blob: 84e504dd55d086eb20f64a00c5c34a87a925ab6b [file] [log] [blame]
#ifndef Y2022_BLOB_DETECTOR_H_
#define Y2022_BLOB_DETECTOR_H_
#include <opencv2/features2d.hpp>
#include <opencv2/imgproc.hpp>
namespace y2022 {
namespace vision {
class BlobDetector {
public:
struct BlobStats {
cv::Point centroid;
double aspect_ratio;
double area;
size_t points;
};
BlobDetector() {}
// Given an image, threshold it to find "green" pixels
// Input: Color image
// Output: Grayscale (binarized) image with green pixels set to 255
static cv::Mat ThresholdImage(cv::Mat rgb_image);
// Given binary image, extract blobs
static std::vector<std::vector<cv::Point>> FindBlobs(cv::Mat threshold_image);
// Extract stats for each blob
static std::vector<BlobStats> ComputeStats(
std::vector<std::vector<cv::Point>> blobs);
// Filter blobs to get rid of noise, too large items, etc.
static std::vector<std::vector<cv::Point>> FilterBlobs(
std::vector<std::vector<cv::Point>> blobs,
std::vector<BlobStats> blob_stats);
// Draw Blobs on image
// Optionally draw all blobs and filtered blobs
static void DrawBlobs(
cv::Mat view_image,
const std::vector<std::vector<cv::Point>> &filtered_blobs,
const std::vector<std::vector<cv::Point>> &unfiltered_blobs,
const std::vector<BlobStats> &blob_stats);
static void ExtractBlobs(
cv::Mat rgb_image, cv::Mat binarized_image, cv::Mat blob_image,
std::vector<std::vector<cv::Point>> &filtered_blobs,
std::vector<std::vector<cv::Point>> &unfiltered_blobs,
std::vector<BlobStats> &blob_stats);
};
} // namespace vision
} // namespace y2022
#endif // Y2022_BLOB_DETECTOR_H_