blob: cade03da627d7ae5c09f4cf0bfea87992c33f18c [file] [log] [blame]
#!/usr/bin/python
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
from frc971.control_loops.python import polytope
from y2014.control_loops.python import polydrivetrain
import numpy
import sys
from matplotlib import pylab
import gflags
import glog
FLAGS = gflags.FLAGS
try:
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
except gflags.DuplicateFlagError:
pass
class Claw(control_loop.ControlLoop):
def __init__(self, name="RawClaw"):
super(Claw, self).__init__(name)
# Stall Torque in N m
self.stall_torque = 2.42
# Stall Current in Amps
self.stall_current = 133
# Free Speed in RPM
self.free_speed = 5500.0
# Free Current in Amps
self.free_current = 2.7
# Moment of inertia of the claw in kg m^2
self.J_top = 2.8
self.J_bottom = 3.0
# Resistance of the motor
self.R = 12.0 / self.stall_current
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(13.5 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
self.G = 14.0 / 48.0 * 18.0 / 32.0 * 18.0 / 66.0 * 12.0 / 60.0
# Control loop time step
self.dt = 0.005
# State is [bottom position, bottom velocity, top - bottom position,
# top - bottom velocity]
# Input is [bottom power, top power - bottom power * J_top / J_bottom]
# Motor time constants. difference_bottom refers to the constant for how the
# bottom velocity affects the difference of the top and bottom velocities.
self.common_motor_constant = -self.Kt / self.Kv / (
self.G * self.G * self.R)
self.bottom_bottom = self.common_motor_constant / self.J_bottom
self.difference_bottom = -self.common_motor_constant * (
1 / self.J_bottom - 1 / self.J_top)
self.difference_difference = self.common_motor_constant / self.J_top
# State feedback matrices
self.A_continuous = numpy.matrix(
[[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, self.bottom_bottom, 0],
[0, 0, self.difference_bottom, self.difference_difference]])
self.A_bottom_cont = numpy.matrix([[0, 1], [0, self.bottom_bottom]])
self.A_diff_cont = numpy.matrix([[0, 1],
[0, self.difference_difference]])
self.motor_feedforward = self.Kt / (self.G * self.R)
self.motor_feedforward_bottom = self.motor_feedforward / self.J_bottom
self.motor_feedforward_difference = self.motor_feedforward / self.J_top
self.motor_feedforward_difference_bottom = (
self.motor_feedforward * (1 / self.J_bottom - 1 / self.J_top))
self.B_continuous = numpy.matrix([[0, 0], [0, 0],
[self.motor_feedforward_bottom, 0],
[
-self.motor_feedforward_bottom,
self.motor_feedforward_difference
]])
glog.debug('Cont X_ss %f',
self.motor_feedforward / -self.common_motor_constant)
self.B_bottom_cont = numpy.matrix([[0],
[self.motor_feedforward_bottom]])
self.B_diff_cont = numpy.matrix([[0],
[self.motor_feedforward_difference]])
self.C = numpy.matrix([[1, 0, 0, 0], [1, 1, 0, 0]])
self.D = numpy.matrix([[0, 0], [0, 0]])
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
self.A_bottom, self.B_bottom = controls.c2d(self.A_bottom_cont,
self.B_bottom_cont, self.dt)
self.A_diff, self.B_diff = controls.c2d(self.A_diff_cont,
self.B_diff_cont, self.dt)
self.K_bottom = controls.dplace(self.A_bottom, self.B_bottom,
[0.87 + 0.05j, 0.87 - 0.05j])
self.K_diff = controls.dplace(self.A_diff, self.B_diff,
[0.85 + 0.05j, 0.85 - 0.05j])
glog.debug('K_diff %s', str(self.K_diff))
glog.debug('K_bottom %s', str(self.K_bottom))
glog.debug('A')
glog.debug(self.A)
glog.debug('B')
glog.debug(self.B)
self.Q = numpy.matrix([[(1.0 / (0.10**2.0)), 0.0, 0.0, 0.0],
[0.0, (1.0 / (0.06**2.0)), 0.0, 0.0],
[0.0, 0.0, 0.10, 0.0], [0.0, 0.0, 0.0, 0.1]])
self.R = numpy.matrix([[(1.0 / (40.0**2.0)), 0.0],
[0.0, (1.0 / (5.0**2.0))]])
#self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
self.K = numpy.matrix(
[[self.K_bottom[0, 0], 0.0, self.K_bottom[0, 1], 0.0],
[0.0, self.K_diff[0, 0], 0.0, self.K_diff[0, 1]]])
# Compute the feed forwards aceleration term.
self.K[1, 0] = -self.B[1, 0] * self.K[0, 0] / self.B[1, 1]
lstsq_A = numpy.identity(2)
lstsq_A[0, :] = self.B[1, :]
lstsq_A[1, :] = self.B[3, :]
glog.debug('System of Equations coefficients:')
glog.debug(str(lstsq_A))
glog.debug('det %s', str(numpy.linalg.det(lstsq_A)))
out_x = numpy.linalg.lstsq(
lstsq_A, numpy.matrix([[self.A[1, 2]], [self.A[3, 2]]]))[0]
self.K[1, 2] = -lstsq_A[0, 0] * (
self.K[0, 2] - out_x[0]) / lstsq_A[0, 1] + out_x[1]
glog.debug('K unaugmented')
glog.debug(str(self.K))
glog.debug('B * K unaugmented')
glog.debug(str(self.B * self.K))
F = self.A - self.B * self.K
glog.debug('A - B * K unaugmented')
glog.debug(str(F))
glog.debug('eigenvalues')
glog.debug(str(numpy.linalg.eig(F)[0]))
self.rpl = .09
self.ipl = 0.030
self.PlaceObserverPoles([
self.rpl + 1j * self.ipl, self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl, self.rpl - 1j * self.ipl
])
# The box formed by U_min and U_max must encompass all possible values,
# or else Austin's code gets angry.
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
# For the tests that check the limits, these are (upper, lower) for both
# claws.
self.hard_pos_limits = None
self.pos_limits = None
# Compute the steady state velocities for a given applied voltage.
# The top and bottom of the claw should spin at the same rate if the
# physics is right.
X_ss = numpy.matrix([[0], [0], [0.0], [0]])
U = numpy.matrix([[1.0], [1.0]])
A = self.A
B = self.B
#X_ss[2, 0] = X_ss[2, 0] * A[2, 2] + B[2, 0] * U[0, 0]
X_ss[2, 0] = 1 / (1 - A[2, 2]) * B[2, 0] * U[0, 0]
#X_ss[3, 0] = X_ss[3, 0] * A[3, 3] + X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
#X_ss[3, 0] * (1 - A[3, 3]) = X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
X_ss[3, 0] = 1 / (1 - A[3, 3]) * (
X_ss[2, 0] * A[3, 2] + B[3, 1] * U[1, 0] + B[3, 0] * U[0, 0])
#X_ss[3, 0] = 1 / (1 - A[3, 3]) / (1 - A[2, 2]) * B[2, 0] * U[0, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
X_ss[0, 0] = A[0, 2] * X_ss[2, 0] + B[0, 0] * U[0, 0]
X_ss[1, 0] = (A[1, 2] * X_ss[2, 0]) + (A[1, 3] * X_ss[3, 0]) + (
B[1, 0] * U[0, 0]) + (B[1, 1] * U[1, 0])
glog.debug('X_ss %s', str(X_ss))
self.InitializeState()
class ClawDeltaU(Claw):
def __init__(self, name="Claw"):
super(ClawDeltaU, self).__init__(name)
A_unaugmented = self.A
B_unaugmented = self.B
C_unaugmented = self.C
self.A = numpy.matrix([[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 1.0]])
self.A[0:4, 0:4] = A_unaugmented
self.A[0:4, 4] = B_unaugmented[0:4, 0]
self.B = numpy.matrix([[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0],
[1.0, 0.0]])
self.B[0:4, 1] = B_unaugmented[0:4, 1]
self.C = numpy.concatenate(
(C_unaugmented, numpy.matrix([[0.0], [0.0]])), axis=1)
self.D = numpy.matrix([[0.0, 0.0], [0.0, 0.0]])
#self.PlaceControllerPoles([0.55, 0.35, 0.55, 0.35, 0.80])
self.Q = numpy.matrix([[(1.0 / (0.04**2.0)), 0.0, 0.0, 0.0, 0.0],
[0.0, (1.0 / (0.01**2)), 0.0, 0.0, 0.0],
[0.0, 0.0, 0.01, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.08, 0.0],
[0.0, 0.0, 0.0, 0.0, (1.0 / (10.0**2))]])
self.R = numpy.matrix([[0.000001, 0.0], [0.0, 1.0 / (10.0**2.0)]])
self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
self.K = numpy.matrix([[50.0, 0.0, 10.0, 0.0, 1.0],
[50.0, 0.0, 10.0, 0.0, 1.0]])
controllability = controls.ctrb(self.A, self.B)
glog.debug('Rank of augmented controllability matrix: %d',
numpy.linalg.matrix_rank(controllability))
glog.debug('K')
glog.debug(str(self.K))
glog.debug('Placed controller poles are')
glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
glog.debug(
str([
numpy.abs(x)
for x in numpy.linalg.eig(self.A - self.B * self.K)[0]
]))
self.rpl = .05
self.ipl = 0.008
self.PlaceObserverPoles([
self.rpl + 1j * self.ipl, 0.10, 0.09, self.rpl - 1j * self.ipl, 0.90
])
#print "A is"
#print self.A
#print "L is"
#print self.L
#print "C is"
#print self.C
#print "A - LC is"
#print self.A - self.L * self.C
#print "Placed observer poles are"
#print numpy.linalg.eig(self.A - self.L * self.C)[0]
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
self.InitializeState()
def ScaleU(claw, U, K, error):
"""Clips U as necessary.
Args:
claw: claw object containing moments of inertia and U limits.
U: Input matrix to clip as necessary.
"""
bottom_u = U[0, 0]
top_u = U[1, 0]
position_error = error[0:2, 0]
velocity_error = error[2:, 0]
U_poly = polytope.HPolytope(
numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]),
numpy.matrix([[12], [12], [12], [12]]))
if (bottom_u > claw.U_max[0, 0] or bottom_u < claw.U_min[0, 0] or
top_u > claw.U_max[0, 0] or top_u < claw.U_min[0, 0]):
position_K = K[:, 0:2]
velocity_K = K[:, 2:]
# H * U <= k
# U = UPos + UVel
# H * (UPos + UVel) <= k
# H * UPos <= k - H * UVel
#
# Now, we can do a coordinate transformation and say the following.
#
# UPos = position_K * position_error
# (H * position_K) * position_error <= k - H * UVel
#
# Add in the constraint that 0 <= t <= 1
# Now, there are 2 ways this can go. Either we have a region, or we don't
# have a region. If we have a region, then pick the largest t and go for it.
# If we don't have a region, we need to pick a good comprimise.
pos_poly = polytope.HPolytope(
U_poly.H * position_K,
U_poly.k - U_poly.H * velocity_K * velocity_error)
# The actual angle for the line we call 45.
angle_45 = numpy.matrix([[numpy.sqrt(3), 1]])
if claw.pos_limits and claw.hard_pos_limits and (
claw.X[0, 0] + claw.X[1, 0]) > claw.pos_limits[1]:
angle_45 = numpy.matrix([[1, 1]])
P = position_error
L45 = numpy.multiply(
numpy.matrix([[numpy.sign(P[1, 0]), -numpy.sign(P[0, 0])]]),
angle_45)
if L45[0, 1] == 0:
L45[0, 1] = 1
if L45[0, 0] == 0:
L45[0, 0] = 1
w45 = numpy.matrix([[0]])
if numpy.abs(P[0, 0]) > numpy.abs(P[1, 0]):
LH = numpy.matrix([[0, 1]])
else:
LH = numpy.matrix([[1, 0]])
wh = LH * P
standard = numpy.concatenate((L45, LH))
W = numpy.concatenate((w45, wh))
intersection = numpy.linalg.inv(standard) * W
adjusted_pos_error_h, is_inside_h = polydrivetrain.DoCoerceGoal(
pos_poly, LH, wh, position_error)
adjusted_pos_error_45, is_inside_45 = polydrivetrain.DoCoerceGoal(
pos_poly, L45, w45, intersection)
if pos_poly.IsInside(intersection):
adjusted_pos_error = adjusted_pos_error_h
else:
if is_inside_h:
if numpy.linalg.norm(adjusted_pos_error_h) > numpy.linalg.norm(
adjusted_pos_error_45):
adjusted_pos_error = adjusted_pos_error_h
else:
adjusted_pos_error = adjusted_pos_error_45
else:
adjusted_pos_error = adjusted_pos_error_45
#print adjusted_pos_error
#print "Actual power is ", velocity_K * velocity_error + position_K * adjusted_pos_error
return velocity_K * velocity_error + position_K * adjusted_pos_error
#U = Kpos * poserror + Kvel * velerror
#scalar = claw.U_max[0, 0] / max(numpy.abs(top_u), numpy.abs(bottom_u))
#top_u *= scalar
#bottom_u *= scalar
return numpy.matrix([[bottom_u], [top_u]])
def run_test(claw,
initial_X,
goal,
max_separation_error=0.01,
show_graph=True,
iterations=200):
"""Runs the claw plant on a given claw (claw) with an initial condition (initial_X) and goal (goal).
The tests themselves are not terribly sophisticated; I just test for
whether the goal has been reached and whether the separation goes
outside of the initial and goal values by more than max_separation_error.
Prints out something for a failure of either condition and returns
False if tests fail.
Args:
claw: claw object to use.
initial_X: starting state.
goal: goal state.
show_graph: Whether or not to display a graph showing the changing
states and voltages.
iterations: Number of timesteps to run the model for."""
claw.X = initial_X
# Various lists for graphing things.
t = []
x_bottom = []
x_top = []
u_bottom = []
u_top = []
x_separation = []
tests_passed = True
# Bounds which separation should not exceed.
lower_bound = (initial_X[1, 0] if initial_X[1, 0] < goal[1, 0] else
goal[1, 0]) - max_separation_error
upper_bound = (initial_X[1, 0] if initial_X[1, 0] > goal[1, 0] else
goal[1, 0]) + max_separation_error
for i in xrange(iterations):
U = claw.K * (goal - claw.X)
U = ScaleU(claw, U, claw.K, goal - claw.X)
claw.Update(U)
if claw.X[1, 0] > upper_bound or claw.X[1, 0] < lower_bound:
tests_passed = False
glog.info('Claw separation was %f', claw.X[1, 0])
glog.info("Should have been between", lower_bound, "and",
upper_bound)
if claw.hard_pos_limits and \
(claw.X[0, 0] > claw.hard_pos_limits[1] or
claw.X[0, 0] < claw.hard_pos_limits[0] or
claw.X[0, 0] + claw.X[1, 0] > claw.hard_pos_limits[1] or
claw.X[0, 0] + claw.X[1, 0] < claw.hard_pos_limits[0]):
tests_passed = False
glog.info('Claws at %f and %f', claw.X[0, 0],
claw.X[0, 0] + claw.X[1, 0])
glog.info("Both should be in %s, definitely %s", claw.pos_limits,
claw.hard_pos_limits)
t.append(i * claw.dt)
x_bottom.append(claw.X[0, 0] * 10.0)
x_top.append((claw.X[1, 0] + claw.X[0, 0]) * 10.0)
u_bottom.append(U[0, 0])
u_top.append(U[1, 0])
x_separation.append(claw.X[1, 0] * 10.0)
if show_graph:
pylab.plot(t, x_bottom, label='x bottom * 10')
pylab.plot(t, x_top, label='x top * 10')
pylab.plot(t, u_bottom, label='u bottom')
pylab.plot(t, u_top, label='u top')
pylab.plot(t, x_separation, label='separation * 10')
pylab.legend()
pylab.show()
# Test to make sure that we are near the goal.
if numpy.max(abs(claw.X - goal)) > 1e-4:
tests_passed = False
glog.error('X was %s Expected %s', str(claw.X), str(goal))
return tests_passed
def main(argv):
argv = FLAGS(argv)
claw = Claw()
if FLAGS.plot:
# Test moving the claw with constant separation.
initial_X = numpy.matrix([[-1.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[1.0], [0.0], [0.0], [0.0]])
run_test(claw, initial_X, R)
# Test just changing separation.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[0.0], [1.0], [0.0], [0.0]])
run_test(claw, initial_X, R)
# Test changing both separation and position at once.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[1.0], [1.0], [0.0], [0.0]])
run_test(claw, initial_X, R)
# Test a small separation error and a large position one.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[2.0], [0.05], [0.0], [0.0]])
run_test(claw, initial_X, R)
# Test a small separation error and a large position one.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[-0.5], [1.0], [0.0], [0.0]])
run_test(claw, initial_X, R)
# Test opening with the top claw at the limit.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[-1.5], [1.5], [0.0], [0.0]])
claw.hard_pos_limits = (-1.6, 0.1)
claw.pos_limits = (-1.5, 0.0)
run_test(claw, initial_X, R)
claw.pos_limits = None
# Test opening with the bottom claw at the limit.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[0], [1.5], [0.0], [0.0]])
claw.hard_pos_limits = (-0.1, 1.6)
claw.pos_limits = (0.0, 1.6)
run_test(claw, initial_X, R)
claw.pos_limits = None
# Write the generated constants out to a file.
if len(argv) != 3:
glog.fatal('Expected .h file name and .cc file name for the claw.')
else:
namespaces = ['y2014', 'control_loops', 'claw']
claw = Claw('Claw')
loop_writer = control_loop.ControlLoopWriter(
'Claw', [claw], namespaces=namespaces)
loop_writer.AddConstant(
control_loop.Constant('kClawMomentOfInertiaRatio', '%f',
claw.J_top / claw.J_bottom))
loop_writer.AddConstant(control_loop.Constant('kDt', '%f', claw.dt))
loop_writer.Write(argv[1], argv[2])
if __name__ == '__main__':
sys.exit(main(sys.argv))