset();
}
StateFeedbackPlant(StateFeedbackPlant &&other)
: plant_index_(other.plant_index_) {
::std::swap(coefficients_, other.coefficients_);
X_.swap(other.X_);
Y_.swap(other.Y_);
}
virtual ~StateFeedbackPlant() {}
const Eigen::Matrix<double, number_of_states, number_of_states> &A() const {
return coefficients().A;
}
double A(int i, int j) const { return A()(i, j); }
const Eigen::Matrix<double, number_of_states, number_of_inputs> &B() const {
return coefficients().B;
}
double B(int i, int j) const { return B()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C() const {
return coefficients().C;
}
double C(int i, int j) const { return C()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D() const {
return coefficients().D;
}
double D(int i, int j) const { return D()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_min() const {
return coefficients().U_min;
}
double U_min(int i, int j) const { return U_min()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_max() const {
return coefficients().U_max;
}
double U_max(int i, int j) const { return U_max()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &X() const { return X_; }
double X(int i, int j) const { return X()(i, j); }
const Eigen::Matrix<double, number_of_outputs, 1> &Y() const { return Y_; }
double Y(int i, int j) const { return Y()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_X() { return X_; }
double &mutable_X(int i, int j) { return mutable_X()(i, j); }
Eigen::Matrix<double, number_of_outputs, 1> &mutable_Y() { return Y_; }
double &mutable_Y(int i, int j) { return mutable_Y()(i, j); }
const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs> &
coefficients() const {
return *coefficients_[plant_index_];
}
int plant_index() const { return plant_index_; }
void set_plant_index(int plant_index) {
assert(plant_index >= 0);
assert(plant_index < static_cast<int>(coefficients_.size()));
plant_index_ = plant_index;
}
void Reset() {
X_.setZero();
Y_.setZero();
}
// Assert that U is within the hardware range.
virtual void CheckU(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
for (int i = 0; i < kNumInputs; ++i) {
if (U(i, 0) > U_max(i, 0) + 0.00001 || U(i, 0) < U_min(i, 0) - 0.00001) {
LOG(FATAL, "U out of range\n");
}
}
}
// Computes the new X and Y given the control input.
void Update(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
// Powers outside of the range are more likely controller bugs than things
// that the plant should deal with.
CheckU(U);
X_ = A() * X() + B() * U;
Y_ = C() * X() + D() * U;
}
protected:
// these are accessible from non-templated subclasses
static const int kNumStates = number_of_states;
static const int kNumOutputs = number_of_outputs;
static const int kNumInputs = number_of_inputs;
private:
Eigen::Matrix<double, number_of_states, 1> X_;
Eigen::Matrix<double, number_of_outputs, 1> Y_;
::std::vector<::std::unique_ptr<StateFeedbackPlantCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
coefficients_;
int plant_index_;
DISALLOW_COPY_AND_ASSIGN(StateFeedbackPlant);
};
// A Controller is a structure which holds a plant and the K and L matrices.
// This is designed such that multiple controllers can share one set of state to
// support gain scheduling easily.
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct StateFeedbackControllerConstants final {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
const Eigen::Matrix<double, number_of_states, number_of_outputs> L;
const Eigen::Matrix<double, number_of_inputs, number_of_states> K;
const Eigen::Matrix<double, number_of_inputs, number_of_states> Kff;
const Eigen::Matrix<double, number_of_states, number_of_states> A_inv;
StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
plant;
StateFeedbackControllerConstants(
const Eigen::Matrix<double, number_of_states, number_of_outputs> &L,
const Eigen::Matrix<double, number_of_inputs, number_of_states> &K,
const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff,
const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv,
const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs> &plant)
: L(L), K(K), Kff(Kff), A_inv(A_inv), plant(plant) {}
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class StateFeedbackLoop {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackLoop(
const StateFeedbackControllerConstants<number_of_states, number_of_inputs,
number_of_outputs> &controller)
: controller_index_(0) {
controllers_.emplace_back(
new StateFeedbackControllerConstants<number_of_states, number_of_inputs,
number_of_outputs>(controller));
Reset();
}
StateFeedbackLoop(
::std::vector<::std::unique_ptr<StateFeedbackControllerConstants<
number_of_states, number_of_inputs, number_of_outputs>>> *controllers)
: controllers_(::std::move(*controllers)), controller_index_(0) {
Reset();
}
StateFeedbackLoop(StateFeedbackLoop &&other) {
X_hat_.swap(other.X_hat_);
R_.swap(other.R_);
next_R_.swap(other.next_R_);
U_.swap(other.U_);
U_uncapped_.swap(other.U_uncapped_);
ff_U_.swap(other.ff_U_);
::std::swap(controllers_, other.controllers_);
controller_index_ = other.controller_index_;
}
virtual ~StateFeedbackLoop() {}
const Eigen::Matrix<double, number_of_states, number_of_states> &A() const {
return controller().plant.A;
}
double A(int i, int j) const { return A()(i, j); }
const Eigen::Matrix<double, number_of_states, number_of_inputs> &B() const {
return controller().plant.B;
}
const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv()
const {
return controller().A_inv;
}
double A_inv(int i, int j) const { return A_inv()(i, j); }
double B(int i, int j) const { return B()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C() const {
return controller().plant.C;
}
double C(int i, int j) const { return C()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D() const {
return controller().plant.D;
}
double D(int i, int j) const { return D()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_min() const {
return controller().plant.U_min;
}
double U_min(int i, int j) const { return U_min()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_max() const {
return controller().plant.U_max;
}
double U_max(int i, int j) const { return U_max()(i, j); }
const Eigen::Matrix<double, number_of_inputs, number_of_states> &K() const {
return controller().K;
}
double K(int i, int j) const { return K()(i, j); }
const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff() const {
return controller().Kff;
}
double Kff(int i, int j) const { return Kff()(i, j); }
const Eigen::Matrix<double, number_of_states, number_of_outputs> &L() const {
return controller().L;
}
double L(int i, int j) const { return L()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
return X_hat_;
}
double X_hat(int i, int j) const { return X_hat()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &R() const { return R_; }
double R(int i, int j) const { return R()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &next_R() const {
return next_R_;
}
double next_R(int i, int j) const { return next_R()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U() const { return U_; }
double U(int i, int j) const { return U()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_uncapped() const {
return U_uncapped_;
}
double U_uncapped(int i, int j) const { return U_uncapped()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &ff_U() const {
return ff_U_;
}
double ff_U(int i, int j) const { return ff_U()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() { return X_hat_; }
double &mutable_X_hat(int i, int j) { return mutable_X_hat()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_R() { return R_; }
double &mutable_R(int i, int j) { return mutable_R()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_next_R() {
return next_R_;
}
double &mutable_next_R(int i, int j) { return mutable_next_R()(i, j); }
Eigen::Matrix<double, number_of_inputs, 1> &mutable_U() { return U_; }
double &mutable_U(int i, int j) { return mutable_U()(i, j); }
Eigen::Matrix<double, number_of_inputs, 1> &mutable_U_uncapped() {
return U_uncapped_;
}
double &mutable_U_uncapped(int i, int j) {
return mutable_U_uncapped()(i, j);
}
const StateFeedbackControllerConstants<number_of_states, number_of_inputs,
number_of_outputs>
&controller() const {
return *controllers_[controller_index_];
}
const StateFeedbackControllerConstants<number_of_states, number_of_inputs,
number_of_outputs>
&controller(int index) const {
return *controllers_[index];
}
void Reset() {
X_hat_.setZero();
R_.setZero();
next_R_.setZero();
U_.setZero();
U_uncapped_.setZero();
ff_U_.setZero();
}
// If U is outside the hardware range, limit it before the plant tries to use
// it.
virtual void CapU() {
for (int i = 0; i < kNumInputs; ++i) {
if (U(i, 0) > U_max(i, 0)) {
U_(i, 0) = U_max(i, 0);
} else if (U(i, 0) < U_min(i, 0)) {
U_(i, 0) = U_min(i, 0);
}
}
}
// Corrects X_hat given the observation in Y.
void Correct(const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
X_hat_ += A_inv() * L() * (Y - C() * X_hat_ - D() * U());
}
const Eigen::Matrix<double, number_of_states, 1> error() const {
return R() - X_hat();
}
// Returns the calculated controller power.
virtual const Eigen::Matrix<double, number_of_inputs, 1> ControllerOutput() {
ff_U_ = FeedForward();
return K() * error() + ff_U_;
}
// Calculates the feed forwards power.
virtual const Eigen::Matrix<double, number_of_inputs, 1> FeedForward() {
return Kff() * (next_R() - A() * R());
}
// stop_motors is whether or not to output all 0s.
void Update(bool stop_motors) {
if (stop_motors) {
U_.setZero();
U_uncapped_.setZero();
ff_U_.setZero();
} else {
U_ = U_uncapped_ = ControllerOutput();
CapU();
}
UpdateObserver(U_);
UpdateFFReference();
}
// Updates R() after any CapU operations happen on U().
void UpdateFFReference() {
ff_U_ -= U_uncapped() - U();
if (!Kff().isZero(0)) {
R_ = A() * R() + B() * ff_U_;
}
}
void UpdateObserver(const Eigen::Matrix<double, number_of_inputs, 1> &new_u) {
X_hat_ = A() * X_hat() + B() * new_u;
}
// Sets the current controller to be index, clamped to be within range.
void set_controller_index(int index) {
if (index < 0) {
controller_index_ = 0;
} else if (index >= static_cast<int>(controllers_.size())) {
controller_index_ = static_cast<int>(controllers_.size()) - 1;
} else {
controller_index_ = index;
}
}
int controller_index() const { return controller_index_; }
protected:
::std::vector<::std::unique_ptr<StateFeedbackControllerConstants<
number_of_states, number_of_inputs, number_of_outputs>>>
controllers_;
// These are accessible from non-templated subclasses.
static constexpr int kNumStates = number_of_states;
static constexpr int kNumOutputs = number_of_outputs;
static constexpr int kNumInputs = number_of_inputs;
// Portion of U which is based on the feed-forwards.
Eigen::Matrix<double, number_of_inputs, 1> ff_U_;
private:
// Internal state estimate.
Eigen::Matrix<double, number_of_states, 1> X_hat_;
// Current goal (Used by the feed-back controller).
Eigen::Matrix<double, number_of_states, 1> R_;
// Goal to go to in the next cycle (Used by Feed-Forward controller.)
Eigen::Matrix<double, number_of_states, 1> next_R_;
// Computed output after being capped.
Eigen::Matrix<double, number_of_inputs, 1> U_;
// Computed output before being capped.
Eigen::Matrix<double, number_of_inputs, 1> U_uncapped_;
int controller_index_;
DISALLOW_COPY_AND_ASSIGN(StateFeedbackLoop);
};
#endif // FRC971_CONTROL_LOOPS_STATE_FEEDBACK_LOOP_H_