blob: 9b5e7f48aef59c5c6771dc8306113df556cfc40e [file] [log] [blame]
#include "frc971/autonomous/base_autonomous_actor.h"
#include <inttypes.h>
#include <chrono>
#include <cmath>
#include "aos/common/util/phased_loop.h"
#include "aos/common/logging/logging.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
using ::frc971::control_loops::drivetrain_queue;
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
namespace this_thread = ::std::this_thread;
namespace frc971 {
namespace autonomous {
BaseAutonomousActor::BaseAutonomousActor(
AutonomousActionQueueGroup *s,
const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
: aos::common::actions::ActorBase<AutonomousActionQueueGroup>(s),
dt_config_(dt_config),
initial_drivetrain_({0.0, 0.0}) {}
void BaseAutonomousActor::ResetDrivetrain() {
LOG(INFO, "resetting the drivetrain\n");
max_drivetrain_voltage_ = 12.0;
drivetrain_queue.goal.MakeWithBuilder()
.control_loop_driving(false)
.highgear(true)
.wheel(0.0)
.throttle(0.0)
.left_goal(initial_drivetrain_.left)
.left_velocity_goal(0)
.right_goal(initial_drivetrain_.right)
.right_velocity_goal(0)
.max_ss_voltage(max_drivetrain_voltage_)
.Send();
}
void BaseAutonomousActor::InitializeEncoders() {
drivetrain_queue.status.FetchAnother();
initial_drivetrain_.left = drivetrain_queue.status->estimated_left_position;
initial_drivetrain_.right = drivetrain_queue.status->estimated_right_position;
}
void BaseAutonomousActor::StartDrive(double distance, double angle,
ProfileParameters linear,
ProfileParameters angular) {
LOG(INFO, "Driving distance %f, angle %f\n", distance, angle);
{
const double dangle = angle * dt_config_.robot_radius;
initial_drivetrain_.left += distance - dangle;
initial_drivetrain_.right += distance + dangle;
}
auto drivetrain_message = drivetrain_queue.goal.MakeMessage();
drivetrain_message->control_loop_driving = true;
drivetrain_message->highgear = true;
drivetrain_message->wheel = 0.0;
drivetrain_message->throttle = 0.0;
drivetrain_message->left_goal = initial_drivetrain_.left;
drivetrain_message->left_velocity_goal = 0;
drivetrain_message->right_goal = initial_drivetrain_.right;
drivetrain_message->right_velocity_goal = 0;
drivetrain_message->max_ss_voltage = max_drivetrain_voltage_;
drivetrain_message->linear = linear;
drivetrain_message->angular = angular;
LOG_STRUCT(DEBUG, "drivetrain_goal", *drivetrain_message);
drivetrain_message.Send();
}
void BaseAutonomousActor::WaitUntilDoneOrCanceled(
::std::unique_ptr<aos::common::actions::Action> action) {
if (!action) {
LOG(ERROR, "No action, not waiting\n");
return;
}
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
// Poll the running bit and see if we should cancel.
phased_loop.SleepUntilNext();
if (!action->Running() || ShouldCancel()) {
return;
}
}
}
bool BaseAutonomousActor::WaitForDriveDone() {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
if (IsDriveDone()) {
return true;
}
}
}
bool BaseAutonomousActor::IsDriveDone() {
static constexpr double kPositionTolerance = 0.02;
static constexpr double kVelocityTolerance = 0.10;
static constexpr double kProfileTolerance = 0.001;
if (drivetrain_queue.status.get()) {
if (::std::abs(drivetrain_queue.status->profiled_left_position_goal -
initial_drivetrain_.left) < kProfileTolerance &&
::std::abs(drivetrain_queue.status->profiled_right_position_goal -
initial_drivetrain_.right) < kProfileTolerance &&
::std::abs(drivetrain_queue.status->estimated_left_position -
initial_drivetrain_.left) < kPositionTolerance &&
::std::abs(drivetrain_queue.status->estimated_right_position -
initial_drivetrain_.right) < kPositionTolerance &&
::std::abs(drivetrain_queue.status->estimated_left_velocity) <
kVelocityTolerance &&
::std::abs(drivetrain_queue.status->estimated_right_velocity) <
kVelocityTolerance) {
LOG(INFO, "Finished drive\n");
return true;
}
}
return false;
}
bool BaseAutonomousActor::WaitForAboveAngle(double angle) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
if (IsDriveDone()) {
return true;
}
if (drivetrain_queue.status.get()) {
if (drivetrain_queue.status->ground_angle > angle) {
return true;
}
}
}
}
bool BaseAutonomousActor::WaitForBelowAngle(double angle) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
if (IsDriveDone()) {
return true;
}
if (drivetrain_queue.status.get()) {
if (drivetrain_queue.status->ground_angle < angle) {
return true;
}
}
}
}
bool BaseAutonomousActor::WaitForMaxBy(double angle) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
double max_angle = -M_PI;
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
if (IsDriveDone()) {
return true;
}
if (drivetrain_queue.status.get()) {
if (drivetrain_queue.status->ground_angle > max_angle) {
max_angle = drivetrain_queue.status->ground_angle;
}
if (drivetrain_queue.status->ground_angle < max_angle - angle) {
return true;
}
}
}
}
bool BaseAutonomousActor::WaitForDriveNear(double distance, double angle) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
constexpr double kPositionTolerance = 0.02;
constexpr double kProfileTolerance = 0.001;
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
if (drivetrain_queue.status.get()) {
const double left_profile_error =
(initial_drivetrain_.left -
drivetrain_queue.status->profiled_left_position_goal);
const double right_profile_error =
(initial_drivetrain_.right -
drivetrain_queue.status->profiled_right_position_goal);
const double left_error =
(initial_drivetrain_.left -
drivetrain_queue.status->estimated_left_position);
const double right_error =
(initial_drivetrain_.right -
drivetrain_queue.status->estimated_right_position);
const double profile_distance_to_go =
(left_profile_error + right_profile_error) / 2.0;
const double profile_angle_to_go =
(right_profile_error - left_profile_error) /
(dt_config_.robot_radius * 2.0);
const double distance_to_go = (left_error + right_error) / 2.0;
const double angle_to_go =
(right_error - left_error) / (dt_config_.robot_radius * 2.0);
if (::std::abs(profile_distance_to_go) < distance + kProfileTolerance &&
::std::abs(profile_angle_to_go) < angle + kProfileTolerance &&
::std::abs(distance_to_go) < distance + kPositionTolerance &&
::std::abs(angle_to_go) < angle + kPositionTolerance) {
LOG(INFO, "Closer than %f distance, %f angle\n", distance, angle);
return true;
}
}
}
}
bool BaseAutonomousActor::WaitForDriveProfileNear(double tolerance) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
const Eigen::Matrix<double, 7, 1> current_error =
(Eigen::Matrix<double, 7, 1>()
<< initial_drivetrain_.left -
drivetrain_queue.status->profiled_left_position_goal,
0.0, initial_drivetrain_.right -
drivetrain_queue.status->profiled_right_position_goal,
0.0, 0.0, 0.0, 0.0)
.finished();
const Eigen::Matrix<double, 2, 1> linear_error =
dt_config_.LeftRightToLinear(current_error);
if (drivetrain_queue.status.get()) {
if (::std::abs(linear_error(0)) < tolerance) {
LOG(INFO, "Finished drive\n");
return true;
}
}
}
}
bool BaseAutonomousActor::WaitForDriveProfileDone() {
constexpr double kProfileTolerance = 0.001;
return WaitForDriveProfileNear(kProfileTolerance);
}
bool BaseAutonomousActor::WaitForTurnProfileNear(double tolerance) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
phased_loop.SleepUntilNext();
drivetrain_queue.status.FetchLatest();
const Eigen::Matrix<double, 7, 1> current_error =
(Eigen::Matrix<double, 7, 1>()
<< initial_drivetrain_.left -
drivetrain_queue.status->profiled_left_position_goal,
0.0, initial_drivetrain_.right -
drivetrain_queue.status->profiled_right_position_goal,
0.0, 0.0, 0.0, 0.0)
.finished();
const Eigen::Matrix<double, 2, 1> angular_error =
dt_config_.LeftRightToAngular(current_error);
if (drivetrain_queue.status.get()) {
if (::std::abs(angular_error(0)) < tolerance) {
LOG(INFO, "Finished turn\n");
return true;
}
}
}
}
bool BaseAutonomousActor::WaitForTurnProfileDone() {
constexpr double kProfileTolerance = 0.001;
return WaitForTurnProfileNear(kProfileTolerance);
}
double BaseAutonomousActor::DriveDistanceLeft() {
using ::frc971::control_loops::drivetrain_queue;
drivetrain_queue.status.FetchLatest();
if (drivetrain_queue.status.get()) {
const double left_error =
(initial_drivetrain_.left -
drivetrain_queue.status->estimated_left_position);
const double right_error =
(initial_drivetrain_.right -
drivetrain_queue.status->estimated_right_position);
return (left_error + right_error) / 2.0;
} else {
return 0;
}
}
::std::unique_ptr<AutonomousAction> MakeAutonomousAction(
const AutonomousActionParams &params) {
return ::std::unique_ptr<AutonomousAction>(
new AutonomousAction(&autonomous_action, params));
}
} // namespace autonomous
} // namespace frc971