blob: 8bcfa19c8dca822594dcb72ca6dbf42b6ea6982a [file] [log] [blame]
#include "aos/linux_code/ipc_lib/queue.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <memory>
#include <algorithm>
#include "aos/common/logging/logging.h"
#include "aos/common/type_traits.h"
#include "aos/linux_code/ipc_lib/core_lib.h"
namespace aos {
namespace {
static_assert(shm_ok<RawQueue>::value,
"RawQueue instances go into shared memory");
const bool kReadDebug = false;
const bool kWriteDebug = false;
const bool kRefDebug = false;
const bool kFetchDebug = false;
// The number of extra messages the pool associated with each queue will be able
// to hold (for readers who are slow about freeing them or who leak one when
// they get killed).
const int kExtraMessages = 20;
} // namespace
const int RawQueue::kPeek;
const int RawQueue::kFromEnd;
const int RawQueue::kNonBlock;
const int RawQueue::kBlock;
const int RawQueue::kOverride;
struct RawQueue::MessageHeader {
int ref_count;
int index; // in pool_
// Gets the message header immediately preceding msg.
static MessageHeader *Get(const void *msg) {
return reinterpret_cast<MessageHeader *>(__builtin_assume_aligned(
static_cast<uint8_t *>(const_cast<void *>(msg)) - sizeof(MessageHeader),
alignof(MessageHeader)));
}
void Swap(MessageHeader *other) {
MessageHeader temp;
memcpy(&temp, other, sizeof(temp));
memcpy(other, this, sizeof(*other));
memcpy(this, &temp, sizeof(*this));
}
};
static_assert(shm_ok<RawQueue::MessageHeader>::value,
"the whole point is to stick it in shared memory");
struct RawQueue::ReadData {
bool writable_start;
};
// TODO(brians) maybe do this with atomic integer instructions so it doesn't
// have to lock/unlock pool_lock_
void RawQueue::DecrementMessageReferenceCount(const void *msg) {
MutexLocker locker(&pool_lock_);
MessageHeader *header = MessageHeader::Get(msg);
--header->ref_count;
assert(header->ref_count >= 0);
if (kRefDebug) {
printf("ref_dec_count: %p count=%d\n", msg, header->ref_count);
}
if (header->ref_count == 0) {
DoFreeMessage(msg);
}
}
RawQueue::RawQueue(const char *name, size_t length, int hash, int queue_length)
: readable_(&data_lock_), writable_(&data_lock_) {
const size_t name_size = strlen(name) + 1;
char *temp = static_cast<char *>(shm_malloc(name_size));
memcpy(temp, name, name_size);
name_ = temp;
length_ = length;
hash_ = hash;
queue_length_ = queue_length;
next_ = NULL;
recycle_ = NULL;
if (kFetchDebug) {
printf("initializing name=%s, length=%zd, hash=%d, queue_length=%d\n",
name, length, hash, queue_length);
}
data_length_ = queue_length + 1;
if (data_length_ < 2) { // TODO(brians) when could this happen?
data_length_ = 2;
}
data_ = static_cast<void **>(shm_malloc(sizeof(void *) * data_length_));
data_start_ = 0;
data_end_ = 0;
messages_ = 0;
mem_length_ = queue_length + kExtraMessages;
pool_length_ = 0;
messages_used_ = 0;
msg_length_ = length + sizeof(MessageHeader);
pool_ = static_cast<MessageHeader **>(
shm_malloc(sizeof(MessageHeader *) * mem_length_));
if (kFetchDebug) {
printf("made queue %s\n", name);
}
}
RawQueue *RawQueue::Fetch(const char *name, size_t length, int hash,
int queue_length) {
if (kFetchDebug) {
printf("fetching queue %s\n", name);
}
if (mutex_lock(&global_core->mem_struct->queues.lock) != 0) {
return NULL;
}
RawQueue *current = static_cast<RawQueue *>(
global_core->mem_struct->queues.pointer);
if (current != NULL) {
while (true) {
// If we found a matching queue.
if (strcmp(current->name_, name) == 0 && current->length_ == length &&
current->hash_ == hash && current->queue_length_ == queue_length) {
mutex_unlock(&global_core->mem_struct->queues.lock);
return current;
} else {
if (kFetchDebug) {
printf("rejected queue %s strcmp=%d target=%s\n", current->name_,
strcmp(current->name_, name), name);
}
}
// If this is the last one.
if (current->next_ == NULL) break;
current = current->next_;
}
}
RawQueue *r = new (shm_malloc(sizeof(RawQueue)))
RawQueue(name, length, hash, queue_length);
if (current == NULL) { // if we don't already have one
global_core->mem_struct->queues.pointer = r;
} else {
current->next_ = r;
}
mutex_unlock(&global_core->mem_struct->queues.lock);
return r;
}
RawQueue *RawQueue::Fetch(const char *name, size_t length, int hash,
int queue_length,
int recycle_hash, int recycle_length, RawQueue **recycle) {
RawQueue *r = Fetch(name, length, hash, queue_length);
r->recycle_ = Fetch(name, length, recycle_hash, recycle_length);
if (r == r->recycle_) {
fprintf(stderr, "queue: r->recycle_(=%p) == r(=%p)\n", r->recycle_, r);
printf("see stderr\n");
r->recycle_ = NULL;
abort();
}
*recycle = r->recycle_;
return r;
}
void RawQueue::DoFreeMessage(const void *msg) {
MessageHeader *header = MessageHeader::Get(msg);
if (pool_[header->index] != header) { // if something's messed up
fprintf(stderr, "queue: something is very very wrong with queue %p."
" pool_(=%p)[header->index(=%d)] != header(=%p)\n",
this, pool_, header->index, header);
printf("queue: see stderr\n");
abort();
}
if (kRefDebug) {
printf("ref free: %p\n", msg);
}
--messages_used_;
if (recycle_ != NULL) {
void *const new_msg = recycle_->GetMessage();
if (new_msg == NULL) {
fprintf(stderr, "queue: couldn't get a message"
" for recycle queue %p\n", recycle_);
} else {
// Take a message from recycle_ and switch its
// header with the one being freed, which effectively
// switches which queue each message belongs to.
MessageHeader *const new_header = MessageHeader::Get(new_msg);
// Also switch the messages between the pools.
pool_[header->index] = new_header;
{
MutexLocker locker(&recycle_->pool_lock_);
recycle_->pool_[new_header->index] = header;
// Swap the information in both headers.
header->Swap(new_header);
// Don't unlock the other pool until all of its messages are valid.
}
// use the header for new_msg which is now for this pool
header = new_header;
if (!recycle_->WriteMessage(const_cast<void *>(msg), kOverride)) {
fprintf(stderr, "queue: %p->WriteMessage(%p, kOverride) failed."
" aborting\n", recycle_, msg);
printf("see stderr\n");
abort();
}
msg = new_msg;
}
}
// Where the one we're freeing was.
int index = header->index;
header->index = -1;
if (index != messages_used_) { // if we're not freeing the one on the end
// Put the last one where the one we're freeing was.
header = pool_[index] = pool_[messages_used_];
// Put the one we're freeing at the end.
pool_[messages_used_] = MessageHeader::Get(msg);
// Update the former last one's index.
header->index = index;
}
}
bool RawQueue::WriteMessage(void *msg, int options) {
if (kWriteDebug) {
printf("queue: %p->WriteMessage(%p, %x)\n", this, msg, options);
}
if (msg == NULL || msg < reinterpret_cast<void *>(global_core->mem_struct) ||
msg > static_cast<void *>((
reinterpret_cast<char *>(global_core->mem_struct) +
global_core->size))) {
fprintf(stderr, "queue: attempt to write bad message %p to %p. aborting\n",
msg, this);
printf("see stderr\n");
abort();
}
{
MutexLocker locker(&data_lock_);
bool writable_waited = false;
int new_end;
while (true) {
new_end = (data_end_ + 1) % data_length_;
// If there is room in the queue right now.
if (new_end != data_start_) break;
if (options & kNonBlock) {
if (kWriteDebug) {
printf("queue: not blocking on %p. returning false\n", this);
}
DecrementMessageReferenceCount(msg);
return false;
} else if (options & kOverride) {
if (kWriteDebug) {
printf("queue: overriding on %p\n", this);
}
// Avoid leaking the message that we're going to overwrite.
DecrementMessageReferenceCount(data_[data_start_]);
data_start_ = (data_start_ + 1) % data_length_;
} else { // kBlock
if (kWriteDebug) {
printf("queue: going to wait for writable_ of %p\n", this);
}
writable_.Wait();
writable_waited = true;
}
}
data_[data_end_] = msg;
++messages_;
data_end_ = new_end;
if (kWriteDebug) {
printf("queue: broadcasting to readable_ of %p\n", this);
}
readable_.Broadcast();
// If we got a signal on writable_ here and it's still writable, then we
// need to signal the next person in line (if any).
if (writable_waited && is_writable()) {
if (kWriteDebug) {
printf("queue: resignalling writable_ of %p\n", this);
}
writable_.Signal();
}
}
if (kWriteDebug) {
printf("queue: write returning true on queue %p\n", this);
}
return true;
}
void RawQueue::ReadCommonEnd(ReadData *read_data) {
if (is_writable()) {
if (kReadDebug) {
printf("queue: %ssignalling writable_ of %p\n",
read_data->writable_start ? "not " : "", this);
}
if (!read_data->writable_start) writable_.Signal();
}
}
bool RawQueue::ReadCommonStart(int options, int *index, ReadData *read_data) {
read_data->writable_start = is_writable();
while (data_start_ == data_end_ || ((index != NULL) && messages_ <= *index)) {
if (options & kNonBlock) {
if (kReadDebug) {
printf("queue: not going to block waiting on %p\n", this);
}
return false;
} else { // kBlock
if (kReadDebug) {
printf("queue: going to wait for readable_ of %p\n", this);
}
// Wait for a message to become readable.
readable_.Wait();
if (kReadDebug) {
printf("queue: done waiting for readable_ of %p\n", this);
}
}
}
if (kReadDebug) {
printf("queue: %p->read(%p) start=%d end=%d\n", this, index, data_start_,
data_end_);
}
return true;
}
void *RawQueue::ReadPeek(int options, int start) {
void *ret;
if (options & kFromEnd) {
int pos = data_end_ - 1;
if (pos < 0) { // if it needs to wrap
pos = data_length_ - 1;
}
if (kReadDebug) {
printf("queue: %p reading from line %d: %d\n", this, __LINE__, pos);
}
ret = data_[pos];
} else {
if (kReadDebug) {
printf("queue: %p reading from line %d: %d\n", this, __LINE__, start);
}
ret = data_[start];
}
MessageHeader *const header = MessageHeader::Get(ret);
++header->ref_count;
if (kRefDebug) {
printf("ref inc count: %p\n", ret);
}
return ret;
}
const void *RawQueue::ReadMessage(int options) {
if (kReadDebug) {
printf("queue: %p->ReadMessage(%x)\n", this, options);
}
void *msg = NULL;
MutexLocker locker(&data_lock_);
ReadData read_data;
if (!ReadCommonStart(options, NULL, &read_data)) {
if (kReadDebug) {
printf("queue: %p common returned false\n", this);
}
return NULL;
}
if (options & kPeek) {
msg = ReadPeek(options, data_start_);
} else {
if (options & kFromEnd) {
while (true) {
if (kReadDebug) {
printf("queue: %p start of c2\n", this);
}
// This loop pulls each message out of the buffer.
const int pos = data_start_;
data_start_ = (data_start_ + 1) % data_length_;
// If this is the last one.
if (data_start_ == data_end_) {
if (kReadDebug) {
printf("queue: %p reading from c2: %d\n", this, pos);
}
msg = data_[pos];
break;
}
// This message is not going to be in the queue any more.
DecrementMessageReferenceCount(data_[pos]);
}
} else {
if (kReadDebug) {
printf("queue: %p reading from d2: %d\n", this, data_start_);
}
msg = data_[data_start_];
data_start_ = (data_start_ + 1) % data_length_;
}
}
ReadCommonEnd(&read_data);
if (kReadDebug) {
printf("queue: %p read returning %p\n", this, msg);
}
return msg;
}
const void *RawQueue::ReadMessageIndex(int options, int *index) {
if (kReadDebug) {
printf("queue: %p->ReadMessageIndex(%x, %p(*=%d))\n",
this, options, index, *index);
}
void *msg = NULL;
MutexLocker locker(&data_lock_);
ReadData read_data;
if (!ReadCommonStart(options, index, &read_data)) {
if (kReadDebug) {
printf("queue: %p common returned false\n", this);
}
return NULL;
}
// TODO(parker): Handle integer wrap on the index.
// Where we're going to start reading.
int my_start;
const int unread_messages = messages_ - *index;
int current_messages = data_end_ - data_start_;
if (current_messages < 0) current_messages += data_length_ - 1;
if (unread_messages > current_messages) { // If we're behind the available messages.
// Catch index up to the last available message.
*index = messages_ - current_messages;
// And that's the one we're going to read.
my_start = data_start_;
} else {
// Just start reading at the first available message that we haven't yet
// read.
my_start = (data_end_ - unread_messages) % data_length_;
if (my_start < 0) my_start = data_start_ + unread_messages - 1;
}
if (options & kPeek) {
msg = ReadPeek(options, my_start);
} else {
if (options & kFromEnd) {
if (kReadDebug) {
printf("queue: %p start of c1\n", this);
}
int pos = data_end_ - 1;
if (pos < 0) { // If it wrapped.
pos = data_length_ - 1; // Unwrap it.
}
if (kReadDebug) {
printf("queue: %p reading from c1: %d\n", this, pos);
}
msg = data_[pos];
*index = messages_;
} else {
if (kReadDebug) {
printf("queue: %p reading from d1: %d\n", this, my_start);
}
#if 0
// TODO(brians): Do this check right? (make sure full queue works etc)
// This assert checks that we're either within both endpoints (duh) or
// outside of both of them (if the queue is wrapped around).
assert((my_start >= data_start_ && my_start < data_end_) ||
(my_start > data_end_ && my_start <= data_start_));
#endif
msg = data_[my_start];
++(*index);
}
MessageHeader *const header = MessageHeader::Get(msg);
++header->ref_count;
if (kRefDebug) {
printf("ref_inc_count: %p\n", msg);
}
}
ReadCommonEnd(&read_data);
return msg;
}
void *RawQueue::GetMessage() {
MutexLocker locker(&pool_lock_);
MessageHeader *header;
if (pool_length_ - messages_used_ > 0) {
header = pool_[messages_used_];
} else {
if (pool_length_ >= mem_length_) {
LOG(FATAL, "overused pool of queue %p\n", this);
}
header = pool_[pool_length_] =
static_cast<MessageHeader *>(shm_malloc(msg_length_));
++pool_length_;
}
void *msg = reinterpret_cast<uint8_t *>(header) + sizeof(MessageHeader);
header->ref_count = 1;
if (kRefDebug) {
printf("%p ref alloc: %p\n", this, msg);
}
header->index = messages_used_;
++messages_used_;
return msg;
}
} // namespace aos