blob: 088b2047409c16ac15ae7534d55e8585ac87302f [file] [log] [blame]
#!/usr/bin/python
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
import numpy
import sys
import copy
import scipy.interpolate
from matplotlib import pylab
import gflags
import glog
FLAGS = gflags.FLAGS
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
gflags.DEFINE_string('data', None, 'If defined, plot the provided CAN data')
gflags.DEFINE_bool(
'rerun_kf', False,
'If true, rerun the KF. The torque in the data file will be interpreted as the commanded current.'
)
class SystemParams(object):
def __init__(self, J, G, kP, kD, kCompensationTimeconstant, q_pos, q_vel,
q_torque, current_limit):
self.J = J
self.G = G
self.q_pos = q_pos
self.q_vel = q_vel
self.q_torque = q_torque
self.kP = kP
self.kD = kD
self.kCompensationTimeconstant = kCompensationTimeconstant
self.r_pos = 0.001
self.current_limit = current_limit
#[15.0, 0.25],
#[10.0, 0.2],
#[5.0, 0.13],
#[3.0, 0.10],
#[2.0, 0.08],
#[1.0, 0.06],
#[0.5, 0.05],
#[0.25, 0.025],
kWheel = SystemParams(
J=0.0008,
G=(1.25 + 0.02) / 0.35,
q_pos=0.001,
q_vel=0.20,
q_torque=0.005,
kP=7.0,
kD=0.0,
kCompensationTimeconstant=0.95,
current_limit=4.5)
kTrigger = SystemParams(
J=0.00025,
G=(0.925 * 2.0 + 0.02) / 0.35,
q_pos=0.001,
q_vel=0.1,
q_torque=0.005,
kP=120.0,
kD=1.8,
kCompensationTimeconstant=0.95,
current_limit=3.0)
class HapticInput(control_loop.ControlLoop):
def __init__(self, params=None, name='HapticInput'):
# The defaults are for the steering wheel.
super(HapticInput, self).__init__(name)
motor = self.motor = control_loop.MN3510()
# Moment of inertia of the wheel in kg m^2
self.J = params.J
# Control loop time step
self.dt = 0.001
# Gear ratio from the motor to the input.
self.G = params.G
self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
self.A_continuous[1, 1] = 0
self.A_continuous[0, 1] = 1
self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
self.B_continuous[1, 0] = motor.Kt * self.G / self.J
# State feedback matrices
# [position, angular velocity]
self.C = numpy.matrix([[1.0, 0.0]])
self.D = numpy.matrix([[0.0]])
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
self.U_max = numpy.matrix([[2.5]])
self.U_min = numpy.matrix([[-2.5]])
self.L = numpy.matrix([[0.0], [0.0]])
self.K = numpy.matrix([[0.0, 0.0]])
self.InitializeState()
class IntegralHapticInput(HapticInput):
def __init__(self, params=None, name="IntegralHapticInput"):
super(IntegralHapticInput, self).__init__(name=name, params=params)
self.A_continuous_unaugmented = self.A_continuous
self.B_continuous_unaugmented = self.B_continuous
self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
self.A_continuous[1, 2] = (1 / self.J)
self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
self.C_unaugmented = self.C
self.C = numpy.matrix(numpy.zeros((1, 3)))
self.C[0:1, 0:2] = self.C_unaugmented
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
self.B_continuous, self.dt)
self.Q = numpy.matrix([[(params.q_pos**2.0), 0.0, 0.0],
[0.0, (params.q_vel**2.0), 0.0],
[0.0, 0.0, (params.q_torque**2.0)]])
self.R = numpy.matrix([[(params.r_pos**2.0)]])
self.KalmanGain, self.Q_steady = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.L = self.A * self.KalmanGain
self.K_unaugmented = self.K
self.K = numpy.matrix(numpy.zeros((1, 3)))
self.K[0, 0:2] = self.K_unaugmented
self.K[0, 2] = 1.0 / (self.motor.Kt / (self.motor.resistance))
self.InitializeState()
def ReadCan(filename):
"""Reads the candump in filename and returns the 4 fields."""
trigger = []
trigger_velocity = []
trigger_torque = []
trigger_current = []
wheel = []
wheel_velocity = []
wheel_torque = []
wheel_current = []
trigger_request_time = [0.0]
trigger_request_current = [0.0]
wheel_request_time = [0.0]
wheel_request_current = [0.0]
with open(filename, 'r') as fd:
for line in fd:
data = line.split()
can_id = int(data[1], 16)
if can_id == 0:
data = [int(d, 16) for d in data[3:]]
trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
trigger_velocity.append(
((data[2] + (data[3] << 8)) - 32768) / 32768.0)
trigger_torque.append(
((data[4] + (data[5] << 8)) - 32768) / 32768.0)
trigger_current.append(
((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
elif can_id == 1:
data = [int(d, 16) for d in data[3:]]
wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
wheel_velocity.append(
((data[2] + (data[3] << 8)) - 32768) / 32768.0)
wheel_torque.append(
((data[4] + (data[5] << 8)) - 32768) / 32768.0)
wheel_current.append(
((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
elif can_id == 2:
data = [int(d, 16) for d in data[3:]]
trigger_request_current.append(
((data[4] + (data[5] << 8)) - 32768) / 32768.0)
trigger_request_time.append(len(trigger) * 0.001)
elif can_id == 3:
data = [int(d, 16) for d in data[3:]]
wheel_request_current.append(
((data[4] + (data[5] << 8)) - 32768) / 32768.0)
wheel_request_time.append(len(wheel) * 0.001)
trigger_data_time = numpy.arange(0, len(trigger)) * 0.001
wheel_data_time = numpy.arange(0, len(wheel)) * 0.001
# Extend out the data in the interpolation table.
trigger_request_time.append(trigger_data_time[-1])
trigger_request_current.append(trigger_request_current[-1])
wheel_request_time.append(wheel_data_time[-1])
wheel_request_current.append(wheel_request_current[-1])
return (trigger_data_time, wheel_data_time, trigger, wheel,
trigger_velocity, wheel_velocity, trigger_torque, wheel_torque,
trigger_current, wheel_current, trigger_request_time,
trigger_request_current, wheel_request_time, wheel_request_current)
def rerun_and_plot_kf(data_time,
data_radians,
data_current,
data_request_current,
params,
run_correct=True):
kf_velocity = []
dt_velocity = []
kf_position = []
adjusted_position = []
last_angle = None
haptic_observer = IntegralHapticInput(params=params)
# Parameter sweep J.
num_kf = 1
min_J = max_J = params.J
# J = 0.0022
#num_kf = 15
#min_J = min_J / 2.0
#max_J = max_J * 2.0
initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
def DupParamsWithJ(params, J):
p = copy.copy(params)
p.J = J
return p
haptic_observers = [
IntegralHapticInput(params=DupParamsWithJ(params, j))
for j in numpy.logspace(
numpy.log10(min_J), numpy.log10(max_J), num=num_kf)
]
# Initialize all the KF's.
haptic_observer.X_hat[1, 0] = initial_velocity
haptic_observer.X_hat[0, 0] = data_radians[0]
for observer in haptic_observers:
observer.X_hat[1, 0] = initial_velocity
observer.X_hat[0, 0] = data_radians[0]
last_request_current = data_request_current[0]
kf_torques = [[] for i in xrange(num_kf)]
for angle, current, request_current in zip(data_radians, data_current,
data_request_current):
# Predict and correct all the parameter swept observers.
for i, observer in enumerate(haptic_observers):
observer.Y = numpy.matrix([[angle]])
if run_correct:
observer.CorrectObserver(numpy.matrix([[current]]))
kf_torques[i].append(-observer.X_hat[2, 0])
observer.PredictObserver(numpy.matrix([[current]]))
observer.PredictObserver(numpy.matrix([[current]]))
# Predict and correct the main observer.
haptic_observer.Y = numpy.matrix([[angle]])
if run_correct:
haptic_observer.CorrectObserver(numpy.matrix([[current]]))
kf_position.append(haptic_observer.X_hat[0, 0])
adjusted_position.append(kf_position[-1] -
last_request_current / params.kP)
last_request_current = last_request_current * params.kCompensationTimeconstant + request_current * (
1.0 - params.kCompensationTimeconstant)
kf_velocity.append(haptic_observer.X_hat[1, 0])
if last_angle is None:
last_angle = angle
dt_velocity.append((angle - last_angle) / 0.001)
haptic_observer.PredictObserver(numpy.matrix([[current]]))
last_angle = angle
# Plot the wheel observers.
fig, ax1 = pylab.subplots()
ax1.plot(data_time, data_radians, '.', label='wheel')
ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
ax1.plot(data_time, kf_velocity, '.', label='kf_velocity')
ax1.plot(data_time, kf_position, '.', label='kf_position')
ax1.plot(data_time, adjusted_position, '.', label='adjusted_position')
ax2 = ax1.twinx()
ax2.plot(data_time, data_current, label='data_current')
ax2.plot(data_time, data_request_current, label='request_current')
for i, kf_torque in enumerate(kf_torques):
ax2.plot(
data_time,
kf_torque,
label='-kf_torque[%f]' % haptic_observers[i].J)
fig.tight_layout()
ax1.legend(loc=3)
ax2.legend(loc=4)
def plot_input(data_time,
data_radians,
data_velocity,
data_torque,
data_current,
params,
run_correct=True):
dt_velocity = []
last_angle = None
initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
for angle in data_radians:
if last_angle is None:
last_angle = angle
dt_velocity.append((angle - last_angle) / 0.001)
last_angle = angle
# Plot the wheel observers.
fig, ax1 = pylab.subplots()
ax1.plot(data_time, data_radians, '.', label='angle')
ax1.plot(data_time, data_velocity, '-', label='velocity')
ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
ax2 = ax1.twinx()
ax2.plot(data_time, data_torque, label='data_torque')
ax2.plot(data_time, data_current, label='data_current')
fig.tight_layout()
ax1.legend(loc=3)
ax2.legend(loc=4)
def main(argv):
if FLAGS.plot:
if FLAGS.data is None:
haptic_wheel = HapticInput()
haptic_wheel_controller = IntegralHapticInput()
observer_haptic_wheel = IntegralHapticInput()
observer_haptic_wheel.X_hat[2, 0] = 0.01
R = numpy.matrix([[0.0], [0.0], [0.0]])
control_loop.TestSingleIntegralAxisSquareWave(
R, 1.0, haptic_wheel, haptic_wheel_controller,
observer_haptic_wheel)
else:
# Read the CAN trace in.
trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, \
wheel_velocity, trigger_torque, wheel_torque, trigger_current, \
wheel_current, trigger_request_time, trigger_request_current, \
wheel_request_time, wheel_request_current = ReadCan(FLAGS.data)
wheel_radians = [w * numpy.pi * (338.16 / 360.0) for w in wheel]
wheel_velocity = [w * 50.0 for w in wheel_velocity]
wheel_torque = [w / 2.0 for w in wheel_torque]
wheel_current = [w * 10.0 for w in wheel_current]
wheel_request_current = [w * 2.0 for w in wheel_request_current]
resampled_wheel_request_current = scipy.interpolate.interp1d(
wheel_request_time, wheel_request_current,
kind="zero")(wheel_data_time)
trigger_radians = [t * numpy.pi * (45.0 / 360.0) for t in trigger]
trigger_velocity = [t * 50.0 for t in trigger_velocity]
trigger_torque = [t / 2.0 for t in trigger_torque]
trigger_current = [t * 10.0 for t in trigger_current]
trigger_request_current = [t * 2.0 for t in trigger_request_current]
resampled_trigger_request_current = scipy.interpolate.interp1d(
trigger_request_time, trigger_request_current,
kind="zero")(trigger_data_time)
if FLAGS.rerun_kf:
rerun_and_plot_kf(
trigger_data_time,
trigger_radians,
trigger_current,
resampled_trigger_request_current,
kTrigger,
run_correct=True)
rerun_and_plot_kf(
wheel_data_time,
wheel_radians,
wheel_current,
resampled_wheel_request_current,
kWheel,
run_correct=True)
else:
plot_input(trigger_data_time, trigger_radians, trigger_velocity,
trigger_torque, trigger_current, kTrigger)
plot_input(wheel_data_time, wheel_radians, wheel_velocity,
wheel_torque, wheel_current, kWheel)
pylab.show()
return
if len(argv) != 9:
glog.fatal('Expected .h file name and .cc file name')
else:
namespaces = ['frc971', 'control_loops', 'drivetrain']
for name, params, filenames in [('HapticWheel', kWheel, argv[1:5]),
('HapticTrigger', kTrigger, argv[5:9])]:
haptic_input = HapticInput(params=params, name=name)
loop_writer = control_loop.ControlLoopWriter(
name, [haptic_input],
namespaces=namespaces,
scalar_type='float')
loop_writer.Write(filenames[0], filenames[1])
integral_haptic_input = IntegralHapticInput(
params=params, name='Integral' + name)
integral_loop_writer = control_loop.ControlLoopWriter(
'Integral' + name, [integral_haptic_input],
namespaces=namespaces,
scalar_type='float')
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "Dt", "%f",
integral_haptic_input.dt))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "FreeCurrent", "%f",
integral_haptic_input.motor.free_current))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "StallTorque", "%f",
integral_haptic_input.motor.stall_torque))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "J", "%f",
integral_haptic_input.J))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "R", "%f",
integral_haptic_input.motor.resistance))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "T", "%f",
integral_haptic_input.motor.Kt))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "V", "%f",
integral_haptic_input.motor.Kv))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "P", "%f", params.kP))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "D", "%f", params.kD))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "G", "%f", params.G))
integral_loop_writer.AddConstant(
control_loop.Constant("k" + name + "CurrentLimit", "%f",
params.current_limit))
integral_loop_writer.Write(filenames[2], filenames[3])
if __name__ == '__main__':
argv = FLAGS(sys.argv)
sys.exit(main(argv))