| #ifndef AOS_EVENTS_LOGGING_LOGFILE_UTILS_H_ |
| #define AOS_EVENTS_LOGGING_LOGFILE_UTILS_H_ |
| |
| #include <sys/uio.h> |
| |
| #include <chrono> |
| #include <deque> |
| #include <limits> |
| #include <memory> |
| #include <optional> |
| #include <string> |
| #include <string_view> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/container/btree_set.h" |
| #include "absl/types/span.h" |
| #include "aos/containers/resizeable_buffer.h" |
| #include "aos/events/event_loop.h" |
| #include "aos/events/logging/boot_timestamp.h" |
| #include "aos/events/logging/buffer_encoder.h" |
| #include "aos/events/logging/logfile_sorting.h" |
| #include "aos/events/logging/logger_generated.h" |
| #include "aos/flatbuffers.h" |
| #include "flatbuffers/flatbuffers.h" |
| |
| namespace aos::logger { |
| |
| enum class LogType : uint8_t { |
| // The message originated on this node and should be logged here. |
| kLogMessage, |
| // The message originated on another node, but only the delivery times are |
| // logged here. |
| kLogDeliveryTimeOnly, |
| // The message originated on another node. Log it and the delivery times |
| // together. The message_gateway is responsible for logging any messages |
| // which didn't get delivered. |
| kLogMessageAndDeliveryTime, |
| // The message originated on the other node and should be logged on this node. |
| kLogRemoteMessage |
| }; |
| |
| // This class manages efficiently writing a sequence of detached buffers to a |
| // file. It encodes them, queues them up, and batches the write operation. |
| class DetachedBufferWriter { |
| public: |
| // Marker struct for one of our constructor overloads. |
| struct already_out_of_space_t {}; |
| |
| DetachedBufferWriter(std::string_view filename, |
| std::unique_ptr<DetachedBufferEncoder> encoder); |
| // Creates a dummy instance which won't even open a file. It will act as if |
| // opening the file ran out of space immediately. |
| DetachedBufferWriter(already_out_of_space_t) : ran_out_of_space_(true) {} |
| DetachedBufferWriter(DetachedBufferWriter &&other); |
| DetachedBufferWriter(const DetachedBufferWriter &) = delete; |
| |
| ~DetachedBufferWriter(); |
| |
| DetachedBufferWriter &operator=(DetachedBufferWriter &&other); |
| DetachedBufferWriter &operator=(const DetachedBufferWriter &) = delete; |
| |
| std::string_view filename() const { return filename_; } |
| |
| // This will be true until Close() is called, unless the file couldn't be |
| // created due to running out of space. |
| bool is_open() const { return fd_ != -1; } |
| |
| // Queues up a finished FlatBufferBuilder to be encoded and written. |
| // |
| // Triggers a flush if there's enough data queued up. |
| // |
| // Steals the detached buffer from it. |
| void QueueSizedFlatbuffer(flatbuffers::FlatBufferBuilder *fbb, |
| aos::monotonic_clock::time_point now) { |
| QueueSizedFlatbuffer(fbb->Release(), now); |
| } |
| // May steal the backing storage of buffer, or may leave it alone. |
| void QueueSizedFlatbuffer(flatbuffers::DetachedBuffer &&buffer, |
| aos::monotonic_clock::time_point now) { |
| QueueSizedFlatbuffer(std::move(buffer)); |
| FlushAtThreshold(now); |
| } |
| // Unconditionally queues the buffer. |
| void QueueSizedFlatbuffer(flatbuffers::DetachedBuffer &&buffer) { |
| if (ran_out_of_space_) { |
| return; |
| } |
| encoder_->Encode(std::move(buffer)); |
| } |
| |
| // Queues up data in span. May copy or may write it to disk immediately. |
| void QueueSpan(absl::Span<const uint8_t> span); |
| |
| // Indicates we got ENOSPC when trying to write. After this returns true, no |
| // further data is written. |
| bool ran_out_of_space() const { return ran_out_of_space_; } |
| |
| // To avoid silently failing to write logfiles, you must call this before |
| // destruction if ran_out_of_space() is true and the situation has been |
| // handled. |
| void acknowledge_out_of_space() { |
| CHECK(ran_out_of_space_); |
| acknowledge_ran_out_of_space_ = true; |
| } |
| |
| // Fully flushes and closes the underlying file now. No additional data may be |
| // enqueued after calling this. |
| // |
| // This will be performed in the destructor automatically. |
| // |
| // Note that this may set ran_out_of_space(). |
| void Close(); |
| |
| // Returns the total number of bytes written and currently queued. |
| size_t total_bytes() const { |
| if (!encoder_) { |
| return 0; |
| } |
| return encoder_->total_bytes(); |
| } |
| |
| // The maximum time for a single write call, or 0 if none have been performed. |
| std::chrono::nanoseconds max_write_time() const { return max_write_time_; } |
| // The number of bytes in the longest write call, or -1 if none have been |
| // performed. |
| int max_write_time_bytes() const { return max_write_time_bytes_; } |
| // The number of buffers in the longest write call, or -1 if none have been |
| // performed. |
| int max_write_time_messages() const { return max_write_time_messages_; } |
| // The total time spent in write calls. |
| std::chrono::nanoseconds total_write_time() const { |
| return total_write_time_; |
| } |
| // The total number of writes which have been performed. |
| int total_write_count() const { return total_write_count_; } |
| // The total number of messages which have been written. |
| int total_write_messages() const { return total_write_messages_; } |
| // The total number of bytes which have been written. |
| int total_write_bytes() const { return total_write_bytes_; } |
| void ResetStatistics() { |
| max_write_time_ = std::chrono::nanoseconds::zero(); |
| max_write_time_bytes_ = -1; |
| max_write_time_messages_ = -1; |
| total_write_time_ = std::chrono::nanoseconds::zero(); |
| total_write_count_ = 0; |
| total_write_messages_ = 0; |
| total_write_bytes_ = 0; |
| } |
| |
| private: |
| // Performs a single writev call with as much of the data we have queued up as |
| // possible. |
| // |
| // This will normally take all of the data we have queued up, unless an |
| // encoder has spit out a big enough chunk all at once that we can't manage |
| // all of it. |
| void Flush(); |
| |
| // write_return is what write(2) or writev(2) returned. write_size is the |
| // number of bytes we expected it to write. |
| void HandleWriteReturn(ssize_t write_return, size_t write_size); |
| |
| void UpdateStatsForWrite(aos::monotonic_clock::duration duration, |
| ssize_t written, int iovec_size); |
| |
| // Flushes data if we've reached the threshold to do that as part of normal |
| // operation either due to the outstanding queued data, or because we have |
| // passed our flush period. now is the current time to save some CPU grabbing |
| // the current time. It just needs to be close. |
| void FlushAtThreshold(aos::monotonic_clock::time_point now); |
| |
| std::string filename_; |
| std::unique_ptr<DetachedBufferEncoder> encoder_; |
| |
| int fd_ = -1; |
| bool ran_out_of_space_ = false; |
| bool acknowledge_ran_out_of_space_ = false; |
| |
| // List of iovecs to use with writev. This is a member variable to avoid |
| // churn. |
| std::vector<struct iovec> iovec_; |
| |
| std::chrono::nanoseconds max_write_time_ = std::chrono::nanoseconds::zero(); |
| int max_write_time_bytes_ = -1; |
| int max_write_time_messages_ = -1; |
| std::chrono::nanoseconds total_write_time_ = std::chrono::nanoseconds::zero(); |
| int total_write_count_ = 0; |
| int total_write_messages_ = 0; |
| int total_write_bytes_ = 0; |
| |
| aos::monotonic_clock::time_point last_flush_time_ = |
| aos::monotonic_clock::min_time; |
| }; |
| |
| // Packes a message pointed to by the context into a MessageHeader. |
| flatbuffers::Offset<MessageHeader> PackMessage( |
| flatbuffers::FlatBufferBuilder *fbb, const Context &context, |
| int channel_index, LogType log_type); |
| |
| // Class to read chunks out of a log file. |
| class SpanReader { |
| public: |
| SpanReader(std::string_view filename, bool quiet = false); |
| |
| std::string_view filename() const { return filename_; } |
| |
| size_t TotalRead() const { return total_read_; } |
| size_t TotalConsumed() const { return total_consumed_; } |
| bool IsIncomplete() const { |
| return is_finished_ && total_consumed_ < total_read_; |
| } |
| |
| // Returns a span with the data for the next message from the log file, |
| // including the size. The result is only guarenteed to be valid until |
| // ReadMessage() or PeekMessage() is called again. |
| absl::Span<const uint8_t> ReadMessage(); |
| |
| // Returns a span with the data for the next message without consuming it. |
| // Multiple calls to PeekMessage return the same data. ReadMessage or |
| // ConsumeMessage must be called to get the next message. |
| absl::Span<const uint8_t> PeekMessage(); |
| // Consumes the message so the next call to ReadMessage or PeekMessage returns |
| // new data. This does not invalidate the data. |
| void ConsumeMessage(); |
| |
| private: |
| // TODO(austin): Optimization: |
| // Allocate the 256k blocks like we do today. But, refcount them with |
| // shared_ptr pointed to by the messageheader that is returned. This avoids |
| // the copy. Need to do more benchmarking. |
| // And (Brian): Consider just mmapping the file and handing out refcounted |
| // pointers into that too. |
| |
| // Reads a chunk of data into data_. Returns false if no data was read. |
| bool ReadBlock(); |
| |
| std::string filename_; |
| |
| // File reader and data decoder. |
| std::unique_ptr<DataDecoder> decoder_; |
| |
| // Vector to read into. |
| ResizeableBuffer data_; |
| |
| // Amount of data consumed already in data_. |
| size_t consumed_data_ = 0; |
| |
| // Accumulates the total volume of bytes read from filename_ |
| size_t total_read_ = 0; |
| |
| // Accumulates the total volume of read bytes that were 'consumed' into |
| // messages. May be less than total_read_, if the last message (span) is |
| // either truncated or somehow corrupt. |
| size_t total_consumed_ = 0; |
| |
| // Reached the end, no more readable messages. |
| bool is_finished_ = false; |
| }; |
| |
| // Reads the last header from a log file. This handles any duplicate headers |
| // that were written. |
| std::optional<SizePrefixedFlatbufferVector<LogFileHeader>> ReadHeader( |
| SpanReader *span_reader); |
| std::optional<SizePrefixedFlatbufferVector<LogFileHeader>> ReadHeader( |
| std::string_view filename); |
| // Reads the Nth message from a log file, excluding the header. Note: this |
| // doesn't handle duplicate headers. |
| std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadNthMessage( |
| std::string_view filename, size_t n); |
| |
| class UnpackedMessageHeader; |
| |
| // Class which handles reading the header and messages from the log file. This |
| // handles any per-file state left before merging below. |
| class MessageReader { |
| public: |
| MessageReader(std::string_view filename); |
| |
| std::string_view filename() const { return span_reader_.filename(); } |
| |
| // Returns the header from the log file. |
| const LogFileHeader *log_file_header() const { |
| return &raw_log_file_header_.message(); |
| } |
| |
| // Returns the raw data of the header from the log file. |
| const SizePrefixedFlatbufferVector<LogFileHeader> &raw_log_file_header() |
| const { |
| return raw_log_file_header_; |
| } |
| |
| // Returns the minimum maount of data needed to queue up for sorting before |
| // ware guarenteed to not see data out of order. |
| std::chrono::nanoseconds max_out_of_order_duration() const { |
| return max_out_of_order_duration_; |
| } |
| |
| // Returns the newest timestamp read out of the log file. |
| monotonic_clock::time_point newest_timestamp() const { |
| return newest_timestamp_; |
| } |
| |
| // Returns the next message if there is one. |
| std::shared_ptr<UnpackedMessageHeader> ReadMessage(); |
| |
| // The time at which we need to read another chunk from the logfile. |
| monotonic_clock::time_point queue_data_time() const { |
| return newest_timestamp() - max_out_of_order_duration(); |
| } |
| |
| // Flag value setters for testing |
| void set_crash_on_corrupt_message_flag(bool b) { |
| crash_on_corrupt_message_flag_ = b; |
| } |
| void set_ignore_corrupt_messages_flag(bool b) { |
| ignore_corrupt_messages_flag_ = b; |
| } |
| |
| private: |
| // Log chunk reader. |
| SpanReader span_reader_; |
| |
| // Vector holding the raw data for the log file header. |
| SizePrefixedFlatbufferVector<LogFileHeader> raw_log_file_header_; |
| |
| // Minimum amount of data to queue up for sorting before we are guarenteed |
| // to not see data out of order. |
| std::chrono::nanoseconds max_out_of_order_duration_; |
| |
| // Timestamp of the newest message in a channel queue. |
| monotonic_clock::time_point newest_timestamp_ = monotonic_clock::min_time; |
| |
| // Total volume of verifiable messages from the beginning of the file. |
| // TODO - are message counts also useful? |
| size_t total_verified_before_ = 0; |
| |
| // Total volume of messages with corrupted flatbuffer formatting, if any. |
| // Excludes corrupted message content. |
| // TODO - if the layout included something as simple as a CRC (relatively |
| // fast and robust enough) for each span, then corrupted content could be |
| // included in this check. |
| size_t total_corrupted_ = 0; |
| |
| // Total volume of verifiable messages intermixed with corrupted messages, |
| // if any. Will be == 0 if total_corrupted_ == 0. |
| size_t total_verified_during_ = 0; |
| |
| // Total volume of verifiable messages found after the last corrupted one, |
| // if any. Will be == 0 if total_corrupted_ == 0. |
| size_t total_verified_after_ = 0; |
| |
| bool is_corrupted() const { return total_corrupted_ > 0; } |
| |
| bool crash_on_corrupt_message_flag_ = true; |
| bool ignore_corrupt_messages_flag_ = false; |
| }; |
| |
| // A class to seamlessly read messages from a list of part files. |
| class PartsMessageReader { |
| public: |
| PartsMessageReader(LogParts log_parts); |
| |
| std::string_view filename() const { return message_reader_.filename(); } |
| |
| // Returns the LogParts that holds the filenames we are reading. |
| const LogParts &parts() const { return parts_; } |
| |
| const LogFileHeader *log_file_header() const { |
| return message_reader_.log_file_header(); |
| } |
| |
| // Returns the minimum amount of data needed to queue up for sorting before |
| // we are guarenteed to not see data out of order. |
| std::chrono::nanoseconds max_out_of_order_duration() const { |
| return message_reader_.max_out_of_order_duration(); |
| } |
| |
| // Returns the newest timestamp read out of the log file. |
| monotonic_clock::time_point newest_timestamp() const { |
| return newest_timestamp_; |
| } |
| |
| // Returns the next message if there is one, or nullopt if we have reached the |
| // end of all the files. |
| // Note: reading the next message may change the max_out_of_order_duration(). |
| std::shared_ptr<UnpackedMessageHeader> ReadMessage(); |
| |
| // Returns the boot count for the requested node, or std::nullopt if we don't |
| // know. |
| std::optional<size_t> boot_count(size_t node_index) const { |
| CHECK_GE(node_index, 0u); |
| CHECK_LT(node_index, boot_counts_.size()); |
| return boot_counts_[node_index]; |
| } |
| |
| private: |
| // Opens the next log and updates message_reader_. Sets done_ if there is |
| // nothing more to do. |
| void NextLog(); |
| void ComputeBootCounts(); |
| |
| const LogParts parts_; |
| size_t next_part_index_ = 1u; |
| bool done_ = false; |
| MessageReader message_reader_; |
| // We instantiate the next one early, to allow implementations to prefetch. |
| // TODO(Brian): To get optimal performance when downloading, this needs more |
| // communication with the implementation to prioritize the next part and add |
| // more parallelism when it helps. Maybe some kind of a queue of parts in |
| // order, and the implementation gets to pull however many make sense off the |
| // front? |
| std::optional<MessageReader> next_message_reader_; |
| |
| // True after we have seen a message after the start of the log. The |
| // guarentees on logging essentially are that all data from before the |
| // starting time of the log may be arbitrarily out of order, but once we get |
| // max_out_of_order_duration past the start, everything will remain within |
| // max_out_of_order_duration. We shouldn't see anything before the start |
| // after we've seen a message that is at least max_out_of_order_duration after |
| // the start. |
| bool after_start_ = false; |
| |
| monotonic_clock::time_point newest_timestamp_ = monotonic_clock::min_time; |
| |
| // Per node boot counts. |
| std::vector<std::optional<size_t>> boot_counts_; |
| }; |
| |
| // Stores MessageHeader as a flat header and inline, aligned block of data. |
| class UnpackedMessageHeader { |
| public: |
| UnpackedMessageHeader(const UnpackedMessageHeader &) = delete; |
| UnpackedMessageHeader &operator=(const UnpackedMessageHeader &) = delete; |
| |
| // The channel. |
| uint32_t channel_index = 0xffffffff; |
| |
| monotonic_clock::time_point monotonic_sent_time; |
| realtime_clock::time_point realtime_sent_time; |
| |
| // The local queue index. |
| uint32_t queue_index = 0xffffffff; |
| |
| std::optional<aos::monotonic_clock::time_point> monotonic_remote_time; |
| |
| std::optional<realtime_clock::time_point> realtime_remote_time; |
| std::optional<uint32_t> remote_queue_index; |
| |
| // This field is defaulted in the flatbuffer, so we need to store both the |
| // possibly defaulted value and whether it is defaulted. |
| monotonic_clock::time_point monotonic_timestamp_time; |
| bool has_monotonic_timestamp_time; |
| |
| static std::shared_ptr<UnpackedMessageHeader> MakeMessage( |
| const MessageHeader &message); |
| |
| // Note: we are storing a span here because we need something to put in the |
| // SharedSpan pointer that RawSender takes. We are using the aliasing |
| // constructor of shared_ptr to avoid the allocation, and it needs a nice |
| // pointer to track. |
| absl::Span<const uint8_t> span; |
| |
| char actual_data[]; |
| |
| private: |
| ~UnpackedMessageHeader() {} |
| |
| static void DestroyAndFree(UnpackedMessageHeader *p) { |
| p->~UnpackedMessageHeader(); |
| free(p); |
| } |
| }; |
| |
| std::ostream &operator<<(std::ostream &os, |
| const UnpackedMessageHeader &message); |
| |
| // Struct to hold a message as it gets sorted on a single node. |
| struct Message { |
| // The channel. |
| uint32_t channel_index = 0xffffffff; |
| // The local queue index. |
| // TODO(austin): Technically the boot inside queue_index is redundant with |
| // timestamp. In practice, it is less error-prone to duplicate it. Maybe a |
| // function to return the combined struct? |
| BootQueueIndex queue_index; |
| // The local timestamp. |
| BootTimestamp timestamp; |
| |
| // Remote boot when this is a timestamp. |
| size_t monotonic_remote_boot = 0xffffff; |
| |
| size_t monotonic_timestamp_boot = 0xffffff; |
| |
| std::shared_ptr<UnpackedMessageHeader> data; |
| |
| bool operator<(const Message &m2) const; |
| bool operator>=(const Message &m2) const; |
| bool operator==(const Message &m2) const; |
| }; |
| |
| std::ostream &operator<<(std::ostream &os, const Message &m); |
| |
| // Structure to hold a full message and all the timestamps, which may or may not |
| // have been sent from a remote node. The remote_queue_index will be invalid if |
| // this message is from the point of view of the node which sent it. |
| struct TimestampedMessage { |
| uint32_t channel_index = 0xffffffff; |
| |
| BootQueueIndex queue_index; |
| BootTimestamp monotonic_event_time; |
| realtime_clock::time_point realtime_event_time = realtime_clock::min_time; |
| |
| BootQueueIndex remote_queue_index; |
| BootTimestamp monotonic_remote_time; |
| realtime_clock::time_point realtime_remote_time = realtime_clock::min_time; |
| |
| BootTimestamp monotonic_timestamp_time; |
| |
| std::shared_ptr<UnpackedMessageHeader> data; |
| }; |
| |
| std::ostream &operator<<(std::ostream &os, const TimestampedMessage &m); |
| |
| // Class to sort the resulting messages from a PartsMessageReader. |
| class LogPartsSorter { |
| public: |
| LogPartsSorter(LogParts log_parts); |
| |
| // Returns the parts that this is sorting messages from. |
| const LogParts &parts() const { return parts_message_reader_.parts(); } |
| |
| monotonic_clock::time_point monotonic_start_time() const { |
| return parts().monotonic_start_time; |
| } |
| realtime_clock::time_point realtime_start_time() const { |
| return parts().realtime_start_time; |
| } |
| |
| // The time this data is sorted until. |
| monotonic_clock::time_point sorted_until() const { return sorted_until_; } |
| |
| // Returns the next sorted message from the log file. It is safe to call |
| // std::move() on the result to move the data flatbuffer from it. |
| Message *Front(); |
| // Pops the front message. This should only be called after a call to |
| // Front(). |
| void PopFront(); |
| |
| // Returns a debug string representing the contents of this sorter. |
| std::string DebugString() const; |
| |
| private: |
| // Log parts reader we are wrapping. |
| PartsMessageReader parts_message_reader_; |
| // Cache of the time we are sorted until. |
| aos::monotonic_clock::time_point sorted_until_ = monotonic_clock::min_time; |
| |
| // Timestamp of the last message returned. Used to make sure nothing goes |
| // backwards. |
| monotonic_clock::time_point last_message_time_ = monotonic_clock::min_time; |
| |
| // Set used for efficient sorting of messages. We can benchmark and evaluate |
| // other data structures if this proves to be the bottleneck. |
| absl::btree_set<Message> messages_; |
| |
| // Mapping from channel to source node. |
| // TODO(austin): Should we put this in Boots so it can be cached for everyone? |
| std::vector<size_t> source_node_index_; |
| }; |
| |
| // Class to run merge sort on the messages from multiple LogPartsSorter |
| // instances. |
| class NodeMerger { |
| public: |
| NodeMerger(std::vector<LogParts> parts); |
| |
| // Copying and moving will mess up the internal raw pointers. Just don't do |
| // it. |
| NodeMerger(NodeMerger const &) = delete; |
| NodeMerger(NodeMerger &&) = delete; |
| void operator=(NodeMerger const &) = delete; |
| void operator=(NodeMerger &&) = delete; |
| |
| // Node index in the configuration of this node. |
| int node() const { return node_; } |
| |
| // List of parts being sorted together. |
| std::vector<const LogParts *> Parts() const; |
| |
| const Configuration *configuration() const { |
| return parts_sorters_[0].parts().config.get(); |
| } |
| |
| monotonic_clock::time_point monotonic_start_time() const { |
| return monotonic_start_time_; |
| } |
| realtime_clock::time_point realtime_start_time() const { |
| return realtime_start_time_; |
| } |
| monotonic_clock::time_point monotonic_oldest_time() const { |
| return monotonic_oldest_time_; |
| } |
| |
| // The time this data is sorted until. |
| monotonic_clock::time_point sorted_until() const { return sorted_until_; } |
| |
| // Returns the next sorted message from the set of log files. It is safe to |
| // call std::move() on the result to move the data flatbuffer from it. |
| Message *Front(); |
| // Pops the front message. This should only be called after a call to |
| // Front(). |
| void PopFront(); |
| |
| private: |
| // Unsorted list of all parts sorters. |
| std::vector<LogPartsSorter> parts_sorters_; |
| // Pointer to the parts sorter holding the current Front message if one |
| // exists, or nullptr if a new one needs to be found. |
| LogPartsSorter *current_ = nullptr; |
| // Cached sorted_until value. |
| aos::monotonic_clock::time_point sorted_until_ = monotonic_clock::min_time; |
| |
| // Cached node. |
| int node_; |
| |
| // Timestamp of the last message returned. Used to make sure nothing goes |
| // backwards. |
| monotonic_clock::time_point last_message_time_ = monotonic_clock::min_time; |
| |
| realtime_clock::time_point realtime_start_time_ = realtime_clock::max_time; |
| monotonic_clock::time_point monotonic_start_time_ = monotonic_clock::max_time; |
| monotonic_clock::time_point monotonic_oldest_time_ = |
| monotonic_clock::max_time; |
| }; |
| |
| // Class to concatenate multiple boots worth of logs into a single per-node |
| // stream. |
| class BootMerger { |
| public: |
| BootMerger(std::vector<LogParts> file); |
| |
| // Copying and moving will mess up the internal raw pointers. Just don't do |
| // it. |
| BootMerger(BootMerger const &) = delete; |
| BootMerger(BootMerger &&) = delete; |
| void operator=(BootMerger const &) = delete; |
| void operator=(BootMerger &&) = delete; |
| |
| // Node index in the configuration of this node. |
| int node() const { return node_mergers_[0]->node(); } |
| |
| // List of parts being sorted together. |
| std::vector<const LogParts *> Parts() const; |
| |
| const Configuration *configuration() const { |
| return node_mergers_[0]->configuration(); |
| } |
| |
| monotonic_clock::time_point monotonic_start_time(size_t boot) const { |
| CHECK_LT(boot, node_mergers_.size()); |
| return node_mergers_[boot]->monotonic_start_time(); |
| } |
| realtime_clock::time_point realtime_start_time(size_t boot) const { |
| CHECK_LT(boot, node_mergers_.size()); |
| return node_mergers_[boot]->realtime_start_time(); |
| } |
| monotonic_clock::time_point monotonic_oldest_time(size_t boot) const { |
| CHECK_LT(boot, node_mergers_.size()); |
| return node_mergers_[boot]->monotonic_oldest_time(); |
| } |
| |
| bool started() const { |
| return node_mergers_[index_]->sorted_until() != monotonic_clock::min_time || |
| index_ != 0; |
| } |
| |
| // Returns the next sorted message from the set of log files. It is safe to |
| // call std::move() on the result to move the data flatbuffer from it. |
| Message *Front(); |
| // Pops the front message. This should only be called after a call to |
| // Front(). |
| void PopFront(); |
| |
| private: |
| int index_ = 0; |
| |
| // TODO(austin): Sanjay points out this is pretty inefficient. Don't keep so |
| // many things open. |
| std::vector<std::unique_ptr<NodeMerger>> node_mergers_; |
| }; |
| |
| // Class to match timestamps with the corresponding data from other nodes. |
| // |
| // This class also buffers data for the node it represents, and supports |
| // notifying when new data is queued as well as queueing until a point in time. |
| class TimestampMapper { |
| public: |
| TimestampMapper(std::vector<LogParts> file); |
| |
| // Copying and moving will mess up the internal raw pointers. Just don't do |
| // it. |
| TimestampMapper(TimestampMapper const &) = delete; |
| TimestampMapper(TimestampMapper &&) = delete; |
| void operator=(TimestampMapper const &) = delete; |
| void operator=(TimestampMapper &&) = delete; |
| |
| // TODO(austin): It would be super helpful to provide a way to queue up to |
| // time X without matching timestamps, and to then be able to pull the |
| // timestamps out of this queue. This lets us bootstrap time estimation |
| // without exploding memory usage worst case. |
| |
| const Configuration *configuration() const { return configuration_.get(); } |
| |
| // Returns which node this is sorting for. |
| size_t node() const { return boot_merger_.node(); } |
| |
| // The start time of this log. |
| monotonic_clock::time_point monotonic_start_time(size_t boot) const { |
| return boot_merger_.monotonic_start_time(boot); |
| } |
| realtime_clock::time_point realtime_start_time(size_t boot) const { |
| return boot_merger_.realtime_start_time(boot); |
| } |
| // Returns the oldest timestamp on a message on this boot. |
| monotonic_clock::time_point monotonic_oldest_time(size_t boot) const { |
| return boot_merger_.monotonic_oldest_time(boot); |
| } |
| |
| // Uses timestamp_mapper as the peer for its node. Only one mapper may be set |
| // for each node. Peers are used to look up the data for timestamps on this |
| // node. |
| void AddPeer(TimestampMapper *timestamp_mapper); |
| |
| // Returns true if anything has been queued up. |
| bool started() const { return boot_merger_.started(); } |
| |
| // Returns the next message for this node. |
| TimestampedMessage *Front(); |
| // Pops the next message. Front must be called first. |
| void PopFront(); |
| |
| // Returns debug information about this node. |
| std::string DebugString() const; |
| |
| // Queues data the provided time. |
| void QueueUntil(BootTimestamp queue_time); |
| // Queues until we have time_estimation_buffer of data in the queue. |
| void QueueFor(std::chrono::nanoseconds time_estimation_buffer); |
| |
| // Queues until the condition is met. |
| template <typename T> |
| void QueueUntilCondition(T fn) { |
| while (true) { |
| if (fn()) { |
| break; |
| } |
| if (!QueueMatched()) { |
| break; |
| } |
| } |
| } |
| |
| // Sets a callback to be called whenever a full message is queued. |
| void set_timestamp_callback(std::function<void(TimestampedMessage *)> fn) { |
| timestamp_callback_ = fn; |
| } |
| |
| private: |
| // The state for a remote node. This holds the data that needs to be matched |
| // with the remote node's timestamps. |
| struct NodeData { |
| // True if we should save data here. This should be true if any of the |
| // bools in delivered below are true. |
| bool any_delivered = false; |
| |
| // True if we have a peer and therefore should be saving data for it. |
| bool save_for_peer = false; |
| |
| // Peer pointer. This node is only to be considered if a peer is set. |
| TimestampMapper *peer = nullptr; |
| |
| struct ChannelData { |
| // Deque per channel. This contains the data from the outside |
| // TimestampMapper node which is relevant for the node this NodeData |
| // points to. |
| std::deque<Message> messages; |
| // Bool tracking per channel if a message is delivered to the node this |
| // NodeData represents. |
| bool delivered = false; |
| // The TTL for delivery. |
| std::chrono::nanoseconds time_to_live = std::chrono::nanoseconds(0); |
| }; |
| |
| // Vector with per channel data. |
| std::vector<ChannelData> channels; |
| }; |
| |
| // Returns (and forgets about) the data for the provided timestamp message |
| // showing when it was delivered to this node. |
| Message MatchingMessageFor(const Message &message); |
| |
| // Queues up a single message into our message queue, and any nodes that this |
| // message is delivered to. Returns true if one was available, false |
| // otherwise. |
| bool Queue(); |
| |
| // Queues up a single matched message into our matched message queue. Returns |
| // true if one was queued, and false otherwise. |
| bool QueueMatched(); |
| |
| // Queues up data until we have at least one message >= to time t. |
| // Useful for triggering a remote node to read enough data to have the |
| // timestamp you care about available. |
| void QueueUnmatchedUntil(BootTimestamp t); |
| |
| // Queues m into matched_messages_. |
| void QueueMessage(Message *m); |
| |
| // Returns the name of the node this class is sorting for. |
| std::string_view node_name() const { |
| return configuration_->has_nodes() ? configuration_->nodes() |
| ->Get(boot_merger_.node()) |
| ->name() |
| ->string_view() |
| : "(single node)"; |
| } |
| |
| // The node merger to source messages from. |
| BootMerger boot_merger_; |
| |
| std::shared_ptr<const Configuration> configuration_; |
| |
| // The buffer of messages for this node. These are not matched with any |
| // remote data. |
| std::deque<Message> messages_; |
| // The node index for the source node for each channel. |
| std::vector<size_t> source_node_; |
| |
| // Vector per node. Not all nodes will have anything. |
| std::vector<NodeData> nodes_data_; |
| |
| // Latest message to return. |
| std::deque<TimestampedMessage> matched_messages_; |
| |
| // Tracks the state of the first message in matched_messages_. Do we need to |
| // update it, is it valid, or should we return nullptr? |
| enum class FirstMessage { |
| kNeedsUpdate, |
| kInMessage, |
| kNullptr, |
| }; |
| FirstMessage first_message_ = FirstMessage::kNeedsUpdate; |
| |
| // Timestamp of the last message returned. Used to make sure nothing goes |
| // backwards. |
| BootTimestamp last_message_time_ = BootTimestamp::min_time(); |
| BootTimestamp last_popped_message_time_ = BootTimestamp::min_time(); |
| // Time this node is queued up until. Used for caching. |
| BootTimestamp queued_until_ = BootTimestamp::min_time(); |
| |
| std::function<void(TimestampedMessage *)> timestamp_callback_; |
| }; |
| |
| // Returns the node name with a trailing space, or an empty string if we are on |
| // a single node. |
| std::string MaybeNodeName(const Node *); |
| |
| } // namespace aos::logger |
| |
| #endif // AOS_EVENTS_LOGGING_LOGFILE_UTILS_H_ |