Run yapf on all python files in the repo

Signed-off-by: Ravago Jones <ravagojones@gmail.com>
Change-Id: I221e04c3f517fab8535b22551553799e0fee7a80
diff --git a/y2017/control_loops/python/turret.py b/y2017/control_loops/python/turret.py
index e67904d..6407133 100755
--- a/y2017/control_loops/python/turret.py
+++ b/y2017/control_loops/python/turret.py
@@ -12,166 +12,176 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
+
 
 class Turret(control_loop.ControlLoop):
-  def __init__(self, name='Turret'):
-    super(Turret, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.71
-    # Stall Current in Amps
-    self.stall_current = 134
-    self.free_speed_rpm = 18730.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60.0
-    # Free Current in Amps
-    self.free_current = 0.7
 
-    # Resistance of the motor
-    self.resistance = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-               (12.0 - self.resistance * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = (12.0 / 60.0) * (11.0 / 94.0)
+    def __init__(self, name='Turret'):
+        super(Turret, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.71
+        # Stall Current in Amps
+        self.stall_current = 134
+        self.free_speed_rpm = 18730.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60.0
+        # Free Current in Amps
+        self.free_current = 0.7
 
-    # Motor inertia in kg * m^2
-    self.motor_inertia = 0.00001187
+        # Resistance of the motor
+        self.resistance = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.resistance * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = (12.0 / 60.0) * (11.0 / 94.0)
 
-    # Moment of inertia, measured in CAD.
-    # Extra mass to compensate for friction is added on.
-    self.J = 0.06 + self.motor_inertia * ((1.0 / self.G) ** 2.0)
-    glog.debug('Turret J is: %f', self.J)
+        # Motor inertia in kg * m^2
+        self.motor_inertia = 0.00001187
 
-    # Control loop time step
-    self.dt = 0.005
+        # Moment of inertia, measured in CAD.
+        # Extra mass to compensate for friction is added on.
+        self.J = 0.06 + self.motor_inertia * ((1.0 / self.G)**2.0)
+        glog.debug('Turret J is: %f', self.J)
 
-    # State is [position, velocity]
-    # Input is [Voltage]
+        # Control loop time step
+        self.dt = 0.005
 
-    C1 = self.Kt / (self.resistance * self.J * self.Kv * self.G * self.G)
-    C2 = self.Kt / (self.J * self.resistance * self.G)
+        # State is [position, velocity]
+        # Input is [Voltage]
 
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -C1]])
+        C1 = self.Kt / (self.resistance * self.J * self.Kv * self.G * self.G)
+        C2 = self.Kt / (self.J * self.resistance * self.G)
 
-    # Start with the unmodified input
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [C2]])
+        self.A_continuous = numpy.matrix([[0, 1], [0, -C1]])
 
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        # Start with the unmodified input
+        self.B_continuous = numpy.matrix([[0], [C2]])
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    controllability = controls.ctrb(self.A, self.B)
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    glog.debug('Free speed is %f',
-               -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
+        controllability = controls.ctrb(self.A, self.B)
 
-    # Calculate the LQR controller gain
-    q_pos = 0.20
-    q_vel = 5.0
-    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_vel ** 2.0))]])
+        glog.debug('Free speed is %f',
+                   -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
 
-    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        # Calculate the LQR controller gain
+        q_pos = 0.20
+        q_vel = 5.0
+        self.Q = numpy.matrix([[(1.0 / (q_pos**2.0)), 0.0],
+                               [0.0, (1.0 / (q_vel**2.0))]])
 
-    # Calculate the feed forwards gain.
-    q_pos_ff = 0.005
-    q_vel_ff = 1.0
-    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
+        self.R = numpy.matrix([[(1.0 / (12.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        # Calculate the feed forwards gain.
+        q_pos_ff = 0.005
+        q_vel_ff = 1.0
+        self.Qff = numpy.matrix([[(1.0 / (q_pos_ff**2.0)), 0.0],
+                                 [0.0, (1.0 / (q_vel_ff**2.0))]])
 
-    q_pos = 0.10
-    q_vel = 1.65
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
-                           [0.0, (q_vel ** 2.0)]])
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    r_volts = 0.025
-    self.R = numpy.matrix([[(r_volts ** 2.0)]])
+        q_pos = 0.10
+        q_vel = 1.65
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0], [0.0, (q_vel**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_volts = 0.025
+        self.R = numpy.matrix([[(r_volts**2.0)]])
 
-    # The box formed by U_min and U_max must encompass all possible values,
-    # or else Austin's code gets angry.
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        # The box formed by U_min and U_max must encompass all possible values,
+        # or else Austin's code gets angry.
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
+
 
 class IntegralTurret(Turret):
-  def __init__(self, name='IntegralTurret'):
-    super(IntegralTurret, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='IntegralTurret'):
+        super(IntegralTurret, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.12
-    q_vel = 2.00
-    q_voltage = 3.0
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.12
+        q_vel = 2.00
+        q_voltage = 3.0
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
 
-    self.InitializeState()
+        self.Kff = numpy.concatenate(
+            (self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+
+        self.InitializeState()
+
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, turret, end_goal,
-             controller_turret,
-             observer_turret=None,
-             iterations=200):
-    """Runs the turret plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
+
+    def run_test(self,
+                 turret,
+                 end_goal,
+                 controller_turret,
+                 observer_turret=None,
+                 iterations=200):
+        """Runs the turret plant with an initial condition and goal.
 
       Args:
         turret: turret object to use.
@@ -183,130 +193,138 @@
         iterations: Number of timesteps to run the model for.
     """
 
-    if controller_turret is None:
-      controller_turret = turret
+        if controller_turret is None:
+            controller_turret = turret
 
-    vbat = 12.0
+        vbat = 12.0
 
-    if self.t:
-      initial_t = self.t[-1] + turret.dt
-    else:
-      initial_t = 0
+        if self.t:
+            initial_t = self.t[-1] + turret.dt
+        else:
+            initial_t = 0
 
-    goal = numpy.concatenate((turret.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
+        goal = numpy.concatenate((turret.X, numpy.matrix(numpy.zeros((1, 1)))),
+                                 axis=0)
 
-    profile = TrapezoidProfile(turret.dt)
-    profile.set_maximum_acceleration(100.0)
-    profile.set_maximum_velocity(7.0)
-    profile.SetGoal(goal[0, 0])
+        profile = TrapezoidProfile(turret.dt)
+        profile.set_maximum_acceleration(100.0)
+        profile.set_maximum_velocity(7.0)
+        profile.SetGoal(goal[0, 0])
 
-    U_last = numpy.matrix(numpy.zeros((1, 1)))
-    for i in range(iterations):
-      observer_turret.Y = turret.Y
-      observer_turret.CorrectObserver(U_last)
+        U_last = numpy.matrix(numpy.zeros((1, 1)))
+        for i in range(iterations):
+            observer_turret.Y = turret.Y
+            observer_turret.CorrectObserver(U_last)
 
-      self.offset.append(observer_turret.X_hat[2, 0])
-      self.x_hat.append(observer_turret.X_hat[0, 0])
+            self.offset.append(observer_turret.X_hat[2, 0])
+            self.x_hat.append(observer_turret.X_hat[0, 0])
 
-      next_goal = numpy.concatenate(
-          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
-           numpy.matrix(numpy.zeros((1, 1)))),
-          axis=0)
+            next_goal = numpy.concatenate(
+                (profile.Update(end_goal[0, 0], end_goal[1, 0]),
+                 numpy.matrix(numpy.zeros((1, 1)))),
+                axis=0)
 
-      ff_U = controller_turret.Kff * (next_goal - observer_turret.A * goal)
+            ff_U = controller_turret.Kff * (next_goal -
+                                            observer_turret.A * goal)
 
-      U_uncapped = controller_turret.K * (goal - observer_turret.X_hat) + ff_U
-      U_uncapped = controller_turret.K * (end_goal - observer_turret.X_hat)
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(turret.X[0, 0])
+            U_uncapped = controller_turret.K * (goal -
+                                                observer_turret.X_hat) + ff_U
+            U_uncapped = controller_turret.K * (end_goal -
+                                                observer_turret.X_hat)
+            U = U_uncapped.copy()
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(turret.X[0, 0])
 
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-      self.v.append(turret.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / turret.dt)
+            self.v.append(turret.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / turret.dt)
 
-      offset = 0.0
-      if i > 100:
-        offset = 2.0
-      turret.Update(U + offset)
+            offset = 0.0
+            if i > 100:
+                offset = 2.0
+            turret.Update(U + offset)
 
-      observer_turret.PredictObserver(U)
+            observer_turret.PredictObserver(U)
 
-      self.t.append(initial_t + i * turret.dt)
-      self.u.append(U[0, 0])
+            self.t.append(initial_t + i * turret.dt)
+            self.u.append(U[0, 0])
 
-      ff_U -= U_uncapped - U
-      goal = controller_turret.A * goal + controller_turret.B * ff_U
+            ff_U -= U_uncapped - U
+            goal = controller_turret.A * goal + controller_turret.B * ff_U
 
-      if U[0, 0] != U_uncapped[0, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+            if U[0, 0] != U_uncapped[0, 0]:
+                profile.MoveCurrentState(
+                    numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
 
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr(end_goal - goal))
-    glog.debug('error %s', repr(observer_turret.X_hat - end_goal))
+        glog.debug('Time: %f', self.t[-1])
+        glog.debug('goal_error %s', repr(end_goal - goal))
+        glog.debug('error %s', repr(observer_turret.X_hat - end_goal))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.x, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.x, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
 
-    pylab.show()
+        pylab.show()
 
 
 def main(argv):
-  argv = FLAGS(argv)
-  glog.init()
+    argv = FLAGS(argv)
+    glog.init()
 
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  turret = Turret()
-  turret_controller = IntegralTurret()
-  observer_turret = IntegralTurret()
+    turret = Turret()
+    turret_controller = IntegralTurret()
+    observer_turret = IntegralTurret()
 
-  # Test moving the turret with constant separation.
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[numpy.pi/2.0], [0.0], [0.0]])
-  scenario_plotter.run_test(turret, end_goal=R,
-                            controller_turret=turret_controller,
-                            observer_turret=observer_turret, iterations=200)
+    # Test moving the turret with constant separation.
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[numpy.pi / 2.0], [0.0], [0.0]])
+    scenario_plotter.run_test(turret,
+                              end_goal=R,
+                              controller_turret=turret_controller,
+                              observer_turret=observer_turret,
+                              iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  # Write the generated constants out to a file.
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name for the turret and integral turret.')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'turret']
-    turret = Turret('Turret')
-    loop_writer = control_loop.ControlLoopWriter('Turret', [turret],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', turret.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', turret.G))
-    loop_writer.Write(argv[1], argv[2])
+    # Write the generated constants out to a file.
+    if len(argv) != 5:
+        glog.fatal(
+            'Expected .h file name and .cc file name for the turret and integral turret.'
+        )
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'turret']
+        turret = Turret('Turret')
+        loop_writer = control_loop.ControlLoopWriter('Turret', [turret],
+                                                     namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', turret.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', turret.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_turret = IntegralTurret('IntegralTurret')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralTurret', [integral_turret],
-        namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_turret = IntegralTurret('IntegralTurret')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralTurret', [integral_turret], namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
+
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    sys.exit(main(sys.argv))