| #include <symengine/add.h> |
| #include <symengine/matrix.h> |
| #include <symengine/number.h> |
| #include <symengine/printers.h> |
| #include <symengine/real_double.h> |
| #include <symengine/simplify.h> |
| #include <symengine/solve.h> |
| #include <symengine/symbol.h> |
| |
| #include <array> |
| #include <cmath> |
| #include <numbers> |
| #include <utility> |
| |
| #include "absl/flags/flag.h" |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "absl/strings/str_format.h" |
| #include "absl/strings/str_join.h" |
| #include "absl/strings/str_replace.h" |
| #include "absl/strings/substitute.h" |
| |
| #include "aos/init.h" |
| #include "aos/util/file.h" |
| #include "frc971/control_loops/swerve/motors.h" |
| |
| ABSL_FLAG(std::string, output_base, "", |
| "Path to strip off the front of the output paths."); |
| ABSL_FLAG(std::string, cc_output_path, "", |
| "Path to write generated cc code to"); |
| ABSL_FLAG(std::string, h_output_path, "", |
| "Path to write generated header code to"); |
| ABSL_FLAG(std::string, casadi_py_output_path, "", |
| "Path to write casadi generated py code to"); |
| ABSL_FLAG(std::string, constants_output_path, "", |
| "Path to write constants python code to"); |
| ABSL_FLAG(double, caster, 0.01, "Caster in meters for the module."); |
| |
| ABSL_FLAG(bool, symbolic, false, "If true, write everything out symbolically."); |
| ABSL_FLAG(bool, function, true, "If true, make soft_atan2 a function."); |
| |
| using SymEngine::abs; |
| using SymEngine::add; |
| using SymEngine::atan2; |
| using SymEngine::Basic; |
| using SymEngine::ccode; |
| using SymEngine::cos; |
| using SymEngine::DenseMatrix; |
| using SymEngine::div; |
| using SymEngine::exp; |
| using SymEngine::Inf; |
| using SymEngine::integer; |
| using SymEngine::map_basic_basic; |
| using SymEngine::minus_one; |
| using SymEngine::neg; |
| using SymEngine::NegInf; |
| using SymEngine::pow; |
| using SymEngine::RCP; |
| using SymEngine::real_double; |
| using SymEngine::RealDouble; |
| using SymEngine::Set; |
| using SymEngine::simplify; |
| using SymEngine::sin; |
| using SymEngine::solve; |
| using SymEngine::symbol; |
| using SymEngine::Symbol; |
| |
| namespace frc971::control_loops::swerve { |
| |
| // State per module. |
| struct Module { |
| DenseMatrix mounting_location; |
| DenseMatrix rotated_mounting_location; |
| |
| RCP<const Symbol> Is; |
| |
| RCP<const Symbol> Id; |
| |
| RCP<const Symbol> thetas; |
| RCP<const Symbol> omegas; |
| |
| RCP<const Symbol> omegad; |
| |
| DenseMatrix contact_patch_velocity; |
| DenseMatrix wheel_ground_velocity; |
| DenseMatrix wheel_slip_velocity; |
| RCP<const Basic> slip_angle; |
| RCP<const Basic> slip_ratio; |
| |
| RCP<const Basic> Ms; |
| RCP<const Basic> Fwy; |
| |
| struct Full { |
| RCP<const Basic> Fwx; |
| DenseMatrix F; |
| |
| RCP<const Basic> torque; |
| |
| RCP<const Basic> alphas_eqn; |
| RCP<const Basic> alphad_eqn; |
| } full; |
| |
| struct Direct { |
| RCP<const Basic> Fwx; |
| DenseMatrix F; |
| |
| RCP<const Basic> torque; |
| |
| RCP<const Basic> alphas_eqn; |
| } direct; |
| }; |
| |
| DenseMatrix SumMatrices(DenseMatrix a) { return a; } |
| |
| template <typename... Args> |
| DenseMatrix SumMatrices(DenseMatrix a, Args... args) { |
| DenseMatrix result = DenseMatrix(2, 1, {integer(0), integer(0)}); |
| |
| DenseMatrix b = SumMatrices(args...); |
| add_dense_dense(a, b, result); |
| return result; |
| } |
| |
| class SwerveSimulation { |
| public: |
| SwerveSimulation() : drive_motor_(KrakenFOC()), steer_motor_(KrakenFOC()) { |
| auto fx = symbol("fx"); |
| auto fy = symbol("fy"); |
| auto moment = symbol("moment"); |
| |
| if (absl::GetFlag(FLAGS_symbolic)) { |
| Cx_ = symbol("Cx"); |
| Cy_ = symbol("Cy"); |
| |
| rw_ = symbol("rw"); |
| |
| m_ = symbol("m"); |
| J_ = symbol("J"); |
| |
| Gd1_ = symbol("Gd1"); |
| rs_ = symbol("rs"); |
| rp_ = symbol("rp"); |
| Gd2_ = symbol("Gd2"); |
| |
| rb1_ = symbol("rb1"); |
| rb2_ = symbol("rb2"); |
| |
| Gd3_ = symbol("Gd3"); |
| Gd_ = symbol("Gd"); |
| |
| Js_ = symbol("Js"); |
| |
| Gs_ = symbol("Gs"); |
| wb_ = symbol("wb"); |
| |
| Jdm_ = symbol("Jdm"); |
| Jsm_ = symbol("Jsm"); |
| Kts_ = symbol("Kts"); |
| Ktd_ = symbol("Ktd"); |
| |
| robot_width_ = symbol("robot_width"); |
| |
| caster_ = symbol("caster"); |
| contact_patch_length_ = symbol("Lcp"); |
| } else { |
| Cx_ = real_double(25.0 * 9.8 / 4.0 / 0.05); |
| Cy_ = real_double(5 * 9.8 / 0.05 / 4.0); |
| |
| rw_ = real_double(2 * 0.0254); |
| |
| m_ = real_double(25.0); // base is 20 kg without battery |
| J_ = real_double(6.0); |
| |
| Gd1_ = real_double(12.0 / 42.0); |
| rs_ = real_double(28.0 / 20.0 / 2.0); |
| rp_ = real_double(18.0 / 20.0 / 2.0); |
| Gd2_ = div(rs_, rp_); |
| |
| // 15 / 45 bevel ratio, calculated using python script ported over to |
| // GetBevelPitchRadius(double |
| // TODO(Justin): Use the function instead of computed constantss |
| rb1_ = real_double(0.3805473); |
| rb2_ = real_double(1.14164); |
| |
| Gd3_ = div(rb1_, rb2_); |
| Gd_ = mul(mul(Gd1_, Gd2_), Gd3_); |
| |
| Js_ = real_double(0.001); |
| |
| Gs_ = real_double(35.0 / 468.0); |
| wb_ = real_double(0.725); |
| |
| Jdm_ = real_double(drive_motor_.motor_inertia); |
| Jsm_ = real_double(steer_motor_.motor_inertia); |
| Kts_ = real_double(steer_motor_.Kt); |
| Ktd_ = real_double(drive_motor_.Kt); |
| |
| robot_width_ = real_double(24.75 * 0.0254); |
| |
| caster_ = real_double(absl::GetFlag(FLAGS_caster)); |
| contact_patch_length_ = real_double(0.02); |
| } |
| |
| x_ = symbol("x"); |
| y_ = symbol("y"); |
| theta_ = symbol("theta"); |
| |
| vx_ = symbol("vx"); |
| vy_ = symbol("vy"); |
| omega_ = symbol("omega"); |
| |
| ax_ = symbol("ax"); |
| ay_ = symbol("ay"); |
| atheta_ = symbol("atheta"); |
| |
| // Now, compute the accelerations due to the disturbance forces. |
| DenseMatrix external_accel = DenseMatrix(2, 1, {div(fx, m_), div(fy, m_)}); |
| DenseMatrix external_force = DenseMatrix(2, 1, {fx, fy}); |
| |
| // And compute the physics contributions from each module. |
| modules_[0] = ModulePhysics( |
| 0, DenseMatrix( |
| 2, 1, |
| {div(robot_width_, integer(2)), div(robot_width_, integer(2))})); |
| modules_[1] = |
| ModulePhysics(1, DenseMatrix(2, 1, |
| {div(robot_width_, integer(-2)), |
| div(robot_width_, integer(2))})); |
| modules_[2] = |
| ModulePhysics(2, DenseMatrix(2, 1, |
| {div(robot_width_, integer(-2)), |
| div(robot_width_, integer(-2))})); |
| modules_[3] = |
| ModulePhysics(3, DenseMatrix(2, 1, |
| {div(robot_width_, integer(2)), |
| div(robot_width_, integer(-2))})); |
| |
| // And convert them into the overall robot contribution. |
| DenseMatrix net_full_force = |
| SumMatrices(modules_[0].full.F, modules_[1].full.F, modules_[2].full.F, |
| modules_[3].full.F, external_force); |
| |
| DenseMatrix net_direct_force = |
| SumMatrices(modules_[0].direct.F, modules_[1].direct.F, |
| modules_[2].direct.F, modules_[3].direct.F, external_force); |
| |
| full_accel_ = DenseMatrix(2, 1); |
| mul_dense_scalar(net_full_force, pow(m_, minus_one), full_accel_); |
| |
| full_angular_accel_ = div( |
| add(moment, add(add(modules_[0].full.torque, modules_[1].full.torque), |
| add(modules_[2].full.torque, modules_[3].full.torque))), |
| J_); |
| |
| direct_accel_ = DenseMatrix(2, 1); |
| mul_dense_scalar(net_direct_force, pow(m_, minus_one), direct_accel_); |
| |
| direct_angular_accel_ = |
| div(add(moment, |
| add(add(modules_[0].direct.torque, modules_[1].direct.torque), |
| add(modules_[2].direct.torque, modules_[3].direct.torque))), |
| J_); |
| |
| VLOG(1) << "accel(0, 0) = " << ccode(*full_accel_.get(0, 0)); |
| VLOG(1) << "accel(1, 0) = " << ccode(*full_accel_.get(1, 0)); |
| VLOG(1) << "angular_accel = " << ccode(*full_angular_accel_); |
| } |
| |
| // Writes the physics out to the provided .cc and .h path. |
| void Write(std::string_view cc_path, std::string_view h_path) { |
| std::vector<std::string> result_cc; |
| std::vector<std::string> result_h; |
| |
| std::string_view include_guard_stripped = h_path; |
| CHECK(absl::ConsumePrefix(&include_guard_stripped, |
| absl::GetFlag(FLAGS_output_base))); |
| std::string include_guard = |
| absl::StrReplaceAll(absl::AsciiStrToUpper(include_guard_stripped), |
| {{"/", "_"}, {".", "_"}}); |
| |
| // Write out the header. |
| result_h.emplace_back(absl::Substitute("#ifndef $0_", include_guard)); |
| result_h.emplace_back(absl::Substitute("#define $0_", include_guard)); |
| result_h.emplace_back(""); |
| result_h.emplace_back("#include <Eigen/Dense>"); |
| result_h.emplace_back(""); |
| result_h.emplace_back("namespace frc971::control_loops::swerve {"); |
| result_h.emplace_back(""); |
| result_h.emplace_back("struct FullDynamicsStates {"); |
| result_h.emplace_back("enum States {"); |
| result_h.emplace_back(" kThetas0 = 0,"); |
| result_h.emplace_back(" kThetad0 = 1,"); |
| result_h.emplace_back(" kOmegas0 = 2,"); |
| result_h.emplace_back(" kOmegad0 = 3,"); |
| result_h.emplace_back(" kThetas1 = 4,"); |
| result_h.emplace_back(" kThetad1 = 5,"); |
| result_h.emplace_back(" kOmegas1 = 6,"); |
| result_h.emplace_back(" kOmegad1 = 7,"); |
| result_h.emplace_back(" kThetas2 = 8,"); |
| result_h.emplace_back(" kThetad2 = 9,"); |
| result_h.emplace_back(" kOmegas2 = 10,"); |
| result_h.emplace_back(" kOmegad2 = 11,"); |
| result_h.emplace_back(" kThetas3 = 12,"); |
| result_h.emplace_back(" kThetad3 = 13,"); |
| result_h.emplace_back(" kOmegas3 = 14,"); |
| result_h.emplace_back(" kOmegad3 = 15,"); |
| result_h.emplace_back(" kX = 16,"); |
| result_h.emplace_back(" kY = 17,"); |
| result_h.emplace_back(" kTheta = 18,"); |
| result_h.emplace_back(" kVx = 19,"); |
| result_h.emplace_back(" kVy = 20,"); |
| result_h.emplace_back(" kOmega = 21,"); |
| result_h.emplace_back(" kFx = 22,"); |
| result_h.emplace_back(" kFy = 23,"); |
| result_h.emplace_back(" kMoment = 24,"); |
| result_h.emplace_back(" kNumStates"); |
| result_h.emplace_back("};"); |
| result_h.emplace_back("};"); |
| result_h.emplace_back( |
| "inline constexpr size_t kNumFullDynamicsStates = " |
| "static_cast<size_t>(FullDynamicsStates::kNumStates);"); |
| result_h.emplace_back("struct VelocityStates {"); |
| result_h.emplace_back("enum States {"); |
| result_h.emplace_back(" kThetas0 = 0,"); |
| result_h.emplace_back(" kOmegas0 = 1,"); |
| result_h.emplace_back(" kThetas1 = 2,"); |
| result_h.emplace_back(" kOmegas1 = 3,"); |
| result_h.emplace_back(" kThetas2 = 4,"); |
| result_h.emplace_back(" kOmegas2 = 5,"); |
| result_h.emplace_back(" kThetas3 = 6,"); |
| result_h.emplace_back(" kOmegas3 = 7,"); |
| result_h.emplace_back(" kTheta = 8,"); |
| result_h.emplace_back(" kVx = 9,"); |
| result_h.emplace_back(" kVy = 10,"); |
| result_h.emplace_back(" kOmega = 11,"); |
| result_h.emplace_back(" kNumStates"); |
| result_h.emplace_back("};"); |
| result_h.emplace_back("};"); |
| result_h.emplace_back( |
| "inline constexpr size_t kNumVelocityStates = " |
| "static_cast<size_t>(VelocityStates::kNumStates);"); |
| result_h.emplace_back("struct Inputs {"); |
| result_h.emplace_back("enum States {"); |
| result_h.emplace_back(" kIs0 = 0,"); |
| result_h.emplace_back(" kId0 = 1,"); |
| result_h.emplace_back(" kIs1 = 2,"); |
| result_h.emplace_back(" kId1 = 3,"); |
| result_h.emplace_back(" kIs2 = 4,"); |
| result_h.emplace_back(" kId2 = 5,"); |
| result_h.emplace_back(" kIs3 = 6,"); |
| result_h.emplace_back(" kId3 = 7,"); |
| result_h.emplace_back(" kNumInputs = 8"); |
| result_h.emplace_back("};"); |
| result_h.emplace_back("};"); |
| result_h.emplace_back( |
| "inline constexpr size_t kNumInputs = " |
| "static_cast<size_t>(Inputs::kNumInputs);"); |
| result_h.emplace_back(""); |
| result_h.emplace_back("// Returns the derivative of our state vector"); |
| result_h.emplace_back( |
| "Eigen::Matrix<double, kNumFullDynamicsStates, 1> SwervePhysics("); |
| result_h.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumFullDynamicsStates, " |
| "1>> X,"); |
| result_h.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumInputs, 1>> U);"); |
| result_h.emplace_back(""); |
| result_h.emplace_back( |
| "Eigen::Matrix<double, kNumVelocityStates, 1> ToVelocityState("); |
| result_h.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumFullDynamicsStates, " |
| "1>> X);"); |
| result_h.emplace_back(""); |
| result_h.emplace_back( |
| "Eigen::Matrix<double, kNumFullDynamicsStates, 1> FromVelocityState("); |
| result_h.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumVelocityStates, 1>> " |
| "X);"); |
| result_h.emplace_back(""); |
| result_h.emplace_back( |
| "inline Eigen::Matrix<double, kNumVelocityStates, 1> VelocityPhysics("); |
| result_h.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumVelocityStates, 1>> " |
| "X,"); |
| result_h.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumInputs, 1>> U) {"); |
| result_h.emplace_back( |
| " return ToVelocityState(SwervePhysics(FromVelocityState(X), U));"); |
| result_h.emplace_back("}"); |
| result_h.emplace_back(""); |
| result_h.emplace_back("} // namespace frc971::control_loops::swerve"); |
| result_h.emplace_back(""); |
| result_h.emplace_back(absl::Substitute("#endif // $0_", include_guard)); |
| |
| // Write out the .cc |
| result_cc.emplace_back( |
| absl::Substitute("#include \"$0\"", include_guard_stripped)); |
| result_cc.emplace_back(""); |
| result_cc.emplace_back("#include <cmath>"); |
| result_cc.emplace_back(""); |
| result_cc.emplace_back("namespace frc971::control_loops::swerve {"); |
| result_cc.emplace_back(""); |
| result_cc.emplace_back( |
| "Eigen::Matrix<double, kNumVelocityStates, 1> ToVelocityState("); |
| result_cc.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumFullDynamicsStates, " |
| "1>> X) {"); |
| result_cc.emplace_back( |
| " Eigen::Matrix<double, kNumVelocityStates, 1> velocity;"); |
| const std::vector<std::string_view> velocity_states = { |
| "kThetas0", "kOmegas0", "kThetas1", "kOmegas1", "kThetas2", "kOmegas2", |
| "kThetas3", "kOmegas3", "kTheta", "kVx", "kVy", "kOmega"}; |
| for (const std::string_view velocity_state : velocity_states) { |
| result_cc.emplace_back(absl::StrFormat( |
| " velocity(VelocityStates::%s) = X(FullDynamicsStates::%s);", |
| velocity_state, velocity_state)); |
| } |
| result_cc.emplace_back(" return velocity;"); |
| result_cc.emplace_back("}"); |
| result_cc.emplace_back(""); |
| result_cc.emplace_back( |
| "Eigen::Matrix<double, kNumFullDynamicsStates, 1> FromVelocityState("); |
| result_cc.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumVelocityStates, 1>> X) " |
| "{"); |
| result_cc.emplace_back( |
| " Eigen::Matrix<double, kNumFullDynamicsStates, 1> full;"); |
| result_cc.emplace_back(" full.setZero();"); |
| for (const std::string_view velocity_state : velocity_states) { |
| result_cc.emplace_back(absl::StrFormat( |
| " full(FullDynamicsStates::%s) = X(VelocityStates::%s);", |
| velocity_state, velocity_state)); |
| } |
| result_cc.emplace_back(" return full;"); |
| result_cc.emplace_back("}"); |
| result_cc.emplace_back(""); |
| result_cc.emplace_back( |
| "Eigen::Matrix<double, kNumFullDynamicsStates, 1> SwervePhysics("); |
| result_cc.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumFullDynamicsStates, " |
| "1>> X,"); |
| result_cc.emplace_back( |
| " Eigen::Ref<const Eigen::Matrix<double, kNumInputs, 1>> U) {"); |
| result_cc.emplace_back( |
| " Eigen::Matrix<double, kNumFullDynamicsStates, 1> result;"); |
| |
| // Start by writing out variables matching each of the symbol names we use |
| // so we don't have to modify the computed equations too much. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_cc.emplace_back( |
| absl::Substitute(" const double thetas$0 = X($1, 0);", m, m * 4)); |
| result_cc.emplace_back(absl::Substitute( |
| " const double omegas$0 = X($1, 0);", m, m * 4 + 2)); |
| result_cc.emplace_back(absl::Substitute( |
| " const double omegad$0 = X($1, 0);", m, m * 4 + 3)); |
| } |
| |
| result_cc.emplace_back(absl::Substitute(" const double theta = X($0, 0);", |
| kNumModules * 4 + 2)); |
| result_cc.emplace_back( |
| absl::Substitute(" const double vx = X($0, 0);", kNumModules * 4 + 3)); |
| result_cc.emplace_back( |
| absl::Substitute(" const double vy = X($0, 0);", kNumModules * 4 + 4)); |
| result_cc.emplace_back(absl::Substitute(" const double omega = X($0, 0);", |
| kNumModules * 4 + 5)); |
| |
| result_cc.emplace_back( |
| absl::Substitute(" const double fx = X($0, 0);", kNumModules * 4 + 6)); |
| result_cc.emplace_back( |
| absl::Substitute(" const double fy = X($0, 0);", kNumModules * 4 + 7)); |
| result_cc.emplace_back(absl::Substitute(" const double moment = X($0, 0);", |
| kNumModules * 4 + 8)); |
| |
| // Now do the same for the inputs. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_cc.emplace_back( |
| absl::Substitute(" const double Is$0 = U($1, 0);", m, m * 2)); |
| result_cc.emplace_back( |
| absl::Substitute(" const double Id$0 = U($1, 0);", m, m * 2 + 1)); |
| } |
| |
| result_cc.emplace_back(""); |
| |
| // And then write out the derivative of each state. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = omegas$1;", m * 4, m)); |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = omegad$1;", m * 4 + 1, m)); |
| |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = $1;", m * 4 + 2, |
| ccode(*modules_[m].full.alphas_eqn))); |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = $1;", m * 4 + 3, |
| ccode(*modules_[m].full.alphad_eqn))); |
| } |
| |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = vx;", kNumModules * 4 + 0)); |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = vy;", kNumModules * 4 + 1)); |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = omega;", kNumModules * 4 + 2)); |
| |
| result_cc.emplace_back(absl::Substitute(" result($0, 0) = $1;", |
| kNumModules * 4 + 3, |
| ccode(*full_accel_.get(0, 0)))); |
| result_cc.emplace_back(absl::Substitute(" result($0, 0) = $1;", |
| kNumModules * 4 + 4, |
| ccode(*full_accel_.get(1, 0)))); |
| result_cc.emplace_back(absl::Substitute(" result($0, 0) = $1;", |
| kNumModules * 4 + 5, |
| ccode(*full_angular_accel_))); |
| |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = 0.0;", kNumModules * 4 + 6)); |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = 0.0;", kNumModules * 4 + 7)); |
| result_cc.emplace_back( |
| absl::Substitute(" result($0, 0) = 0.0;", kNumModules * 4 + 8)); |
| |
| result_cc.emplace_back(""); |
| result_cc.emplace_back(" return result;"); |
| result_cc.emplace_back("}"); |
| result_cc.emplace_back(""); |
| result_cc.emplace_back("} // namespace frc971::control_loops::swerve"); |
| |
| aos::util::WriteStringToFileOrDie(cc_path, absl::StrJoin(result_cc, "\n")); |
| aos::util::WriteStringToFileOrDie(h_path, absl::StrJoin(result_h, "\n")); |
| } |
| |
| void WriteCasadiVariables(std::vector<std::string> *result_py) { |
| result_py->emplace_back(" sin = casadi.sin"); |
| result_py->emplace_back(" cos = casadi.cos"); |
| result_py->emplace_back(" exp = casadi.exp"); |
| if (absl::GetFlag(FLAGS_function)) { |
| result_py->emplace_back(" atan2 = soft_atan2()"); |
| } else { |
| result_py->emplace_back(" atan2 = soft_atan2"); |
| } |
| result_py->emplace_back(" fmax = casadi.fmax"); |
| result_py->emplace_back(" fabs = casadi.fabs"); |
| |
| // Start by writing out variables matching each of the symbol names we use |
| // so we don't have to modify the computed equations too much. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_py->emplace_back( |
| absl::Substitute(" thetas$0 = X[$1, 0]", m, m * 4)); |
| result_py->emplace_back( |
| absl::Substitute(" omegas$0 = X[$1, 0]", m, m * 4 + 2)); |
| result_py->emplace_back( |
| absl::Substitute(" omegad$0 = X[$1, 0]", m, m * 4 + 3)); |
| } |
| |
| result_py->emplace_back( |
| absl::Substitute(" theta = X[$0, 0]", kNumModules * 4 + 2)); |
| result_py->emplace_back( |
| absl::Substitute(" vx = X[$0, 0]", kNumModules * 4 + 3)); |
| result_py->emplace_back( |
| absl::Substitute(" vy = X[$0, 0]", kNumModules * 4 + 4)); |
| result_py->emplace_back( |
| absl::Substitute(" omega = X[$0, 0]", kNumModules * 4 + 5)); |
| |
| result_py->emplace_back( |
| absl::Substitute(" fx = X[$0, 0]", kNumModules * 4 + 6)); |
| result_py->emplace_back( |
| absl::Substitute(" fy = X[$0, 0]", kNumModules * 4 + 7)); |
| result_py->emplace_back( |
| absl::Substitute(" moment = X[$0, 0]", kNumModules * 4 + 8)); |
| |
| // Now do the same for the inputs. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_py->emplace_back( |
| absl::Substitute(" Is$0 = U[$1, 0]", m, m * 2)); |
| result_py->emplace_back( |
| absl::Substitute(" Id$0 = U[$1, 0]", m, m * 2 + 1)); |
| } |
| } |
| |
| void WriteCasadiVelocityVariables(std::vector<std::string> *result_py) { |
| result_py->emplace_back(" sin = casadi.sin"); |
| result_py->emplace_back(" exp = casadi.exp"); |
| result_py->emplace_back(" cos = casadi.cos"); |
| if (absl::GetFlag(FLAGS_function)) { |
| result_py->emplace_back(" atan2 = soft_atan2()"); |
| } else { |
| result_py->emplace_back(" atan2 = soft_atan2"); |
| } |
| result_py->emplace_back(" fmax = casadi.fmax"); |
| result_py->emplace_back(" fabs = casadi.fabs"); |
| |
| // Start by writing out variables matching each of the symbol names we use |
| // so we don't have to modify the computed equations too much. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_py->emplace_back( |
| absl::Substitute(" thetas$0 = X[$1, 0]", m, m * 2 + 0)); |
| result_py->emplace_back( |
| absl::Substitute(" omegas$0 = X[$1, 0]", m, m * 2 + 1)); |
| } |
| |
| result_py->emplace_back( |
| absl::Substitute(" theta = X[$0, 0]", kNumModules * 2 + 0)); |
| result_py->emplace_back( |
| absl::Substitute(" vx = X[$0, 0]", kNumModules * 2 + 1)); |
| result_py->emplace_back( |
| absl::Substitute(" vy = X[$0, 0]", kNumModules * 2 + 2)); |
| result_py->emplace_back( |
| absl::Substitute(" omega = X[$0, 0]", kNumModules * 2 + 3)); |
| |
| // result_py->emplace_back( |
| // absl::Substitute(" fx = X[$0, 0]", kNumModules * 3 + 4)); |
| // result_py->emplace_back( |
| // absl::Substitute(" fy = X[$0, 0]", kNumModules * 3 + 5)); |
| // result_py->emplace_back( |
| // absl::Substitute(" moment = X[$0, 0]", kNumModules * 3 + 6)); |
| // |
| result_py->emplace_back(" fx = 0"); |
| result_py->emplace_back(" fy = 0"); |
| result_py->emplace_back(" moment = 0"); |
| |
| // Now do the same for the inputs. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_py->emplace_back( |
| absl::Substitute(" Is$0 = U[$1, 0]", m, m * 2)); |
| result_py->emplace_back( |
| absl::Substitute(" Id$0 = U[$1, 0]", m, m * 2 + 1)); |
| } |
| } |
| |
| void WriteConstantsFile(std::string_view path) { |
| std::vector<std::string> result_py; |
| |
| // Write out the header. |
| result_py.emplace_back("#!/usr/bin/env python3"); |
| result_py.emplace_back(""); |
| |
| WriteConstants(&result_py); |
| |
| aos::util::WriteStringToFileOrDie(path, absl::StrJoin(result_py, "\n")); |
| } |
| |
| void WriteConstants(std::vector<std::string> *result_py) { |
| result_py->emplace_back(absl::Substitute("WHEEL_RADIUS = $0", ccode(*rw_))); |
| result_py->emplace_back( |
| absl::Substitute("ROBOT_WIDTH = $0", ccode(*robot_width_))); |
| result_py->emplace_back(absl::Substitute("CASTER = $0", ccode(*caster_))); |
| result_py->emplace_back("STATE_THETAS0 = 0"); |
| result_py->emplace_back("STATE_THETAD0 = 1"); |
| result_py->emplace_back("STATE_OMEGAS0 = 2"); |
| result_py->emplace_back("STATE_OMEGAD0 = 3"); |
| result_py->emplace_back("STATE_THETAS1 = 4"); |
| result_py->emplace_back("STATE_THETAD1 = 5"); |
| result_py->emplace_back("STATE_OMEGAS1 = 6"); |
| result_py->emplace_back("STATE_OMEGAD1 = 7"); |
| result_py->emplace_back("STATE_THETAS2 = 8"); |
| result_py->emplace_back("STATE_THETAD2 = 9"); |
| result_py->emplace_back("STATE_OMEGAS2 = 10"); |
| result_py->emplace_back("STATE_OMEGAD2 = 11"); |
| result_py->emplace_back("STATE_THETAS3 = 12"); |
| result_py->emplace_back("STATE_THETAD3 = 13"); |
| result_py->emplace_back("STATE_OMEGAS3 = 14"); |
| result_py->emplace_back("STATE_OMEGAD3 = 15"); |
| result_py->emplace_back("STATE_X = 16"); |
| result_py->emplace_back("STATE_Y = 17"); |
| result_py->emplace_back("STATE_THETA = 18"); |
| result_py->emplace_back("STATE_VX = 19"); |
| result_py->emplace_back("STATE_VY = 20"); |
| result_py->emplace_back("STATE_OMEGA = 21"); |
| result_py->emplace_back("STATE_FX = 22"); |
| result_py->emplace_back("STATE_FY = 23"); |
| result_py->emplace_back("STATE_MOMENT = 24"); |
| result_py->emplace_back("NUM_STATES = 25"); |
| result_py->emplace_back(""); |
| result_py->emplace_back("VELOCITY_STATE_THETAS0 = 0"); |
| result_py->emplace_back("VELOCITY_STATE_OMEGAS0 = 1"); |
| result_py->emplace_back("VELOCITY_STATE_THETAS1 = 2"); |
| result_py->emplace_back("VELOCITY_STATE_OMEGAS1 = 3"); |
| result_py->emplace_back("VELOCITY_STATE_THETAS2 = 4"); |
| result_py->emplace_back("VELOCITY_STATE_OMEGAS2 = 5"); |
| result_py->emplace_back("VELOCITY_STATE_THETAS3 = 6"); |
| result_py->emplace_back("VELOCITY_STATE_OMEGAS3 = 7"); |
| result_py->emplace_back("VELOCITY_STATE_THETA = 8"); |
| result_py->emplace_back("VELOCITY_STATE_VX = 9"); |
| result_py->emplace_back("VELOCITY_STATE_VY = 10"); |
| result_py->emplace_back("VELOCITY_STATE_OMEGA = 11"); |
| // result_py->emplace_back("VELOCITY_STATE_FX = 16"); |
| // result_py->emplace_back("VELOCITY_STATE_FY = 17"); |
| // result_py->emplace_back("VELOCITY_STATE_MOMENT = 18"); |
| result_py->emplace_back("NUM_VELOCITY_STATES = 12"); |
| result_py->emplace_back(""); |
| result_py->emplace_back(""); |
| result_py->emplace_back("# Is = STEER_CURRENT_COUPLING_FACTOR * Id"); |
| result_py->emplace_back(absl::Substitute( |
| "STEER_CURRENT_COUPLING_FACTOR = $0", |
| ccode(*(neg( |
| mul(div(Gs_, Kts_), |
| mul(div(Ktd_, mul(Gd_, rw_)), |
| neg(mul(add(neg(wb_), mul(add(rs_, rp_), |
| sub(integer(1), div(rb1_, rp_)))), |
| div(rw_, rb2_)))))))))); |
| result_py->emplace_back(""); |
| } |
| |
| // Writes the physics out to the provided .cc and .h path. |
| void WriteCasadi(std::string_view py_path) { |
| std::vector<std::string> result_py; |
| |
| // Write out the header. |
| result_py.emplace_back("#!/usr/bin/env python3"); |
| result_py.emplace_back(""); |
| result_py.emplace_back("import casadi, numpy"); |
| result_py.emplace_back(""); |
| |
| WriteConstants(&result_py); |
| |
| result_py.emplace_back("def to_velocity_state(X):"); |
| result_py.emplace_back(" return numpy.array(["); |
| result_py.emplace_back(" [X[STATE_THETAS0, 0]],"); |
| result_py.emplace_back(" [X[STATE_OMEGAS0, 0]],"); |
| result_py.emplace_back(" [X[STATE_THETAS1, 0]],"); |
| result_py.emplace_back(" [X[STATE_OMEGAS1, 0]],"); |
| result_py.emplace_back(" [X[STATE_THETAS2, 0]],"); |
| result_py.emplace_back(" [X[STATE_OMEGAS2, 0]],"); |
| result_py.emplace_back(" [X[STATE_THETAS3, 0]],"); |
| result_py.emplace_back(" [X[STATE_OMEGAS3, 0]],"); |
| result_py.emplace_back(" [X[STATE_THETA, 0]],"); |
| result_py.emplace_back(" [X[STATE_VX, 0]],"); |
| result_py.emplace_back(" [X[STATE_VY, 0]],"); |
| result_py.emplace_back(" [X[STATE_OMEGA, 0]],"); |
| // result_py.emplace_back(" [X[STATE_FX, 0]],"); |
| // result_py.emplace_back(" [X[STATE_FY, 0]],"); |
| // result_py.emplace_back(" [X[STATE_MOMENT, 0]],"); |
| result_py.emplace_back(" ])"); |
| result_py.emplace_back(""); |
| constexpr double kLogGain = 1.0 / 0.05; |
| constexpr double kAbsGain = 1.0 / 0.01; |
| if (absl::GetFlag(FLAGS_function)) { |
| result_py.emplace_back("def soft_atan2():"); |
| result_py.emplace_back(" y = casadi.SX.sym('y')"); |
| result_py.emplace_back(" x = casadi.SX.sym('x')"); |
| result_py.emplace_back( |
| " return casadi.Function('soft_atan2', [y, x], ["); |
| result_py.emplace_back(" casadi.arctan2("); |
| result_py.emplace_back(" y,"); |
| result_py.emplace_back(" casadi.logsumexp("); |
| result_py.emplace_back(" casadi.SX("); |
| result_py.emplace_back(" numpy.array(["); |
| result_py.emplace_back(" 1.0, x * (1.0 - 2.0 /"); |
| result_py.emplace_back( |
| absl::Substitute(" (1 + " |
| "casadi.exp($1.0 * x))) * $0.0", |
| kLogGain, kAbsGain)); |
| result_py.emplace_back( |
| absl::Substitute(" ]))) / $0.0)", kLogGain)); |
| result_py.emplace_back(" ])"); |
| } else { |
| result_py.emplace_back("def soft_atan2(y, x):"); |
| result_py.emplace_back(" return casadi.arctan2("); |
| result_py.emplace_back(" y,"); |
| result_py.emplace_back(" casadi.logsumexp(casadi.SX(numpy.array("); |
| result_py.emplace_back( |
| absl::Substitute(" [1.0, x * (1.0 - 2.0 / (1 + " |
| "casadi.exp($1.0 * x))) * $0.0]))) / $0.0)", |
| kLogGain, kAbsGain)); |
| } |
| |
| result_py.emplace_back("# Returns the derivative of our state vector"); |
| result_py.emplace_back("# [thetas0, thetad0, omegas0, omegad0,"); |
| result_py.emplace_back("# thetas1, thetad1, omegas1, omegad1,"); |
| result_py.emplace_back("# thetas2, thetad2, omegas2, omegad2,"); |
| result_py.emplace_back("# thetas3, thetad3, omegas3, omegad3,"); |
| result_py.emplace_back("# x, y, theta, vx, vy, omega,"); |
| result_py.emplace_back("# Fx, Fy, Moment]"); |
| result_py.emplace_back("def swerve_full_dynamics(X, U):"); |
| WriteCasadiVariables(&result_py); |
| |
| result_py.emplace_back(""); |
| result_py.emplace_back(" result = casadi.SX.sym('result', 25, 1)"); |
| result_py.emplace_back(""); |
| |
| // And then write out the derivative of each state. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = omegas$1", m * 4, m)); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = omegad$1", m * 4 + 1, m)); |
| |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = $1", m * 4 + 2, |
| ccode(*modules_[m].full.alphas_eqn))); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = $1", m * 4 + 3, |
| ccode(*modules_[m].full.alphad_eqn))); |
| } |
| |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = vx", kNumModules * 4 + 0)); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = vy", kNumModules * 4 + 1)); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = omega", kNumModules * 4 + 2)); |
| |
| result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| kNumModules * 4 + 3, |
| ccode(*full_accel_.get(0, 0)))); |
| result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| kNumModules * 4 + 4, |
| ccode(*full_accel_.get(1, 0)))); |
| result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| kNumModules * 4 + 5, |
| ccode(*full_angular_accel_))); |
| |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 4 + 6)); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 4 + 7)); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 4 + 8)); |
| |
| result_py.emplace_back(""); |
| result_py.emplace_back( |
| " return casadi.Function('xdot', [X, U], [result])"); |
| |
| result_py.emplace_back(""); |
| |
| result_py.emplace_back("# Returns the derivative of our state vector"); |
| result_py.emplace_back("# [thetas0, omegas0,"); |
| result_py.emplace_back("# thetas1, omegas1,"); |
| result_py.emplace_back("# thetas2, omegas2,"); |
| result_py.emplace_back("# thetas3, omegas3,"); |
| result_py.emplace_back("# theta, vx, vy, omega]"); |
| result_py.emplace_back("def velocity_swerve_physics(X, U):"); |
| WriteCasadiVelocityVariables(&result_py); |
| |
| result_py.emplace_back(""); |
| result_py.emplace_back( |
| " result = casadi.SX.sym('result', NUM_VELOCITY_STATES, 1)"); |
| result_py.emplace_back(""); |
| |
| // And then write out the derivative of each state. |
| for (size_t m = 0; m < kNumModules; ++m) { |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = omegas$1", m * 2 + 0, m)); |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = $1", m * 2 + 1, |
| ccode(*modules_[m].direct.alphas_eqn))); |
| } |
| result_py.emplace_back( |
| absl::Substitute(" result[$0, 0] = omega", kNumModules * 2 + 0)); |
| |
| result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| kNumModules * 2 + 1, |
| ccode(*direct_accel_.get(0, 0)))); |
| result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| kNumModules * 2 + 2, |
| ccode(*direct_accel_.get(1, 0)))); |
| result_py.emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| kNumModules * 2 + 3, |
| ccode(*direct_angular_accel_))); |
| |
| // result_py.emplace_back( |
| // absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 3 + 4)); |
| // result_py.emplace_back( |
| // absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 3 + 5)); |
| // result_py.emplace_back( |
| // absl::Substitute(" result[$0, 0] = 0.0", kNumModules * 3 + 6)); |
| |
| result_py.emplace_back(""); |
| result_py.emplace_back( |
| " return casadi.Function('xdot', [X, U], [result])"); |
| |
| DefineVector2dFunction( |
| "contact_patch_velocity", |
| "# Returns the velocity of the wheel in global coordinates.", |
| [](const Module &m, int dimension) { |
| return ccode(*m.contact_patch_velocity.get(dimension, 0)); |
| }, |
| &result_py); |
| DefineVector2dFunction( |
| "wheel_ground_velocity", |
| "# Returns the velocity of the wheel in steer module coordinates.", |
| [](const Module &m, int dimension) { |
| return ccode(*m.wheel_ground_velocity.get(dimension, 0)); |
| }, |
| &result_py); |
| |
| DefineVector2dFunction( |
| "wheel_slip_velocity", |
| "# Returns the difference in velocities of the wheel surface and the " |
| "ground.", |
| [](const Module &m, int dimension) { |
| return ccode(*m.wheel_slip_velocity.get(dimension, 0)); |
| }, |
| &result_py); |
| |
| DefineScalarFunction( |
| "slip_angle", "Returns the slip angle of the ith wheel", |
| [](const Module &m) { return ccode(*m.slip_angle); }, &result_py); |
| DefineScalarFunction( |
| "slip_ratio", "Returns the slip ratio of the ith wheel", |
| [](const Module &m) { return ccode(*m.slip_ratio); }, &result_py); |
| DefineScalarFunction( |
| "module_angular_accel", |
| "Returns the angular acceleration of the robot due to the ith wheel", |
| [this](const Module &m) { return ccode(*div(m.full.torque, Js_)); }, |
| &result_py); |
| |
| DefineVector2dFunction( |
| "wheel_force", |
| "Returns the force on the wheel in steer module coordinates", |
| [](const Module &m, int dimension) { |
| return ccode( |
| *std::vector<RCP<const Basic>>{m.full.Fwx, m.Fwy}[dimension]); |
| }, |
| &result_py); |
| |
| DefineVector2dFunction( |
| "F", "Returns the force on the wheel in absolute coordinates", |
| [](const Module &m, int dimension) { |
| return ccode(*m.full.F.get(dimension, 0)); |
| }, |
| &result_py); |
| |
| DefineVector2dVelocityFunction( |
| "F_vel", |
| "Returns the force on the wheel in absolute coordinates based on the " |
| "velocity controller", |
| [](const Module &m, int dimension) { |
| return ccode(*m.direct.F.get(dimension, 0)); |
| }, |
| &result_py); |
| |
| DefineVector2dVelocityFunction( |
| "mounting_location", |
| "Returns the mounting location of wheel in robot coordinates", |
| [](const Module &m, int dimension) { |
| return ccode(*m.mounting_location.get(dimension, 0)); |
| }, |
| &result_py); |
| |
| DefineVector2dVelocityFunction( |
| "rotated_mounting_location", |
| "Returns the mounting location of wheel in field aligned coordinates", |
| [](const Module &m, int dimension) { |
| return ccode(*m.rotated_mounting_location.get(dimension, 0)); |
| }, |
| &result_py); |
| |
| DefineScalarFunction( |
| "Ms", "Returns the self aligning moment of the ith wheel", |
| [this](const Module &m) { |
| return ccode(*(div(m.Ms, add(Jsm_, div(div(Js_, Gs_), Gs_))))); |
| }, |
| &result_py); |
| |
| aos::util::WriteStringToFileOrDie(py_path, absl::StrJoin(result_py, "\n")); |
| } |
| |
| void DefineScalarFunction( |
| std::string_view name, std::string_view documentation, |
| std::function<std::string(const Module &)> scalar_fn, |
| std::vector<std::string> *result_py) { |
| result_py->emplace_back(""); |
| result_py->emplace_back(absl::Substitute("# $0.", documentation)); |
| result_py->emplace_back(absl::Substitute("def $0(i, X, U):", name)); |
| WriteCasadiVariables(result_py); |
| for (size_t m = 0; m < kNumModules; ++m) { |
| if (m == 0) { |
| result_py->emplace_back(" if i == 0:"); |
| } else { |
| result_py->emplace_back(absl::Substitute(" elif i == $0:", m)); |
| } |
| result_py->emplace_back( |
| absl::Substitute(" return casadi.Function('$0', [X, U], [$1])", |
| name, scalar_fn(modules_[m]))); |
| } |
| result_py->emplace_back(" raise ValueError(\"Invalid module number\")"); |
| } |
| |
| void DefineVector2dFunction( |
| std::string_view name, std::string_view documentation, |
| std::function<std::string(const Module &, int)> scalar_fn, |
| std::vector<std::string> *result_py) { |
| result_py->emplace_back(""); |
| result_py->emplace_back(absl::Substitute("# $0.", documentation)); |
| result_py->emplace_back(absl::Substitute("def $0(i, X, U):", name)); |
| WriteCasadiVariables(result_py); |
| result_py->emplace_back( |
| absl::Substitute(" result = casadi.SX.sym('$0', 2, 1)", name)); |
| for (size_t m = 0; m < kNumModules; ++m) { |
| if (m == 0) { |
| result_py->emplace_back(" if i == 0:"); |
| } else { |
| result_py->emplace_back(absl::Substitute(" elif i == $0:", m)); |
| } |
| for (int j = 0; j < 2; ++j) { |
| result_py->emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| j, scalar_fn(modules_[m], j))); |
| } |
| } |
| result_py->emplace_back(" else:"); |
| result_py->emplace_back( |
| " raise ValueError(\"Invalid module number\")"); |
| result_py->emplace_back(absl::Substitute( |
| " return casadi.Function('$0', [X, U], [result])", name)); |
| } |
| |
| void DefineVector2dVelocityFunction( |
| std::string_view name, std::string_view documentation, |
| std::function<std::string(const Module &, int)> scalar_fn, |
| std::vector<std::string> *result_py) { |
| result_py->emplace_back(""); |
| result_py->emplace_back(absl::Substitute("# $0.", documentation)); |
| result_py->emplace_back(absl::Substitute("def $0(i, X, U):", name)); |
| WriteCasadiVelocityVariables(result_py); |
| result_py->emplace_back( |
| absl::Substitute(" result = casadi.SX.sym('$0', 2, 1)", name)); |
| for (size_t m = 0; m < kNumModules; ++m) { |
| if (m == 0) { |
| result_py->emplace_back(" if i == 0:"); |
| } else { |
| result_py->emplace_back(absl::Substitute(" elif i == $0:", m)); |
| } |
| for (int j = 0; j < 2; ++j) { |
| result_py->emplace_back(absl::Substitute(" result[$0, 0] = $1", |
| j, scalar_fn(modules_[m], j))); |
| } |
| } |
| result_py->emplace_back(" else:"); |
| result_py->emplace_back( |
| " raise ValueError(\"Invalid module number\")"); |
| result_py->emplace_back(absl::Substitute( |
| " return casadi.Function('$0', [X, U], [result])", name)); |
| } |
| |
| private: |
| static constexpr uint8_t kNumModules = 4; |
| |
| RCP<const Basic> SteerAccel(RCP<const Basic> Fwx, RCP<const Basic> Ms, |
| RCP<const Basic> Is) { |
| RCP<const Basic> lhms = |
| mul(add(neg(wb_), mul(add(rs_, rp_), sub(integer(1), div(rb1_, rp_)))), |
| mul(div(rw_, rb2_), neg(Fwx))); |
| RCP<const Basic> lhs = add(add(Ms, div(mul(Kts_, Is), Gs_)), lhms); |
| RCP<const Basic> rhs = add(Jsm_, div(div(Js_, Gs_), Gs_)); |
| return simplify(div(lhs, rhs)); |
| } |
| |
| Module ModulePhysics(const int m, DenseMatrix mounting_location) { |
| VLOG(1) << "Solving module " << m; |
| |
| Module result; |
| result.mounting_location = mounting_location; |
| |
| result.Is = symbol(absl::StrFormat("Is%u", m)); |
| result.Id = symbol(absl::StrFormat("Id%u", m)); |
| |
| RCP<const Symbol> thetamd = symbol(absl::StrFormat("theta_md%u", m)); |
| RCP<const Symbol> omegamd = symbol(absl::StrFormat("omega_md%u", m)); |
| RCP<const Symbol> alphamd = symbol(absl::StrFormat("alpha_md%u", m)); |
| |
| result.thetas = symbol(absl::StrFormat("thetas%u", m)); |
| result.omegas = symbol(absl::StrFormat("omegas%u", m)); |
| RCP<const Symbol> alphas = symbol(absl::StrFormat("alphas%u", m)); |
| |
| result.omegad = symbol(absl::StrFormat("omegad%u", m)); |
| RCP<const Symbol> alphad = symbol(absl::StrFormat("alphad%u", m)); |
| |
| // Velocity of the module in field coordinates |
| DenseMatrix robot_velocity = DenseMatrix(2, 1, {vx_, vy_}); |
| VLOG(1) << "robot velocity: " << robot_velocity.__str__(); |
| |
| // Velocity of the contact patch in field coordinates |
| DenseMatrix temp_matrix = DenseMatrix(2, 1); |
| DenseMatrix temp_matrix2 = DenseMatrix(2, 1); |
| DenseMatrix temp_matrix3 = DenseMatrix(2, 1); |
| result.contact_patch_velocity = DenseMatrix(2, 1); |
| |
| mul_dense_dense(R(theta_), result.mounting_location, temp_matrix); |
| add_dense_dense(angle_cross(temp_matrix, omega_), robot_velocity, |
| temp_matrix2); |
| mul_dense_dense(R(add(theta_, result.thetas)), |
| DenseMatrix(2, 1, {neg(caster_), integer(0)}), |
| temp_matrix3); |
| add_dense_dense(temp_matrix2, |
| angle_cross(temp_matrix3, add(omega_, result.omegas)), |
| result.contact_patch_velocity); |
| |
| VLOG(1); |
| VLOG(1) << "contact patch velocity: " |
| << result.contact_patch_velocity.__str__(); |
| |
| // Relative velocity of the surface of the wheel to the ground. |
| result.wheel_ground_velocity = DenseMatrix(2, 1); |
| mul_dense_dense(R(neg(add(result.thetas, theta_))), |
| result.contact_patch_velocity, |
| result.wheel_ground_velocity); |
| |
| // Compute the relative velocity between the wheel surface and the ground in |
| // the wheel coordinate system. |
| result.wheel_slip_velocity = DenseMatrix(2, 1); |
| DenseMatrix wheel_velocity = |
| DenseMatrix(2, 1, {mul(rw_, result.omegad), integer(0)}); |
| DenseMatrix negative_wheel_ground_velocity = |
| DenseMatrix(2, 1, |
| {neg(result.wheel_ground_velocity.get(0, 0)), |
| neg(result.wheel_ground_velocity.get(1, 0))}); |
| add_dense_dense(negative_wheel_ground_velocity, wheel_velocity, |
| result.wheel_slip_velocity); |
| |
| VLOG(1); |
| VLOG(1) << "wheel ground velocity: " |
| << result.wheel_ground_velocity.__str__(); |
| |
| result.slip_angle = sin(neg(atan2(result.wheel_ground_velocity.get(1, 0), |
| result.wheel_ground_velocity.get(0, 0)))); |
| |
| VLOG(1); |
| VLOG(1) << "slip angle: " << result.slip_angle->__str__(); |
| |
| // TODO(austin): Does this handle decel properly? |
| result.slip_ratio = div( |
| sub(mul(rw_, result.omegad), result.wheel_ground_velocity.get(0, 0)), |
| SymEngine::max( |
| {real_double(0.02), abs(result.wheel_ground_velocity.get(0, 0))})); |
| VLOG(1); |
| VLOG(1) << "Slip ratio " << result.slip_ratio->__str__(); |
| |
| result.full.Fwx = simplify(mul(Cx_, result.slip_ratio)); |
| result.Fwy = simplify(mul(Cy_, result.slip_angle)); |
| |
| // The self-aligning moment needs to flip when the module flips direction. |
| RCP<const Basic> softsign_velocity = add( |
| div(integer(-2), |
| add(integer(1), exp(mul(integer(100), |
| result.wheel_ground_velocity.get(0, 0))))), |
| integer(1)); |
| result.Ms = |
| mul(neg(result.Fwy), |
| add(div(mul(softsign_velocity, contact_patch_length_), integer(3)), |
| caster_)); |
| VLOG(1); |
| VLOG(1) << "Ms " << result.Ms->__str__(); |
| VLOG(1); |
| VLOG(1) << "full.Fwx " << result.full.Fwx->__str__(); |
| VLOG(1); |
| VLOG(1) << "Fwy " << result.Fwy->__str__(); |
| |
| // -K_td * Id / Gd + Fwx * rw = 0 |
| // Fwx = K_td * Id / Gd / rw |
| result.direct.Fwx = mul(Ktd_, div(result.Id, mul(Gd_, rw_))); |
| |
| result.direct.alphas_eqn = |
| SteerAccel(result.direct.Fwx, result.Ms, result.Is); |
| |
| // d/dt omegas = ... |
| result.full.alphas_eqn = SteerAccel(result.full.Fwx, result.Ms, result.Is); |
| |
| VLOG(1); |
| VLOG(1) << alphas->__str__() << " = " << result.full.alphas_eqn->__str__(); |
| |
| RCP<const Basic> lhs = |
| sub(mul(sub(div(add(rp_, rs_), rp_), integer(1)), alphas), |
| mul(Gd1_, mul(Gd2_, alphamd))); |
| RCP<const Basic> ddplanitary_eqn = sub(mul(Gd3_, lhs), alphad); |
| |
| RCP<const Basic> full_drive_eqn = |
| sub(add(mul(neg(Jdm_), div(alphamd, Gd_)), |
| mul(Ktd_, div(neg(result.Id), Gd_))), |
| mul(neg(result.full.Fwx), rw_)); |
| |
| VLOG(1) << "full_drive_eqn: " << full_drive_eqn->__str__(); |
| |
| // Substitute in ddplanitary_eqn so we get rid of alphamd |
| map_basic_basic map; |
| RCP<const Set> reals = interval(NegInf, Inf, true, true); |
| RCP<const Set> solve_solution = solve(ddplanitary_eqn, alphamd, reals); |
| map[alphamd] = solve_solution->get_args()[1]->get_args()[0]; |
| VLOG(1) << "temp: " << solve_solution->__str__(); |
| RCP<const Basic> drive_eqn_subs = full_drive_eqn->subs(map); |
| |
| map.clear(); |
| map[alphas] = result.full.alphas_eqn; |
| RCP<const Basic> drive_eqn_subs2 = drive_eqn_subs->subs(map); |
| RCP<const Basic> drive_eqn_subs3 = simplify(drive_eqn_subs2); |
| VLOG(1) << "full_drive_eqn simplified: " << drive_eqn_subs3->__str__(); |
| |
| solve_solution = solve(drive_eqn_subs3, alphad, reals); |
| |
| result.full.alphad_eqn = |
| simplify(solve_solution->get_args()[1]->get_args()[0]); |
| VLOG(1) << "drive_accel: " << result.full.alphad_eqn->__str__(); |
| |
| // Compute the resulting force from the module. |
| result.full.F = DenseMatrix(2, 1); |
| mul_dense_dense(R(add(theta_, result.thetas)), |
| DenseMatrix(2, 1, {result.full.Fwx, result.Fwy}), |
| result.full.F); |
| |
| result.rotated_mounting_location = DenseMatrix(2, 1); |
| mul_dense_dense(R(theta_), result.mounting_location, |
| result.rotated_mounting_location); |
| result.full.torque = |
| force_cross(result.rotated_mounting_location, result.full.F); |
| |
| result.direct.F = DenseMatrix(2, 1); |
| mul_dense_dense(R(add(theta_, result.thetas)), |
| DenseMatrix(2, 1, {result.direct.Fwx, result.Fwy}), |
| result.direct.F); |
| result.direct.torque = |
| force_cross(result.rotated_mounting_location, result.direct.F); |
| |
| VLOG(1); |
| VLOG(1) << "full torque = " << result.full.torque->__str__(); |
| VLOG(1) << "direct torque = " << result.full.torque->__str__(); |
| |
| return result; |
| } |
| |
| DenseMatrix R(const RCP<const Basic> theta) { |
| return DenseMatrix(2, 2, |
| {cos(theta), neg(sin(theta)), sin(theta), cos(theta)}); |
| } |
| |
| DenseMatrix angle_cross(DenseMatrix a, RCP<const Basic> b) { |
| return DenseMatrix(2, 1, {mul(neg(a.get(1, 0)), b), mul(a.get(0, 0), b)}); |
| } |
| |
| RCP<const Basic> force_cross(DenseMatrix r, DenseMatrix f) { |
| return sub(mul(r.get(0, 0), f.get(1, 0)), mul(r.get(1, 0), f.get(0, 0))); |
| } |
| |
| // z represents the number of teeth per gear, theta is the angle between |
| // shafts(in degrees), D_02 is the pitch diameter of gear 2 and b_2 is the |
| // length of the tooth of gear 2 |
| // returns std::pair(r_01, r_02) |
| std::pair<double, double> GetBevelPitchRadius(double z1, double z2, |
| double theta, double D_02, |
| double b_2) { |
| double gamma_1 = std::atan2(z1, z2); |
| double gamma_2 = theta / 180.0 * std::numbers::pi - gamma_1; |
| double R_m = D_02 / 2 / std::sin(gamma_2) - b_2 / 2; |
| return std::pair(R_m * std::cos(gamma_2), R_m * std::sin(gamma_2)); |
| } |
| |
| Motor drive_motor_; |
| Motor steer_motor_; |
| |
| RCP<const Basic> Cx_; |
| RCP<const Basic> Cy_; |
| RCP<const Basic> rw_; |
| RCP<const Basic> m_; |
| RCP<const Basic> J_; |
| RCP<const Basic> Gd1_; |
| RCP<const Basic> rs_; |
| RCP<const Basic> rp_; |
| RCP<const Basic> Gd2_; |
| RCP<const Basic> rb1_; |
| RCP<const Basic> rb2_; |
| RCP<const Basic> Gd3_; |
| RCP<const Basic> Gd_; |
| RCP<const Basic> Js_; |
| RCP<const Basic> Gs_; |
| RCP<const Basic> wb_; |
| RCP<const Basic> Jdm_; |
| RCP<const Basic> Jsm_; |
| RCP<const Basic> Kts_; |
| RCP<const Basic> Ktd_; |
| RCP<const Basic> robot_width_; |
| RCP<const Basic> caster_; |
| RCP<const Basic> contact_patch_length_; |
| RCP<const Basic> x_; |
| RCP<const Basic> y_; |
| RCP<const Basic> theta_; |
| RCP<const Basic> vx_; |
| RCP<const Basic> vy_; |
| RCP<const Basic> omega_; |
| RCP<const Basic> ax_; |
| RCP<const Basic> ay_; |
| RCP<const Basic> atheta_; |
| |
| std::array<Module, kNumModules> modules_; |
| |
| DenseMatrix full_accel_; |
| RCP<const Basic> full_angular_accel_; |
| DenseMatrix direct_accel_; |
| RCP<const Basic> direct_angular_accel_; |
| }; |
| |
| } // namespace frc971::control_loops::swerve |
| |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| |
| frc971::control_loops::swerve::SwerveSimulation sim; |
| |
| if (!absl::GetFlag(FLAGS_cc_output_path).empty() && |
| !absl::GetFlag(FLAGS_h_output_path).empty()) { |
| sim.Write(absl::GetFlag(FLAGS_cc_output_path), |
| absl::GetFlag(FLAGS_h_output_path)); |
| } |
| if (!absl::GetFlag(FLAGS_casadi_py_output_path).empty()) { |
| sim.WriteCasadi(absl::GetFlag(FLAGS_casadi_py_output_path)); |
| } |
| |
| if (!absl::GetFlag(FLAGS_constants_output_path).empty()) { |
| sim.WriteConstantsFile(absl::GetFlag(FLAGS_constants_output_path)); |
| } |
| |
| return 0; |
| } |