| #!/usr/bin/python |
| |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| import numpy |
| import sys |
| import copy |
| import scipy.interpolate |
| from matplotlib import pylab |
| |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| gflags.DEFINE_string('data', None, 'If defined, plot the provided CAN data') |
| gflags.DEFINE_bool( |
| 'rerun_kf', False, |
| 'If true, rerun the KF. The torque in the data file will be interpreted as the commanded current.' |
| ) |
| |
| |
| class SystemParams(object): |
| |
| def __init__(self, J, G, kP, kD, kCompensationTimeconstant, q_pos, q_vel, |
| q_torque, current_limit): |
| self.J = J |
| self.G = G |
| self.q_pos = q_pos |
| self.q_vel = q_vel |
| self.q_torque = q_torque |
| self.kP = kP |
| self.kD = kD |
| self.kCompensationTimeconstant = kCompensationTimeconstant |
| self.r_pos = 0.001 |
| self.current_limit = current_limit |
| |
| #[15.0, 0.25], |
| #[10.0, 0.2], |
| #[5.0, 0.13], |
| #[3.0, 0.10], |
| #[2.0, 0.08], |
| #[1.0, 0.06], |
| #[0.5, 0.05], |
| #[0.25, 0.025], |
| |
| |
| kWheel = SystemParams( |
| J=0.0008, |
| G=(1.25 + 0.02) / 0.35, |
| q_pos=0.001, |
| q_vel=0.20, |
| q_torque=0.005, |
| kP=7.0, |
| kD=0.0, |
| kCompensationTimeconstant=0.95, |
| current_limit=4.5) |
| kTrigger = SystemParams( |
| J=0.00025, |
| G=(0.925 * 2.0 + 0.02) / 0.35, |
| q_pos=0.001, |
| q_vel=0.1, |
| q_torque=0.005, |
| kP=120.0, |
| kD=1.8, |
| kCompensationTimeconstant=0.95, |
| current_limit=3.0) |
| |
| |
| class HapticInput(control_loop.ControlLoop): |
| |
| def __init__(self, params=None, name='HapticInput'): |
| # The defaults are for the steering wheel. |
| super(HapticInput, self).__init__(name) |
| motor = self.motor = control_loop.MN3510() |
| |
| # Moment of inertia of the wheel in kg m^2 |
| self.J = params.J |
| |
| # Control loop time step |
| self.dt = 0.001 |
| |
| # Gear ratio from the motor to the input. |
| self.G = params.G |
| |
| self.A_continuous = numpy.matrix(numpy.zeros((2, 2))) |
| self.A_continuous[1, 1] = 0 |
| self.A_continuous[0, 1] = 1 |
| |
| self.B_continuous = numpy.matrix(numpy.zeros((2, 1))) |
| self.B_continuous[1, 0] = motor.Kt * self.G / self.J |
| |
| # State feedback matrices |
| # [position, angular velocity] |
| self.C = numpy.matrix([[1.0, 0.0]]) |
| self.D = numpy.matrix([[0.0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| self.U_max = numpy.matrix([[2.5]]) |
| self.U_min = numpy.matrix([[-2.5]]) |
| |
| self.L = numpy.matrix([[0.0], [0.0]]) |
| self.K = numpy.matrix([[0.0, 0.0]]) |
| |
| self.InitializeState() |
| |
| |
| class IntegralHapticInput(HapticInput): |
| |
| def __init__(self, params=None, name="IntegralHapticInput"): |
| super(IntegralHapticInput, self).__init__(name=name, params=params) |
| |
| self.A_continuous_unaugmented = self.A_continuous |
| self.B_continuous_unaugmented = self.B_continuous |
| |
| self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented |
| self.A_continuous[1, 2] = (1 / self.J) |
| |
| self.B_continuous = numpy.matrix(numpy.zeros((3, 1))) |
| self.B_continuous[0:2, 0] = self.B_continuous_unaugmented |
| |
| self.C_unaugmented = self.C |
| self.C = numpy.matrix(numpy.zeros((1, 3))) |
| self.C[0:1, 0:2] = self.C_unaugmented |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| self.Q = numpy.matrix([[(params.q_pos**2.0), 0.0, 0.0], |
| [0.0, (params.q_vel**2.0), 0.0], |
| [0.0, 0.0, (params.q_torque**2.0)]]) |
| |
| self.R = numpy.matrix([[(params.r_pos**2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman( |
| A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| self.L = self.A * self.KalmanGain |
| |
| self.K_unaugmented = self.K |
| self.K = numpy.matrix(numpy.zeros((1, 3))) |
| self.K[0, 0:2] = self.K_unaugmented |
| self.K[0, 2] = 1.0 / (self.motor.Kt / (self.motor.resistance)) |
| |
| self.InitializeState() |
| |
| |
| def ReadCan(filename): |
| """Reads the candump in filename and returns the 4 fields.""" |
| trigger = [] |
| trigger_velocity = [] |
| trigger_torque = [] |
| trigger_current = [] |
| wheel = [] |
| wheel_velocity = [] |
| wheel_torque = [] |
| wheel_current = [] |
| |
| trigger_request_time = [0.0] |
| trigger_request_current = [0.0] |
| wheel_request_time = [0.0] |
| wheel_request_current = [0.0] |
| |
| with open(filename, 'r') as fd: |
| for line in fd: |
| data = line.split() |
| can_id = int(data[1], 16) |
| if can_id == 0: |
| data = [int(d, 16) for d in data[3:]] |
| trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0) |
| trigger_velocity.append( |
| ((data[2] + (data[3] << 8)) - 32768) / 32768.0) |
| trigger_torque.append( |
| ((data[4] + (data[5] << 8)) - 32768) / 32768.0) |
| trigger_current.append( |
| ((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0) |
| elif can_id == 1: |
| data = [int(d, 16) for d in data[3:]] |
| wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0) |
| wheel_velocity.append( |
| ((data[2] + (data[3] << 8)) - 32768) / 32768.0) |
| wheel_torque.append( |
| ((data[4] + (data[5] << 8)) - 32768) / 32768.0) |
| wheel_current.append( |
| ((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0) |
| elif can_id == 2: |
| data = [int(d, 16) for d in data[3:]] |
| trigger_request_current.append( |
| ((data[4] + (data[5] << 8)) - 32768) / 32768.0) |
| trigger_request_time.append(len(trigger) * 0.001) |
| elif can_id == 3: |
| data = [int(d, 16) for d in data[3:]] |
| wheel_request_current.append( |
| ((data[4] + (data[5] << 8)) - 32768) / 32768.0) |
| wheel_request_time.append(len(wheel) * 0.001) |
| |
| trigger_data_time = numpy.arange(0, len(trigger)) * 0.001 |
| wheel_data_time = numpy.arange(0, len(wheel)) * 0.001 |
| |
| # Extend out the data in the interpolation table. |
| trigger_request_time.append(trigger_data_time[-1]) |
| trigger_request_current.append(trigger_request_current[-1]) |
| wheel_request_time.append(wheel_data_time[-1]) |
| wheel_request_current.append(wheel_request_current[-1]) |
| |
| return (trigger_data_time, wheel_data_time, trigger, wheel, |
| trigger_velocity, wheel_velocity, trigger_torque, wheel_torque, |
| trigger_current, wheel_current, trigger_request_time, |
| trigger_request_current, wheel_request_time, wheel_request_current) |
| |
| |
| def rerun_and_plot_kf(data_time, |
| data_radians, |
| data_current, |
| data_request_current, |
| params, |
| run_correct=True): |
| kf_velocity = [] |
| dt_velocity = [] |
| kf_position = [] |
| adjusted_position = [] |
| last_angle = None |
| haptic_observer = IntegralHapticInput(params=params) |
| |
| # Parameter sweep J. |
| num_kf = 1 |
| min_J = max_J = params.J |
| |
| # J = 0.0022 |
| #num_kf = 15 |
| #min_J = min_J / 2.0 |
| #max_J = max_J * 2.0 |
| initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0 |
| |
| def DupParamsWithJ(params, J): |
| p = copy.copy(params) |
| p.J = J |
| return p |
| |
| haptic_observers = [ |
| IntegralHapticInput(params=DupParamsWithJ(params, j)) |
| for j in numpy.logspace( |
| numpy.log10(min_J), numpy.log10(max_J), num=num_kf) |
| ] |
| # Initialize all the KF's. |
| haptic_observer.X_hat[1, 0] = initial_velocity |
| haptic_observer.X_hat[0, 0] = data_radians[0] |
| for observer in haptic_observers: |
| observer.X_hat[1, 0] = initial_velocity |
| observer.X_hat[0, 0] = data_radians[0] |
| |
| last_request_current = data_request_current[0] |
| kf_torques = [[] for i in range(num_kf)] |
| for angle, current, request_current in zip(data_radians, data_current, |
| data_request_current): |
| # Predict and correct all the parameter swept observers. |
| for i, observer in enumerate(haptic_observers): |
| observer.Y = numpy.matrix([[angle]]) |
| if run_correct: |
| observer.CorrectObserver(numpy.matrix([[current]])) |
| kf_torques[i].append(-observer.X_hat[2, 0]) |
| observer.PredictObserver(numpy.matrix([[current]])) |
| observer.PredictObserver(numpy.matrix([[current]])) |
| |
| # Predict and correct the main observer. |
| haptic_observer.Y = numpy.matrix([[angle]]) |
| if run_correct: |
| haptic_observer.CorrectObserver(numpy.matrix([[current]])) |
| kf_position.append(haptic_observer.X_hat[0, 0]) |
| adjusted_position.append(kf_position[-1] - |
| last_request_current / params.kP) |
| last_request_current = last_request_current * params.kCompensationTimeconstant + request_current * ( |
| 1.0 - params.kCompensationTimeconstant) |
| kf_velocity.append(haptic_observer.X_hat[1, 0]) |
| if last_angle is None: |
| last_angle = angle |
| dt_velocity.append((angle - last_angle) / 0.001) |
| |
| haptic_observer.PredictObserver(numpy.matrix([[current]])) |
| last_angle = angle |
| |
| # Plot the wheel observers. |
| fig, ax1 = pylab.subplots() |
| ax1.plot(data_time, data_radians, '.', label='wheel') |
| ax1.plot(data_time, dt_velocity, '.', label='dt_velocity') |
| ax1.plot(data_time, kf_velocity, '.', label='kf_velocity') |
| ax1.plot(data_time, kf_position, '.', label='kf_position') |
| ax1.plot(data_time, adjusted_position, '.', label='adjusted_position') |
| |
| ax2 = ax1.twinx() |
| ax2.plot(data_time, data_current, label='data_current') |
| ax2.plot(data_time, data_request_current, label='request_current') |
| |
| for i, kf_torque in enumerate(kf_torques): |
| ax2.plot( |
| data_time, |
| kf_torque, |
| label='-kf_torque[%f]' % haptic_observers[i].J) |
| fig.tight_layout() |
| ax1.legend(loc=3) |
| ax2.legend(loc=4) |
| |
| |
| def plot_input(data_time, |
| data_radians, |
| data_velocity, |
| data_torque, |
| data_current, |
| params, |
| run_correct=True): |
| dt_velocity = [] |
| last_angle = None |
| initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0 |
| |
| for angle in data_radians: |
| if last_angle is None: |
| last_angle = angle |
| dt_velocity.append((angle - last_angle) / 0.001) |
| |
| last_angle = angle |
| |
| # Plot the wheel observers. |
| fig, ax1 = pylab.subplots() |
| ax1.plot(data_time, data_radians, '.', label='angle') |
| ax1.plot(data_time, data_velocity, '-', label='velocity') |
| ax1.plot(data_time, dt_velocity, '.', label='dt_velocity') |
| |
| ax2 = ax1.twinx() |
| ax2.plot(data_time, data_torque, label='data_torque') |
| ax2.plot(data_time, data_current, label='data_current') |
| fig.tight_layout() |
| ax1.legend(loc=3) |
| ax2.legend(loc=4) |
| |
| |
| def main(argv): |
| if FLAGS.plot: |
| if FLAGS.data is None: |
| haptic_wheel = HapticInput() |
| haptic_wheel_controller = IntegralHapticInput() |
| observer_haptic_wheel = IntegralHapticInput() |
| observer_haptic_wheel.X_hat[2, 0] = 0.01 |
| |
| R = numpy.matrix([[0.0], [0.0], [0.0]]) |
| |
| control_loop.TestSingleIntegralAxisSquareWave( |
| R, 1.0, haptic_wheel, haptic_wheel_controller, |
| observer_haptic_wheel) |
| else: |
| # Read the CAN trace in. |
| trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, \ |
| wheel_velocity, trigger_torque, wheel_torque, trigger_current, \ |
| wheel_current, trigger_request_time, trigger_request_current, \ |
| wheel_request_time, wheel_request_current = ReadCan(FLAGS.data) |
| |
| wheel_radians = [w * numpy.pi * (338.16 / 360.0) for w in wheel] |
| wheel_velocity = [w * 50.0 for w in wheel_velocity] |
| wheel_torque = [w / 2.0 for w in wheel_torque] |
| wheel_current = [w * 10.0 for w in wheel_current] |
| wheel_request_current = [w * 2.0 for w in wheel_request_current] |
| resampled_wheel_request_current = scipy.interpolate.interp1d( |
| wheel_request_time, wheel_request_current, |
| kind="zero")(wheel_data_time) |
| |
| trigger_radians = [t * numpy.pi * (45.0 / 360.0) for t in trigger] |
| trigger_velocity = [t * 50.0 for t in trigger_velocity] |
| trigger_torque = [t / 2.0 for t in trigger_torque] |
| trigger_current = [t * 10.0 for t in trigger_current] |
| trigger_request_current = [t * 2.0 for t in trigger_request_current] |
| resampled_trigger_request_current = scipy.interpolate.interp1d( |
| trigger_request_time, trigger_request_current, |
| kind="zero")(trigger_data_time) |
| |
| if FLAGS.rerun_kf: |
| rerun_and_plot_kf( |
| trigger_data_time, |
| trigger_radians, |
| trigger_current, |
| resampled_trigger_request_current, |
| kTrigger, |
| run_correct=True) |
| rerun_and_plot_kf( |
| wheel_data_time, |
| wheel_radians, |
| wheel_current, |
| resampled_wheel_request_current, |
| kWheel, |
| run_correct=True) |
| else: |
| plot_input(trigger_data_time, trigger_radians, trigger_velocity, |
| trigger_torque, trigger_current, kTrigger) |
| plot_input(wheel_data_time, wheel_radians, wheel_velocity, |
| wheel_torque, wheel_current, kWheel) |
| pylab.show() |
| |
| return |
| |
| if len(argv) != 9: |
| glog.fatal('Expected .h file name and .cc file name') |
| else: |
| namespaces = ['frc971', 'control_loops', 'drivetrain'] |
| for name, params, filenames in [('HapticWheel', kWheel, argv[1:5]), |
| ('HapticTrigger', kTrigger, argv[5:9])]: |
| haptic_input = HapticInput(params=params, name=name) |
| loop_writer = control_loop.ControlLoopWriter( |
| name, [haptic_input], |
| namespaces=namespaces, |
| scalar_type='float') |
| loop_writer.Write(filenames[0], filenames[1]) |
| |
| integral_haptic_input = IntegralHapticInput( |
| params=params, name='Integral' + name) |
| integral_loop_writer = control_loop.ControlLoopWriter( |
| 'Integral' + name, [integral_haptic_input], |
| namespaces=namespaces, |
| scalar_type='float') |
| |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "Dt", "%f", |
| integral_haptic_input.dt)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "FreeCurrent", "%f", |
| integral_haptic_input.motor.free_current)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "StallTorque", "%f", |
| integral_haptic_input.motor.stall_torque)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "J", "%f", |
| integral_haptic_input.J)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "R", "%f", |
| integral_haptic_input.motor.resistance)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "T", "%f", |
| integral_haptic_input.motor.Kt)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "V", "%f", |
| integral_haptic_input.motor.Kv)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "P", "%f", params.kP)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "D", "%f", params.kD)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "G", "%f", params.G)) |
| integral_loop_writer.AddConstant( |
| control_loop.Constant("k" + name + "CurrentLimit", "%f", |
| params.current_limit)) |
| |
| integral_loop_writer.Write(filenames[2], filenames[3]) |
| |
| |
| if __name__ == '__main__': |
| argv = FLAGS(sys.argv) |
| sys.exit(main(argv)) |