| #!/usr/bin/python3 |
| |
| from aos.util.trapezoid_profile import TrapezoidProfile |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| import numpy |
| from matplotlib import pylab |
| import glog |
| |
| |
| class AngularSystemParams(object): |
| |
| def __init__(self, |
| name, |
| motor, |
| G, |
| J, |
| q_pos, |
| q_vel, |
| kalman_q_pos, |
| kalman_q_vel, |
| kalman_q_voltage, |
| kalman_r_position, |
| radius=None, |
| dt=0.00505): |
| """Constructs an AngularSystemParams object. |
| |
| Args: |
| motor: Motor object with the motor constants. |
| G: float, Gear ratio. Less than 1 means output moves slower than the |
| input. |
| """ |
| self.name = name |
| self.motor = motor |
| self.G = G |
| self.J = J |
| self.q_pos = q_pos |
| self.q_vel = q_vel |
| self.kalman_q_pos = kalman_q_pos |
| self.kalman_q_vel = kalman_q_vel |
| self.kalman_q_voltage = kalman_q_voltage |
| self.kalman_r_position = kalman_r_position |
| self.radius = radius |
| self.dt = dt |
| |
| |
| class AngularSystem(control_loop.ControlLoop): |
| |
| def __init__(self, params, name="AngularSystem"): |
| super(AngularSystem, self).__init__(name) |
| self.params = params |
| |
| self.motor = params.motor |
| |
| # Gear ratio |
| self.G = params.G |
| |
| # Moment of inertia in kg m^2 |
| self.J = params.J + self.motor.motor_inertia / (self.G**2.0) |
| |
| # Control loop time step |
| self.dt = params.dt |
| |
| # State is [position, velocity] |
| # Input is [Voltage] |
| C1 = self.motor.Kt / (self.G * self.G * self.motor.resistance * |
| self.J * self.motor.Kv) |
| C2 = self.motor.Kt / (self.G * self.J * self.motor.resistance) |
| |
| self.A_continuous = numpy.matrix([[0, 1], [0, -C1]]) |
| |
| # Start with the unmodified input |
| self.B_continuous = numpy.matrix([[0], [C2]]) |
| glog.debug(repr(self.A_continuous)) |
| glog.debug(repr(self.B_continuous)) |
| |
| self.C = numpy.matrix([[1, 0]]) |
| self.D = numpy.matrix([[0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| controllability = controls.ctrb(self.A, self.B) |
| glog.debug('Controllability of %d', |
| numpy.linalg.matrix_rank(controllability)) |
| glog.debug('J: %f', self.J) |
| glog.debug('Stall torque: %f (N m)', self.motor.stall_torque / self.G) |
| if self.params.radius is not None: |
| glog.debug('Stall force: %f (N)', |
| self.motor.stall_torque / self.G / self.params.radius) |
| glog.debug( |
| 'Stall force: %f (lbf)', self.motor.stall_torque / self.G / |
| self.params.radius * 0.224809) |
| |
| glog.debug('Stall acceleration: %f (rad/s^2)', |
| self.motor.stall_torque / self.G / self.J) |
| |
| glog.debug('Free speed is %f (rad/s)', |
| -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0) |
| |
| self.Q = numpy.matrix([[(1.0 / (self.params.q_pos**2.0)), 0.0], |
| [0.0, (1.0 / (self.params.q_vel**2.0))]]) |
| |
| self.R = numpy.matrix([[(1.0 / (12.0**2.0))]]) |
| self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| |
| q_pos_ff = 0.005 |
| q_vel_ff = 1.0 |
| self.Qff = numpy.matrix([[(1.0 / (q_pos_ff**2.0)), 0.0], |
| [0.0, (1.0 / (q_vel_ff**2.0))]]) |
| |
| self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff) |
| |
| glog.debug('K %s', repr(self.K)) |
| glog.debug('Poles are %s', |
| repr(numpy.linalg.eig(self.A - self.B * self.K)[0])) |
| |
| self.Q = numpy.matrix([[(self.params.kalman_q_pos**2.0), 0.0], |
| [0.0, (self.params.kalman_q_vel**2.0)]]) |
| |
| self.R = numpy.matrix([[(self.params.kalman_r_position**2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman(A=self.A, |
| B=self.B, |
| C=self.C, |
| Q=self.Q, |
| R=self.R) |
| |
| glog.debug('Kal %s', repr(self.KalmanGain)) |
| |
| # The box formed by U_min and U_max must encompass all possible values, |
| # or else Austin's code gets angry. |
| self.U_max = numpy.matrix([[12.0]]) |
| self.U_min = numpy.matrix([[-12.0]]) |
| |
| self.InitializeState() |
| |
| |
| class IntegralAngularSystem(AngularSystem): |
| |
| def __init__(self, params, name="IntegralAngularSystem"): |
| super(IntegralAngularSystem, self).__init__(params, name=name) |
| |
| self.A_continuous_unaugmented = self.A_continuous |
| self.B_continuous_unaugmented = self.B_continuous |
| |
| self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented |
| self.A_continuous[0:2, 2] = self.B_continuous_unaugmented |
| |
| self.B_continuous = numpy.matrix(numpy.zeros((3, 1))) |
| self.B_continuous[0:2, 0] = self.B_continuous_unaugmented |
| |
| self.C_unaugmented = self.C |
| self.C = numpy.matrix(numpy.zeros((1, 3))) |
| self.C[0:1, 0:2] = self.C_unaugmented |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| self.Q = numpy.matrix([[(self.params.kalman_q_pos**2.0), 0.0, 0.0], |
| [0.0, (self.params.kalman_q_vel**2.0), 0.0], |
| [0.0, 0.0, |
| (self.params.kalman_q_voltage**2.0)]]) |
| |
| self.R = numpy.matrix([[(self.params.kalman_r_position**2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman(A=self.A, |
| B=self.B, |
| C=self.C, |
| Q=self.Q, |
| R=self.R) |
| |
| self.K_unaugmented = self.K |
| self.K = numpy.matrix(numpy.zeros((1, 3))) |
| self.K[0, 0:2] = self.K_unaugmented |
| self.K[0, 2] = 1 |
| |
| self.Kff = numpy.concatenate( |
| (self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1) |
| |
| self.InitializeState() |
| |
| |
| def RunTest(plant, |
| end_goal, |
| controller, |
| observer=None, |
| duration=1.0, |
| use_profile=True, |
| kick_time=0.5, |
| kick_magnitude=0.0, |
| max_velocity=10.0, |
| max_acceleration=70.0): |
| """Runs the plant with an initial condition and goal. |
| |
| Args: |
| plant: plant object to use. |
| end_goal: end_goal state. |
| controller: AngularSystem object to get K from, or None if we should |
| use plant. |
| observer: AngularSystem object to use for the observer, or None if we |
| should use the actual state. |
| duration: float, time in seconds to run the simulation for. |
| kick_time: float, time in seconds to kick the robot. |
| kick_magnitude: float, disturbance in volts to apply. |
| max_velocity: float, The maximum velocity for the profile. |
| max_acceleration: float, The maximum acceleration for the profile. |
| """ |
| t_plot = [] |
| x_plot = [] |
| v_plot = [] |
| a_plot = [] |
| motor_current_plot = [] |
| battery_current_plot = [] |
| x_goal_plot = [] |
| v_goal_plot = [] |
| x_hat_plot = [] |
| u_plot = [] |
| offset_plot = [] |
| |
| if controller is None: |
| controller = plant |
| |
| vbat = 12.0 |
| |
| goal = numpy.concatenate((plant.X, numpy.matrix(numpy.zeros((1, 1)))), |
| axis=0) |
| |
| profile = TrapezoidProfile(plant.dt) |
| profile.set_maximum_acceleration(max_acceleration) |
| profile.set_maximum_velocity(max_velocity) |
| profile.SetGoal(goal[0, 0]) |
| |
| U_last = numpy.matrix(numpy.zeros((1, 1))) |
| iterations = int(duration / plant.dt) |
| for i in range(iterations): |
| t = i * plant.dt |
| observer.Y = plant.Y |
| observer.CorrectObserver(U_last) |
| |
| offset_plot.append(observer.X_hat[2, 0]) |
| x_hat_plot.append(observer.X_hat[0, 0]) |
| |
| next_goal = numpy.concatenate((profile.Update( |
| end_goal[0, 0], end_goal[1, 0]), numpy.matrix(numpy.zeros( |
| (1, 1)))), |
| axis=0) |
| |
| ff_U = controller.Kff * (next_goal - observer.A * goal) |
| |
| if use_profile: |
| U_uncapped = controller.K * (goal - observer.X_hat) + ff_U |
| x_goal_plot.append(goal[0, 0]) |
| v_goal_plot.append(goal[1, 0]) |
| else: |
| U_uncapped = controller.K * (end_goal - observer.X_hat) |
| x_goal_plot.append(end_goal[0, 0]) |
| v_goal_plot.append(end_goal[1, 0]) |
| |
| U = U_uncapped.copy() |
| |
| U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| |
| motor_current = (U[0, 0] - plant.X[1, 0] / plant.G / |
| plant.motor.Kv) / plant.motor.resistance |
| motor_current_plot.append(motor_current) |
| battery_current = U[0, 0] * motor_current / 12.0 |
| battery_current_plot.append(battery_current) |
| x_plot.append(plant.X[0, 0]) |
| |
| if v_plot: |
| last_v = v_plot[-1] |
| else: |
| last_v = 0 |
| |
| v_plot.append(plant.X[1, 0]) |
| a_plot.append((v_plot[-1] - last_v) / plant.dt) |
| |
| u_offset = 0.0 |
| if t >= kick_time: |
| u_offset = kick_magnitude |
| plant.Update(U + u_offset) |
| |
| observer.PredictObserver(U) |
| |
| t_plot.append(t) |
| u_plot.append(U[0, 0]) |
| |
| ff_U -= U_uncapped - U |
| goal = controller.A * goal + controller.B * ff_U |
| |
| if U[0, 0] != U_uncapped[0, 0]: |
| profile.MoveCurrentState(numpy.matrix([[goal[0, 0]], [goal[1, |
| 0]]])) |
| |
| glog.debug('Time: %f', t_plot[-1]) |
| glog.debug('goal_error %s', repr(end_goal - goal)) |
| glog.debug('error %s', repr(observer.X_hat - end_goal)) |
| |
| pylab.subplot(3, 1, 1) |
| pylab.plot(t_plot, x_plot, label='x') |
| pylab.plot(t_plot, x_hat_plot, label='x_hat') |
| pylab.plot(t_plot, x_goal_plot, label='x_goal') |
| pylab.legend() |
| |
| pylab.subplot(3, 1, 2) |
| pylab.plot(t_plot, u_plot, label='u') |
| pylab.plot(t_plot, offset_plot, label='voltage_offset') |
| pylab.legend() |
| |
| ax1 = pylab.subplot(3, 1, 3) |
| ax1.set_xlabel("time(s)") |
| ax1.set_ylabel("rad/s^2") |
| ax1.plot(t_plot, a_plot, label='a') |
| |
| ax2 = ax1.twinx() |
| ax2.set_xlabel("time(s)") |
| ax2.set_ylabel("Amps") |
| ax2.plot(t_plot, battery_current_plot, 'g', label='battery') |
| ax2.plot(t_plot, motor_current_plot, 'r', label='motor') |
| pylab.legend() |
| |
| pylab.show() |
| |
| |
| def PlotStep(params, R, plant_params=None): |
| """Plots a step move to the goal. |
| |
| Args: |
| params: AngularSystemParams for the controller and observer |
| plant_params: AngularSystemParams for the plant. Defaults to params if |
| plant_params is None. |
| R: numpy.matrix(2, 1), the goal""" |
| plant = AngularSystem(plant_params or params, params.name) |
| controller = IntegralAngularSystem(params, params.name) |
| observer = IntegralAngularSystem(params, params.name) |
| |
| # Test moving the system. |
| initial_X = numpy.matrix([[0.0], [0.0]]) |
| augmented_R = numpy.matrix(numpy.zeros((3, 1))) |
| augmented_R[0:2, :] = R |
| RunTest(plant, |
| end_goal=augmented_R, |
| controller=controller, |
| observer=observer, |
| duration=2.0, |
| use_profile=False, |
| kick_time=1.0, |
| kick_magnitude=0.0) |
| |
| |
| def PlotKick(params, R, plant_params=None): |
| """Plots a step motion with a kick at 1.0 seconds. |
| |
| Args: |
| params: AngularSystemParams for the controller and observer |
| plant_params: AngularSystemParams for the plant. Defaults to params if |
| plant_params is None. |
| R: numpy.matrix(2, 1), the goal""" |
| plant = AngularSystem(plant_params or params, params.name) |
| controller = IntegralAngularSystem(params, params.name) |
| observer = IntegralAngularSystem(params, params.name) |
| |
| # Test moving the system. |
| initial_X = numpy.matrix([[0.0], [0.0]]) |
| augmented_R = numpy.matrix(numpy.zeros((3, 1))) |
| augmented_R[0:2, :] = R |
| RunTest(plant, |
| end_goal=augmented_R, |
| controller=controller, |
| observer=observer, |
| duration=2.0, |
| use_profile=False, |
| kick_time=1.0, |
| kick_magnitude=2.0) |
| |
| |
| def PlotMotion(params, |
| R, |
| max_velocity=10.0, |
| max_acceleration=70.0, |
| plant_params=None): |
| """Plots a trapezoidal motion. |
| |
| Args: |
| params: AngularSystemParams for the controller and observer |
| plant_params: AngularSystemParams for the plant. Defaults to params if |
| plant_params is None. |
| R: numpy.matrix(2, 1), the goal, |
| max_velocity: float, The max velocity of the profile. |
| max_acceleration: float, The max acceleration of the profile. |
| """ |
| plant = AngularSystem(plant_params or params, params.name) |
| controller = IntegralAngularSystem(params, params.name) |
| observer = IntegralAngularSystem(params, params.name) |
| |
| # Test moving the system. |
| initial_X = numpy.matrix([[0.0], [0.0]]) |
| augmented_R = numpy.matrix(numpy.zeros((3, 1))) |
| augmented_R[0:2, :] = R |
| RunTest(plant, |
| end_goal=augmented_R, |
| controller=controller, |
| observer=observer, |
| duration=2.0, |
| use_profile=True, |
| max_velocity=max_velocity, |
| max_acceleration=max_acceleration) |
| |
| |
| def WriteAngularSystem(params, plant_files, controller_files, year_namespaces): |
| """Writes out the constants for a angular system to a file. |
| |
| Args: |
| params: list of AngularSystemParams or AngularSystemParams, the |
| parameters defining the system. |
| plant_files: list of strings, the cc and h files for the plant. |
| controller_files: list of strings, the cc and h files for the integral |
| controller. |
| year_namespaces: list of strings, the namespace list to use. |
| """ |
| # Write the generated constants out to a file. |
| angular_systems = [] |
| integral_angular_systems = [] |
| |
| if type(params) is list: |
| name = params[0].name |
| for index, param in enumerate(params): |
| angular_systems.append( |
| AngularSystem(param, param.name + str(index))) |
| integral_angular_systems.append( |
| IntegralAngularSystem(param, |
| 'Integral' + param.name + str(index))) |
| else: |
| name = params.name |
| angular_systems.append(AngularSystem(params, params.name)) |
| integral_angular_systems.append( |
| IntegralAngularSystem(params, 'Integral' + params.name)) |
| |
| loop_writer = control_loop.ControlLoopWriter(name, |
| angular_systems, |
| namespaces=year_namespaces) |
| loop_writer.AddConstant( |
| control_loop.Constant('kOutputRatio', '%f', angular_systems[0].G)) |
| loop_writer.AddConstant( |
| control_loop.Constant('kFreeSpeed', '%f', |
| angular_systems[0].motor.free_speed)) |
| loop_writer.Write(plant_files[0], plant_files[1]) |
| |
| integral_loop_writer = control_loop.ControlLoopWriter( |
| 'Integral' + name, |
| integral_angular_systems, |
| namespaces=year_namespaces) |
| integral_loop_writer.Write(controller_files[0], controller_files[1]) |