blob: 06e40776d65cef57f71844284d420e3c642264d8 [file] [log] [blame]
#include <opencv2/calib3d.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/imgproc.hpp>
#include "aos/events/shm_event_loop.h"
#include "aos/flatbuffer_merge.h"
#include "aos/init.h"
#include "aos/network/team_number.h"
#include "y2020/vision/sift/demo_sift.h"
#include "y2020/vision/sift/sift971.h"
#include "y2020/vision/sift/sift_generated.h"
#include "y2020/vision/sift/sift_training_generated.h"
#include "y2020/vision/v4l2_reader.h"
#include "y2020/vision/vision_generated.h"
namespace frc971 {
namespace vision {
namespace {
class CameraReader {
public:
CameraReader(aos::EventLoop *event_loop,
const sift::TrainingData *training_data, V4L2Reader *reader,
cv::FlannBasedMatcher *matcher)
: event_loop_(event_loop),
training_data_(training_data),
camera_calibration_(FindCameraCalibration()),
reader_(reader),
matcher_(matcher),
image_sender_(event_loop->MakeSender<CameraImage>("/camera")),
result_sender_(
event_loop->MakeSender<sift::ImageMatchResult>("/camera")),
read_image_timer_(event_loop->AddTimer([this]() {
ReadImage();
read_image_timer_->Setup(event_loop_->monotonic_now());
})) {
CopyTrainingFeatures();
// Technically we don't need to do this, but doing it now avoids the first
// match attempt being slow.
matcher_->train();
event_loop->OnRun(
[this]() { read_image_timer_->Setup(event_loop_->monotonic_now()); });
}
private:
const sift::CameraCalibration *FindCameraCalibration() const;
// Copies the information from training_data_ into matcher_.
void CopyTrainingFeatures();
// Processes an image (including sending the results).
void ProcessImage(const CameraImage &image);
// Reads an image, and then performs all of our processing on it.
void ReadImage();
flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<sift::ImageMatch>>>
PackImageMatches(flatbuffers::FlatBufferBuilder *fbb,
const std::vector<std::vector<cv::DMatch>> &matches);
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::Feature>>>
PackFeatures(flatbuffers::FlatBufferBuilder *fbb,
const std::vector<cv::KeyPoint> &keypoints,
const cv::Mat &descriptors);
// Returns the 3D location for the specified training feature.
cv::Point3f Training3dPoint(int training_image_index,
int feature_index) const {
const sift::KeypointFieldLocation *const location =
training_data_->images()
->Get(training_image_index)
->features()
->Get(feature_index)
->field_location();
return cv::Point3f(location->x(), location->y(), location->z());
}
const sift::TransformationMatrix *FieldToTarget(int training_image_index) {
return training_data_->images()
->Get(training_image_index)
->field_to_target();
}
int number_training_images() const {
return training_data_->images()->size();
}
cv::Mat CameraIntrinsics() const {
const cv::Mat result(3, 3, CV_32F,
const_cast<void *>(static_cast<const void *>(
camera_calibration_->intrinsics()->data())));
CHECK_EQ(result.total(), camera_calibration_->intrinsics()->size());
return result;
}
aos::EventLoop *const event_loop_;
const sift::TrainingData *const training_data_;
const sift::CameraCalibration *const camera_calibration_;
V4L2Reader *const reader_;
cv::FlannBasedMatcher *const matcher_;
aos::Sender<CameraImage> image_sender_;
aos::Sender<sift::ImageMatchResult> result_sender_;
// We schedule this immediately to read an image. Having it on a timer means
// other things can run on the event loop in between.
aos::TimerHandler *const read_image_timer_;
const std::unique_ptr<frc971::vision::SIFT971_Impl> sift_{
new frc971::vision::SIFT971_Impl()};
};
const sift::CameraCalibration *CameraReader::FindCameraCalibration() const {
const std::string_view node_name = event_loop_->node()->name()->string_view();
const int team_number = aos::network::GetTeamNumber();
for (const sift::CameraCalibration *candidate :
*training_data_->camera_calibrations()) {
if (candidate->node_name()->string_view() != node_name) {
continue;
}
if (candidate->team_number() != team_number) {
continue;
}
return candidate;
}
LOG(FATAL) << ": Failed to find camera calibration for " << node_name
<< " on " << team_number;
}
void CameraReader::CopyTrainingFeatures() {
for (const sift::TrainingImage *training_image : *training_data_->images()) {
cv::Mat features(training_image->features()->size(), 128, CV_32F);
for (size_t i = 0; i < training_image->features()->size(); ++i) {
const sift::Feature *feature_table = training_image->features()->Get(i);
// We don't need this information right now, but make sure it's here to
// avoid crashes that only occur when specific features are matched.
CHECK(feature_table->has_field_location());
const flatbuffers::Vector<float> *const descriptor =
feature_table->descriptor();
CHECK_EQ(descriptor->size(), 128u) << ": Unsupported feature size";
cv::Mat(1, descriptor->size(), CV_32F,
const_cast<void *>(static_cast<const void *>(descriptor->data())))
.copyTo(features(cv::Range(i, i + 1), cv::Range(0, 128)));
}
matcher_->add(features);
}
}
void CameraReader::ProcessImage(const CameraImage &image) {
// Be ready to pack the results up and send them out. We can pack things into
// this memory as we go to allow reusing temporaries better.
auto builder = result_sender_.MakeBuilder();
const auto camera_calibration_offset =
aos::CopyFlatBuffer(camera_calibration_, builder.fbb());
// First, we need to extract the brightness information. This can't really be
// fused into the beginning of the SIFT algorithm because the algorithm needs
// to look at the base image directly. It also only takes 2ms on our images.
// This is converting from YUYV to a grayscale image.
cv::Mat image_mat(
image.rows(), image.cols(), CV_8U);
CHECK(image_mat.isContinuous());
const int number_pixels = image.rows() * image.cols();
for (int i = 0; i < number_pixels; ++i) {
reinterpret_cast<uint8_t *>(image_mat.data)[i] =
image.data()->data()[i * 2];
}
// Next, grab the features from the image.
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
sift_->detectAndCompute(image_mat, cv::noArray(), keypoints, descriptors);
const auto features_offset =
PackFeatures(builder.fbb(), keypoints, descriptors);
// Then, match those features against our training data.
std::vector<std::vector<cv::DMatch>> matches;
matcher_->knnMatch(/* queryDescriptors */ descriptors, matches, /* k */ 2);
const auto image_matches_offset = PackImageMatches(builder.fbb(), matches);
struct PerImageMatches {
std::vector<const std::vector<cv::DMatch> *> matches;
std::vector<cv::Point3f> training_points_3d;
std::vector<cv::Point2f> query_points;
};
std::vector<PerImageMatches> per_image_matches(number_training_images());
// Pull out the good matches which we want for each image.
// Discard the bad matches per Lowe's ratio test.
// (Lowe originally proposed 0.7 ratio, but 0.75 was later proposed as a
// better option. We'll go with the more conservative (fewer, better matches)
// for now).
for (const std::vector<cv::DMatch> &match : matches) {
CHECK_EQ(2u, match.size());
CHECK_LE(match[0].distance, match[1].distance);
CHECK_LT(match[0].imgIdx, number_training_images());
CHECK_LT(match[1].imgIdx, number_training_images());
CHECK_EQ(match[0].queryIdx, match[1].queryIdx);
if (!(match[0].distance < 0.7 * match[1].distance)) {
continue;
}
const int training_image = match[0].imgIdx;
CHECK_LT(training_image, static_cast<int>(per_image_matches.size()));
PerImageMatches *const per_image = &per_image_matches[training_image];
per_image->matches.push_back(&match);
per_image->training_points_3d.push_back(
Training3dPoint(training_image, match[0].trainIdx));
const cv::KeyPoint &keypoint = keypoints[match[0].queryIdx];
per_image->query_points.push_back(keypoint.pt);
}
// The minimum number of matches in a training image for us to use it.
static constexpr int kMinimumMatchCount = 10;
std::vector<flatbuffers::Offset<sift::CameraPose>> camera_poses;
for (size_t i = 0; i < per_image_matches.size(); ++i) {
const PerImageMatches &per_image = per_image_matches[i];
if (per_image.matches.size() < kMinimumMatchCount) {
continue;
}
cv::Mat R_camera_target, T_camera_target;
cv::solvePnPRansac(per_image.training_points_3d, per_image.query_points,
CameraIntrinsics(), cv::noArray(), R_camera_target,
T_camera_target);
sift::CameraPose::Builder pose_builder(*builder.fbb());
{
CHECK_EQ(cv::Size(3, 3), R_camera_target.size());
CHECK_EQ(cv::Size(3, 1), T_camera_target.size());
cv::Mat camera_target = cv::Mat::zeros(4, 4, CV_32F);
R_camera_target.copyTo(camera_target(cv::Range(0, 3), cv::Range(0, 3)));
T_camera_target.copyTo(camera_target(cv::Range(3, 4), cv::Range(0, 3)));
camera_target.at<float>(3, 3) = 1;
CHECK(camera_target.isContinuous());
const auto data_offset = builder.fbb()->CreateVector<float>(
reinterpret_cast<float *>(camera_target.data), camera_target.total());
pose_builder.add_camera_to_target(
sift::CreateTransformationMatrix(*builder.fbb(), data_offset));
}
pose_builder.add_field_to_target(
aos::CopyFlatBuffer(FieldToTarget(i), builder.fbb()));
camera_poses.emplace_back(pose_builder.Finish());
}
const auto camera_poses_offset = builder.fbb()->CreateVector(camera_poses);
sift::ImageMatchResult::Builder result_builder(*builder.fbb());
result_builder.add_image_matches(image_matches_offset);
result_builder.add_camera_poses(camera_poses_offset);
result_builder.add_features(features_offset);
result_builder.add_image_monotonic_timestamp_ns(
image.monotonic_timestamp_ns());
result_builder.add_camera_calibration(camera_calibration_offset);
builder.Send(result_builder.Finish());
}
void CameraReader::ReadImage() {
if (!reader_->ReadLatestImage()) {
LOG(INFO) << "No image, sleeping";
std::this_thread::sleep_for(std::chrono::milliseconds(10));
return;
}
ProcessImage(reader_->LatestImage());
reader_->SendLatestImage();
}
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::ImageMatch>>>
CameraReader::PackImageMatches(
flatbuffers::FlatBufferBuilder *fbb,
const std::vector<std::vector<cv::DMatch>> &matches) {
// First, we need to pull out all the matches for each image. Might as well
// build up the Match tables at the same time.
std::vector<std::vector<sift::Match>> per_image_matches(
number_training_images());
for (const std::vector<cv::DMatch> &image_matches : matches) {
for (const cv::DMatch &image_match : image_matches) {
CHECK_LT(image_match.imgIdx, number_training_images());
per_image_matches[image_match.imgIdx].emplace_back();
sift::Match *const match = &per_image_matches[image_match.imgIdx].back();
match->mutate_query_feature(image_match.queryIdx);
match->mutate_train_feature(image_match.trainIdx);
match->mutate_distance(image_match.distance);
}
}
// Then, we need to build up each ImageMatch table.
std::vector<flatbuffers::Offset<sift::ImageMatch>> image_match_tables;
for (size_t i = 0; i < per_image_matches.size(); ++i) {
const std::vector<sift::Match> &this_image_matches = per_image_matches[i];
if (this_image_matches.empty()) {
continue;
}
const auto vector_offset = fbb->CreateVectorOfStructs(this_image_matches);
sift::ImageMatch::Builder image_builder(*fbb);
image_builder.add_train_image(i);
image_builder.add_matches(vector_offset);
image_match_tables.emplace_back(image_builder.Finish());
}
return fbb->CreateVector(image_match_tables);
}
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<sift::Feature>>>
CameraReader::PackFeatures(flatbuffers::FlatBufferBuilder *fbb,
const std::vector<cv::KeyPoint> &keypoints,
const cv::Mat &descriptors) {
const int number_features = keypoints.size();
CHECK_EQ(descriptors.rows, number_features);
std::vector<flatbuffers::Offset<sift::Feature>> features_vector(
number_features);
for (int i = 0; i < number_features; ++i) {
const auto submat = descriptors(cv::Range(i, i + 1), cv::Range(0, 128));
CHECK(submat.isContinuous());
const auto descriptor_offset =
fbb->CreateVector(reinterpret_cast<float *>(submat.data), 128);
sift::Feature::Builder feature_builder(*fbb);
feature_builder.add_descriptor(descriptor_offset);
feature_builder.add_x(keypoints[i].pt.x);
feature_builder.add_y(keypoints[i].pt.y);
feature_builder.add_size(keypoints[i].size);
feature_builder.add_angle(keypoints[i].angle);
feature_builder.add_response(keypoints[i].response);
feature_builder.add_octave(keypoints[i].octave);
CHECK_EQ(-1, keypoints[i].class_id)
<< ": Not sure what to do with a class id";
features_vector[i] = feature_builder.Finish();
}
return fbb->CreateVector(features_vector);
}
void CameraReaderMain() {
aos::FlatbufferDetachedBuffer<aos::Configuration> config =
aos::configuration::ReadConfig("config.json");
const auto training_data_bfbs = DemoSiftData();
const sift::TrainingData *const training_data =
flatbuffers::GetRoot<sift::TrainingData>(training_data_bfbs.data());
{
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(training_data_bfbs.data()),
training_data_bfbs.size());
CHECK(training_data->Verify(verifier));
}
const auto index_params = cv::makePtr<cv::flann::IndexParams>();
index_params->setAlgorithm(cvflann::FLANN_INDEX_KDTREE);
index_params->setInt("trees", 5);
const auto search_params =
cv::makePtr<cv::flann::SearchParams>(/* checks */ 50);
cv::FlannBasedMatcher matcher(index_params, search_params);
aos::ShmEventLoop event_loop(&config.message());
V4L2Reader v4l2_reader(&event_loop, "/dev/video0");
CameraReader camera_reader(&event_loop, training_data, &v4l2_reader, &matcher);
event_loop.Run();
}
} // namespace
} // namespace vision
} // namespace frc971
int main(int argc, char **argv) {
aos::InitGoogle(&argc, &argv);
frc971::vision::CameraReaderMain();
}