blob: 737363defcac70558e4121ff21bebdac61ce4529 [file] [log] [blame]
#include "y2022/vision/blob_detector.h"
#include "aos/network/team_number.h"
DEFINE_uint64(green_delta, 50,
"Required difference between green pixels vs. red and blue");
DEFINE_bool(use_outdoors, false,
"If true, change thresholds to handle outdoor illumination");
namespace y2022 {
namespace vision {
cv::Mat BlobDetector::ThresholdImage(cv::Mat rgb_image) {
cv::Mat binarized_image(cv::Size(rgb_image.cols, rgb_image.rows), CV_8UC1);
for (int row = 0; row < rgb_image.rows; row++) {
for (int col = 0; col < rgb_image.cols; col++) {
cv::Vec3b pixel = rgb_image.at<cv::Vec3b>(row, col);
uint8_t blue = pixel.val[0];
uint8_t green = pixel.val[1];
uint8_t red = pixel.val[2];
// Simple filter that looks for green pixels sufficiently brigher than
// red and blue
if ((green > blue + 30) && (green > red + 50)) {
binarized_image.at<uint8_t>(row, col) = 255;
} else {
binarized_image.at<uint8_t>(row, col) = 0;
}
}
}
return binarized_image;
}
std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs(
cv::Mat binarized_image) {
// find the contours (blob outlines)
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP,
cv::CHAIN_APPROX_SIMPLE);
return contours;
}
std::vector<BlobDetector::BlobStats> BlobDetector::ComputeStats(
std::vector<std::vector<cv::Point>> blobs) {
std::vector<BlobDetector::BlobStats> blob_stats;
for (auto blob : blobs) {
// Make the blob convex before finding bounding box
std::vector<cv::Point> convex_blob;
cv::convexHull(blob, convex_blob);
auto blob_size = cv::boundingRect(convex_blob).size();
cv::Moments moments = cv::moments(convex_blob);
const auto centroid =
cv::Point(moments.m10 / moments.m00, moments.m01 / moments.m00);
const double aspect_ratio =
static_cast<double>(blob_size.width) / blob_size.height;
const double area = moments.m00;
const size_t points = blob.size();
blob_stats.emplace_back(BlobStats{centroid, aspect_ratio, area, points});
}
return blob_stats;
}
// Filter blobs to get rid of noise, too large items, etc.
std::vector<std::vector<cv::Point>> BlobDetector::FilterBlobs(
std::vector<std::vector<cv::Point>> blobs,
std::vector<BlobDetector::BlobStats> blob_stats) {
std::vector<std::vector<cv::Point>> filtered_blobs;
auto blob_it = blobs.begin();
auto stats_it = blob_stats.begin();
while (blob_it < blobs.end() && stats_it < blob_stats.end()) {
constexpr int kMaxY = 400;
constexpr double kTapeAspectRatio = 5.0 / 2.0;
constexpr double kAspectRatioThreshold = 1.5;
constexpr double kMinArea = 10;
constexpr size_t kMinPoints = 2;
// Remove all blobs that are at the bottom of the image, have a different
// aspect ratio than the tape, or have too little area or points
if ((stats_it->centroid.y <= kMaxY) &&
(std::abs(kTapeAspectRatio - stats_it->aspect_ratio) <
kAspectRatioThreshold) &&
(stats_it->area >= kMinArea) && (stats_it->points >= kMinPoints)) {
filtered_blobs.push_back(*blob_it);
}
blob_it++;
stats_it++;
}
return filtered_blobs;
}
void BlobDetector::DrawBlobs(
cv::Mat view_image,
const std::vector<std::vector<cv::Point>> &unfiltered_blobs,
const std::vector<std::vector<cv::Point>> &filtered_blobs,
const std::vector<BlobStats> &blob_stats) {
CHECK_GT(view_image.cols, 0);
if (unfiltered_blobs.size() > 0) {
// Draw blobs unfilled, with red color border
drawContours(view_image, unfiltered_blobs, -1, cv::Scalar(0, 0, 255), 0);
}
drawContours(view_image, filtered_blobs, -1, cv::Scalar(0, 255, 0),
cv::FILLED);
for (auto stats : blob_stats) {
cv::circle(view_image, stats.centroid, 2, cv::Scalar(255, 0, 0),
cv::FILLED);
}
}
void BlobDetector::ExtractBlobs(
cv::Mat rgb_image, cv::Mat binarized_image, cv::Mat blob_image,
std::vector<std::vector<cv::Point>> &filtered_blobs,
std::vector<std::vector<cv::Point>> &unfiltered_blobs,
std::vector<BlobStats> &blob_stats) {
binarized_image = ThresholdImage(rgb_image);
unfiltered_blobs = FindBlobs(binarized_image);
blob_stats = ComputeStats(unfiltered_blobs);
filtered_blobs = FilterBlobs(unfiltered_blobs, blob_stats);
DrawBlobs(blob_image, unfiltered_blobs, filtered_blobs, blob_stats);
}
} // namespace vision
} // namespace y2022