| #!/usr/bin/python |
| |
| import control_loop |
| import controls |
| import numpy |
| import sys |
| from matplotlib import pylab |
| |
| |
| class CIM(control_loop.ControlLoop): |
| def __init__(self): |
| super(CIM, self).__init__("CIM") |
| # Stall Torque in N m |
| self.stall_torque = 2.42 |
| # Stall Current in Amps |
| self.stall_current = 133 |
| # Free Speed in RPM |
| self.free_speed = 4650.0 |
| # Free Current in Amps |
| self.free_current = 2.7 |
| # Moment of inertia of the CIM in kg m^2 |
| self.J = 0.0001 |
| # Resistance of the motor, divided by 2 to account for the 2 motors |
| self.R = 12.0 / self.stall_current |
| # Motor velocity constant |
| self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| (12.0 - self.R * self.free_current)) |
| # Torque constant |
| self.Kt = self.stall_torque / self.stall_current |
| # Control loop time step |
| self.dt = 0.005 |
| |
| # State feedback matrices |
| self.A_continuous = numpy.matrix( |
| [[-self.Kt / self.Kv / (self.J * self.R)]]) |
| self.B_continuous = numpy.matrix( |
| [[self.Kt / (self.J * self.R)]]) |
| self.C = numpy.matrix([[1]]) |
| self.D = numpy.matrix([[0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| self.PlaceControllerPoles([0.01]) |
| self.PlaceObserverPoles([0.01]) |
| |
| self.U_max = numpy.matrix([[12.0]]) |
| self.U_min = numpy.matrix([[-12.0]]) |
| |
| self.InitializeState() |
| |
| |
| class Drivetrain(control_loop.ControlLoop): |
| def __init__(self, name="Drivetrain", left_low=True, right_low=True): |
| super(Drivetrain, self).__init__(name) |
| # Stall Torque in N m |
| self.stall_torque = 2.42 |
| # Stall Current in Amps |
| self.stall_current = 133.0 |
| # Free Speed in RPM. Used number from last year. |
| self.free_speed = 4650.0 |
| # Free Current in Amps |
| self.free_current = 2.7 |
| # Moment of inertia of the drivetrain in kg m^2 |
| # Just borrowed from last year. |
| self.J = 10 |
| # Mass of the robot, in kg. |
| self.m = 68 |
| # Radius of the robot, in meters (from last year). |
| self.rb = 0.9603 / 2.0 |
| # Radius of the wheels, in meters. |
| self.r = 0.0508 |
| # Resistance of the motor, divided by the number of motors. |
| self.R = 12.0 / self.stall_current / 2 |
| # Motor velocity constant |
| self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| (12.0 - self.R * self.free_current)) |
| # Torque constant |
| self.Kt = self.stall_torque / self.stall_current |
| # Gear ratios |
| self.G_const = 18.0 / 44.0 * 18.0 / 60.0 |
| |
| self.G_low = self.G_const |
| self.G_high = self.G_const |
| |
| if left_low: |
| self.Gl = self.G_low |
| else: |
| self.Gl = self.G_high |
| if right_low: |
| self.Gr = self.G_low |
| else: |
| self.Gr = self.G_high |
| |
| # Control loop time step |
| self.dt = 0.005 |
| |
| # These describe the way that a given side of a robot will be influenced |
| # by the other side. Units of 1 / kg. |
| self.msp = 1.0 / self.m + self.rb * self.rb / self.J |
| self.msn = 1.0 / self.m - self.rb * self.rb / self.J |
| # The calculations which we will need for A and B. |
| self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.R * self.r * self.r) |
| self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.R * self.r * self.r) |
| self.mpl = self.Kt / (self.Gl * self.R * self.r) |
| self.mpr = self.Kt / (self.Gr * self.R * self.r) |
| |
| # State feedback matrices |
| # X will be of the format |
| # [[positionl], [velocityl], [positionr], velocityr]] |
| self.A_continuous = numpy.matrix( |
| [[0, 1, 0, 0], |
| [0, self.msp * self.tcl, 0, self.msn * self.tcr], |
| [0, 0, 0, 1], |
| [0, self.msn * self.tcl, 0, self.msp * self.tcr]]) |
| self.B_continuous = numpy.matrix( |
| [[0, 0], |
| [self.msp * self.mpl, self.msn * self.mpr], |
| [0, 0], |
| [self.msn * self.mpl, self.msp * self.mpr]]) |
| self.C = numpy.matrix([[1, 0, 0, 0], |
| [0, 0, 1, 0]]) |
| self.D = numpy.matrix([[0, 0], |
| [0, 0]]) |
| |
| #print "THE NUMBER I WANT" + str(numpy.linalg.inv(self.A_continuous) * -self.B_continuous * numpy.matrix([[12.0], [12.0]])) |
| self.A, self.B = self.ContinuousToDiscrete( |
| self.A_continuous, self.B_continuous, self.dt) |
| |
| # Poles from last year. |
| self.hp = 0.65 |
| self.lp = 0.83 |
| self.PlaceControllerPoles([self.hp, self.lp, self.hp, self.lp]) |
| print self.K |
| q_pos = 0.07 |
| q_vel = 1.0 |
| self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0], |
| [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0], |
| [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0], |
| [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]]) |
| |
| self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0], |
| [0.0, (1.0 / (12.0 ** 2.0))]]) |
| self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| print self.A |
| print self.B |
| print self.K |
| print numpy.linalg.eig(self.A - self.B * self.K)[0] |
| |
| self.hlp = 0.3 |
| self.llp = 0.4 |
| self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp]) |
| |
| self.U_max = numpy.matrix([[12.0], [12.0]]) |
| self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| self.InitializeState() |
| |
| def main(argv): |
| # Simulate the response of the system to a step input. |
| drivetrain = Drivetrain() |
| simulated_left = [] |
| simulated_right = [] |
| for _ in xrange(100): |
| drivetrain.Update(numpy.matrix([[12.0], [12.0]])) |
| simulated_left.append(drivetrain.X[0, 0]) |
| simulated_right.append(drivetrain.X[2, 0]) |
| |
| #pylab.plot(range(100), simulated_left) |
| #pylab.plot(range(100), simulated_right) |
| #pylab.show() |
| |
| # Simulate forwards motion. |
| drivetrain = Drivetrain() |
| close_loop_left = [] |
| close_loop_right = [] |
| R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]]) |
| for _ in xrange(100): |
| U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| drivetrain.U_min, drivetrain.U_max) |
| drivetrain.UpdateObserver(U) |
| drivetrain.Update(U) |
| close_loop_left.append(drivetrain.X[0, 0]) |
| close_loop_right.append(drivetrain.X[2, 0]) |
| |
| #pylab.plot(range(100), close_loop_left) |
| #pylab.plot(range(100), close_loop_right) |
| #pylab.show() |
| |
| # Try turning in place |
| drivetrain = Drivetrain() |
| close_loop_left = [] |
| close_loop_right = [] |
| R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]]) |
| for _ in xrange(100): |
| U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| drivetrain.U_min, drivetrain.U_max) |
| drivetrain.UpdateObserver(U) |
| drivetrain.Update(U) |
| close_loop_left.append(drivetrain.X[0, 0]) |
| close_loop_right.append(drivetrain.X[2, 0]) |
| |
| #pylab.plot(range(100), close_loop_left) |
| #pylab.plot(range(100), close_loop_right) |
| #pylab.show() |
| |
| # Try turning just one side. |
| drivetrain = Drivetrain() |
| close_loop_left = [] |
| close_loop_right = [] |
| R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]]) |
| for _ in xrange(100): |
| U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| drivetrain.U_min, drivetrain.U_max) |
| drivetrain.UpdateObserver(U) |
| drivetrain.Update(U) |
| close_loop_left.append(drivetrain.X[0, 0]) |
| close_loop_right.append(drivetrain.X[2, 0]) |
| |
| #pylab.plot(range(100), close_loop_left) |
| #pylab.plot(range(100), close_loop_right) |
| #pylab.show() |
| |
| # Write the generated constants out to a file. |
| print "Output one" |
| drivetrain_low_low = Drivetrain(name="DrivetrainLowLow", left_low=True, right_low=True) |
| drivetrain_low_high = Drivetrain(name="DrivetrainLowHigh", left_low=True, right_low=False) |
| drivetrain_high_low = Drivetrain(name="DrivetrainHighLow", left_low=False, right_low=True) |
| drivetrain_high_high = Drivetrain(name="DrivetrainHighHigh", left_low=False, right_low=False) |
| |
| if len(argv) != 5: |
| print "Expected .h file name and .cc file name" |
| else: |
| dog_loop_writer = control_loop.ControlLoopWriter( |
| "Drivetrain", [drivetrain_low_low, drivetrain_low_high, |
| drivetrain_high_low, drivetrain_high_high], |
| namespaces=['y2015_bot3', 'control_loops']) |
| if argv[1][-3:] == '.cc': |
| dog_loop_writer.Write(argv[2], argv[1]) |
| else: |
| dog_loop_writer.Write(argv[1], argv[2]) |
| |
| if __name__ == '__main__': |
| sys.exit(main(sys.argv)) |