Run yapf on all python files in the repo

Signed-off-by: Ravago Jones <ravagojones@gmail.com>
Change-Id: I221e04c3f517fab8535b22551553799e0fee7a80
diff --git a/y2017/control_loops/python/column.py b/y2017/control_loops/python/column.py
index 0122b58..7573c16 100755
--- a/y2017/control_loops/python/column.py
+++ b/y2017/control_loops/python/column.py
@@ -37,12 +37,12 @@
         self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
         self.B_continuous = numpy.matrix(numpy.zeros((3, 2)))
 
-        self.A_continuous[0, 0] = -(
-            self.indexer.Kt / self.indexer.Kv /
-            (self.indexer.J * self.indexer.resistance * self.indexer.G *
-             self.indexer.G) + self.turret.Kt / self.turret.Kv /
-            (self.indexer.J * self.turret.resistance * self.turret.G *
-             self.turret.G))
+        self.A_continuous[0, 0] = -(self.indexer.Kt / self.indexer.Kv /
+                                    (self.indexer.J * self.indexer.resistance *
+                                     self.indexer.G * self.indexer.G) +
+                                    self.turret.Kt / self.turret.Kv /
+                                    (self.indexer.J * self.turret.resistance *
+                                     self.turret.G * self.turret.G))
         self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / (
             self.indexer.J * self.turret.resistance * self.turret.G *
             self.turret.G)
@@ -142,8 +142,11 @@
         r_pos = 0.05
         self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]])
 
-        self.KalmanGain, self.Q_steady = controls.kalman(
-            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
         self.L = self.A * self.KalmanGain
 
         self.InitializeState()
@@ -209,8 +212,11 @@
         r_pos = 0.05
         self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]])
 
-        self.KalmanGain, self.Q_steady = controls.kalman(
-            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
         self.L = self.A * self.KalmanGain
 
         self.InitializeState()
@@ -282,12 +288,13 @@
             self.x_hat.append(observer_column.X_hat[0, 0])
 
             next_goal = numpy.concatenate(
-                (end_goal[0:2, :], profile.Update(
-                    end_goal[2, 0], end_goal[3, 0]), end_goal[4:6, :]),
+                (end_goal[0:2, :],
+                 profile.Update(end_goal[2, 0],
+                                end_goal[3, 0]), end_goal[4:6, :]),
                 axis=0)
 
-            ff_U = controller_column.Kff * (
-                next_goal - observer_column.A * goal)
+            ff_U = controller_column.Kff * (next_goal -
+                                            observer_column.A * goal)
             fb_U = controller_column.K * (goal - observer_column.X_hat)
             self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0)
             self.ui_fb.append(fb_U[0, 0])
@@ -373,12 +380,11 @@
 
     initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
     R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]])
-    scenario_plotter.run_test(
-        column,
-        end_goal=R,
-        controller_column=column_controller,
-        observer_column=observer_column,
-        iterations=400)
+    scenario_plotter.run_test(column,
+                              end_goal=R,
+                              controller_column=column_controller,
+                              observer_column=observer_column,
+                              iterations=400)
 
     if FLAGS.plot:
         scenario_plotter.Plot()
@@ -388,8 +394,8 @@
     else:
         namespaces = ['y2017', 'control_loops', 'superstructure', 'column']
         column = Column('Column')
-        loop_writer = control_loop.ControlLoopWriter(
-            'Column', [column], namespaces=namespaces)
+        loop_writer = control_loop.ControlLoopWriter('Column', [column],
+                                                     namespaces=namespaces)
         loop_writer.AddConstant(
             control_loop.Constant('kIndexerFreeSpeed', '%f',
                                   column.indexer.free_speed))
@@ -405,15 +411,15 @@
 
         # IntegralColumn controller 1 will disable the indexer.
         integral_column = IntegralColumn('IntegralColumn')
-        disabled_integral_column = IntegralColumn(
-            'DisabledIntegralColumn', disable_indexer=True)
+        disabled_integral_column = IntegralColumn('DisabledIntegralColumn',
+                                                  disable_indexer=True)
         integral_loop_writer = control_loop.ControlLoopWriter(
             'IntegralColumn', [integral_column, disabled_integral_column],
             namespaces=namespaces)
         integral_loop_writer.Write(argv[3], argv[4])
 
-        stuck_integral_column = IntegralColumn(
-            'StuckIntegralColumn', voltage_error_noise=8.0)
+        stuck_integral_column = IntegralColumn('StuckIntegralColumn',
+                                               voltage_error_noise=8.0)
         stuck_integral_loop_writer = control_loop.ControlLoopWriter(
             'StuckIntegralColumn', [stuck_integral_column],
             namespaces=namespaces)
diff --git a/y2017/control_loops/python/drivetrain.py b/y2017/control_loops/python/drivetrain.py
index 652fcf4..b1ebcd8 100755
--- a/y2017/control_loops/python/drivetrain.py
+++ b/y2017/control_loops/python/drivetrain.py
@@ -11,17 +11,17 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 
-kDrivetrain = drivetrain.DrivetrainParams(
-    J=6.0,
-    mass=52,
-    robot_radius=0.59055 / 2.0,
-    wheel_radius=0.08255 / 2.0,
-    G=11.0 / 60.0,
-    q_pos_low=0.12,
-    q_pos_high=0.14,
-    q_vel_low=1.0,
-    q_vel_high=0.95,
-    has_imu=False)
+kDrivetrain = drivetrain.DrivetrainParams(J=6.0,
+                                          mass=52,
+                                          robot_radius=0.59055 / 2.0,
+                                          wheel_radius=0.08255 / 2.0,
+                                          G=11.0 / 60.0,
+                                          q_pos_low=0.12,
+                                          q_pos_high=0.14,
+                                          q_vel_low=1.0,
+                                          q_vel_high=0.95,
+                                          has_imu=False)
+
 
 def main(argv):
     argv = FLAGS(argv)
@@ -35,5 +35,6 @@
         # Write the generated constants out to a file.
         drivetrain.WriteDrivetrain(argv[1:3], argv[3:5], 'y2017', kDrivetrain)
 
+
 if __name__ == '__main__':
     sys.exit(main(sys.argv))
diff --git a/y2017/control_loops/python/hood.py b/y2017/control_loops/python/hood.py
index c405bb2..c77d134 100755
--- a/y2017/control_loops/python/hood.py
+++ b/y2017/control_loops/python/hood.py
@@ -118,8 +118,11 @@
         r_volts = 0.025
         self.R = numpy.matrix([[(r_volts**2.0)]])
 
-        self.KalmanGain, self.Q_steady = controls.kalman(
-            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
 
         glog.debug('Kal %s', repr(self.KalmanGain))
         self.L = self.A * self.KalmanGain
@@ -165,8 +168,11 @@
         r_pos = 0.001
         self.R = numpy.matrix([[(r_pos**2.0)]])
 
-        self.KalmanGain, self.Q_steady = controls.kalman(
-            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
         self.L = self.A * self.KalmanGain
 
         self.K_unaugmented = self.K
@@ -244,7 +250,8 @@
 
             ff_U = controller_hood.Kff * (next_goal - observer_hood.A * goal)
 
-            U_uncapped = controller_hood.K * (goal - observer_hood.X_hat) + ff_U
+            U_uncapped = controller_hood.K * (goal -
+                                              observer_hood.X_hat) + ff_U
             U = U_uncapped.copy()
             U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
             self.x.append(hood.X[0, 0])
@@ -310,12 +317,11 @@
     # Test moving the hood with constant separation.
     initial_X = numpy.matrix([[0.0], [0.0]])
     R = numpy.matrix([[numpy.pi / 4.0], [0.0], [0.0]])
-    scenario_plotter.run_test(
-        hood,
-        end_goal=R,
-        controller_hood=hood_controller,
-        observer_hood=observer_hood,
-        iterations=200)
+    scenario_plotter.run_test(hood,
+                              end_goal=R,
+                              controller_hood=hood_controller,
+                              observer_hood=observer_hood,
+                              iterations=200)
 
     if FLAGS.plot:
         scenario_plotter.Plot()
@@ -328,8 +334,8 @@
     else:
         namespaces = ['y2017', 'control_loops', 'superstructure', 'hood']
         hood = Hood('Hood')
-        loop_writer = control_loop.ControlLoopWriter(
-            'Hood', [hood], namespaces=namespaces)
+        loop_writer = control_loop.ControlLoopWriter('Hood', [hood],
+                                                     namespaces=namespaces)
         loop_writer.AddConstant(
             control_loop.Constant('kFreeSpeed', '%f', hood.free_speed))
         loop_writer.AddConstant(
@@ -340,7 +346,8 @@
         integral_loop_writer = control_loop.ControlLoopWriter(
             'IntegralHood', [integral_hood], namespaces=namespaces)
         integral_loop_writer.AddConstant(
-            control_loop.Constant('kLastReduction', '%f', integral_hood.last_G))
+            control_loop.Constant('kLastReduction', '%f',
+                                  integral_hood.last_G))
         integral_loop_writer.Write(argv[3], argv[4])
 
 
diff --git a/y2017/control_loops/python/indexer.py b/y2017/control_loops/python/indexer.py
index 7312e57..d4c3fe6 100755
--- a/y2017/control_loops/python/indexer.py
+++ b/y2017/control_loops/python/indexer.py
@@ -12,188 +12,203 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
 
 gflags.DEFINE_bool('stall', False, 'If true, stall the indexer.')
 
+
 class VelocityIndexer(control_loop.ControlLoop):
-  def __init__(self, name='VelocityIndexer'):
-    super(VelocityIndexer, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.71
-    # Stall Current in Amps
-    self.stall_current = 134
-    self.free_speed_rpm = 18730.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60.0
-    # Free Current in Amps
-    self.free_current = 0.7
-    # Moment of inertia of the indexer halves in kg m^2
-    # This is measured as Iyy in CAD (the moment of inertia around the Y axis).
-    # Inner part of indexer -> Iyy = 59500 lb * mm * mm
-    # Inner spins with 12 / 48 * 18 / 48 * 24 / 36 * 16 / 72
-    # Outer part of indexer -> Iyy = 210000 lb * mm * mm
-    # 1 775 pro -> 12 / 48 * 18 / 48 * 30 / 422
 
-    self.J_inner = 0.0269
-    self.J_outer = 0.0952
-    # Gear ratios for the inner and outer parts.
-    self.G_inner = (12.0 / 48.0) * (20.0 / 34.0) * (18.0 / 36.0) * (12.0 / 84.0)
-    self.G_outer = (12.0 / 48.0) * (20.0 / 34.0) * (18.0 / 36.0) * (24.0 / 420.0)
+    def __init__(self, name='VelocityIndexer'):
+        super(VelocityIndexer, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.71
+        # Stall Current in Amps
+        self.stall_current = 134
+        self.free_speed_rpm = 18730.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60.0
+        # Free Current in Amps
+        self.free_current = 0.7
+        # Moment of inertia of the indexer halves in kg m^2
+        # This is measured as Iyy in CAD (the moment of inertia around the Y axis).
+        # Inner part of indexer -> Iyy = 59500 lb * mm * mm
+        # Inner spins with 12 / 48 * 18 / 48 * 24 / 36 * 16 / 72
+        # Outer part of indexer -> Iyy = 210000 lb * mm * mm
+        # 1 775 pro -> 12 / 48 * 18 / 48 * 30 / 422
 
-    # Motor inertia in kg m^2
-    self.motor_inertia = 0.00001187
+        self.J_inner = 0.0269
+        self.J_outer = 0.0952
+        # Gear ratios for the inner and outer parts.
+        self.G_inner = (12.0 / 48.0) * (20.0 / 34.0) * (18.0 / 36.0) * (12.0 /
+                                                                        84.0)
+        self.G_outer = (12.0 / 48.0) * (20.0 / 34.0) * (18.0 / 36.0) * (24.0 /
+                                                                        420.0)
 
-    # The output coordinate system is in radians for the inner part of the
-    # indexer.
-    # Compute the effective moment of inertia assuming all the mass is in that
-    # coordinate system.
-    self.J = (
-        self.J_inner * self.G_inner * self.G_inner +
-        self.J_outer * self.G_outer * self.G_outer) / (self.G_inner * self.G_inner) + \
-        self.motor_inertia * ((1.0 / self.G_inner) ** 2.0)
-    glog.debug('Indexer J is %f', self.J)
-    self.G = self.G_inner
+        # Motor inertia in kg m^2
+        self.motor_inertia = 0.00001187
 
-    # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.resistance = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-              (12.0 - self.resistance * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Control loop time step
-    self.dt = 0.005
+        # The output coordinate system is in radians for the inner part of the
+        # indexer.
+        # Compute the effective moment of inertia assuming all the mass is in that
+        # coordinate system.
+        self.J = (
+            self.J_inner * self.G_inner * self.G_inner +
+            self.J_outer * self.G_outer * self.G_outer) / (self.G_inner * self.G_inner) + \
+            self.motor_inertia * ((1.0 / self.G_inner) ** 2.0)
+        glog.debug('Indexer J is %f', self.J)
+        self.G = self.G_inner
 
-    # State feedback matrices
-    # [angular velocity]
-    self.A_continuous = numpy.matrix(
-        [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.resistance)]])
-    self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.G * self.resistance)]])
-    self.C = numpy.matrix([[1]])
-    self.D = numpy.matrix([[0]])
+        # Resistance of the motor, divided by 2 to account for the 2 motors
+        self.resistance = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.resistance * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Control loop time step
+        self.dt = 0.005
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [angular velocity]
+        self.A_continuous = numpy.matrix([[
+            -self.Kt / self.Kv / (self.J * self.G * self.G * self.resistance)
+        ]])
+        self.B_continuous = numpy.matrix(
+            [[self.Kt / (self.J * self.G * self.resistance)]])
+        self.C = numpy.matrix([[1]])
+        self.D = numpy.matrix([[0]])
 
-    self.PlaceControllerPoles([.75])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.PlaceObserverPoles([0.3])
+        self.PlaceControllerPoles([.75])
 
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.PlaceObserverPoles([0.3])
 
-    qff_vel = 8.0
-    self.Qff = numpy.matrix([[1.0 / (qff_vel ** 2.0)]])
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
-    self.InitializeState()
+        qff_vel = 8.0
+        self.Qff = numpy.matrix([[1.0 / (qff_vel**2.0)]])
+
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        self.InitializeState()
 
 
 class Indexer(VelocityIndexer):
-  def __init__(self, name='Indexer'):
-    super(Indexer, self).__init__(name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='Indexer'):
+        super(Indexer, self).__init__(name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
-    self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
-    self.A_continuous[0, 1] = 1
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
-    self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+        self.A_continuous[1:2, 1:2] = self.A_continuous_unaugmented
+        self.A_continuous[0, 1] = 1
 
-    # State feedback matrices
-    # [position, angular velocity]
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+        self.B_continuous[1:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [position, angular velocity]
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    self.rpl = .45
-    self.ipl = 0.07
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 2)))
-    self.K[0, 1:2] = self.K_unaugmented
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 2)))
-    self.Kff[0, 1:2] = self.Kff_unaugmented
+        self.rpl = .45
+        self.ipl = 0.07
+        self.PlaceObserverPoles(
+            [self.rpl + 1j * self.ipl, self.rpl - 1j * self.ipl])
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 2)))
+        self.K[0, 1:2] = self.K_unaugmented
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 2)))
+        self.Kff[0, 1:2] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class IntegralIndexer(Indexer):
-  def __init__(self, name="IntegralIndexer", voltage_error_noise=None):
-    super(IntegralIndexer, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name="IntegralIndexer", voltage_error_noise=None):
+        super(IntegralIndexer, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.01
-    q_vel = 2.0
-    q_voltage = 0.6
-    if voltage_error_noise is not None:
-      q_voltage = voltage_error_noise
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        q_pos = 0.01
+        q_vel = 2.0
+        q_voltage = 0.6
+        if voltage_error_noise is not None:
+            q_voltage = voltage_error_noise
 
-    r_pos = 0.001
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.001
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
-    self.Kff_unaugmented = self.Kff
-    self.Kff = numpy.matrix(numpy.zeros((1, 3)))
-    self.Kff[0, 0:2] = self.Kff_unaugmented
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
+        self.Kff_unaugmented = self.Kff
+        self.Kff = numpy.matrix(numpy.zeros((1, 3)))
+        self.Kff[0, 0:2] = self.Kff_unaugmented
+
+        self.InitializeState()
 
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.stall_ratio = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, indexer, goal, iterations=200, controller_indexer=None,
-             observer_indexer=None):
-    """Runs the indexer plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.stall_ratio = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
+
+    def run_test(self,
+                 indexer,
+                 goal,
+                 iterations=200,
+                 controller_indexer=None,
+                 observer_indexer=None):
+        """Runs the indexer plant with an initial condition and goal.
 
       Args:
         indexer: Indexer object to use.
@@ -205,141 +220,148 @@
             should use the actual state.
     """
 
-    if controller_indexer is None:
-      controller_indexer = indexer
+        if controller_indexer is None:
+            controller_indexer = indexer
 
-    vbat = 12.0
+        vbat = 12.0
 
-    if self.t:
-      initial_t = self.t[-1] + indexer.dt
-    else:
-      initial_t = 0
-
-    for i in range(iterations):
-      X_hat = indexer.X
-
-      if observer_indexer is not None:
-        X_hat = observer_indexer.X_hat
-        observer_indexer.Y = indexer.Y
-        observer_indexer.CorrectObserver(numpy.matrix([[0.0]]))
-        self.x_hat.append(observer_indexer.X_hat[1, 0])
-        self.offset.append(observer_indexer.X_hat[2, 0])
-
-      ff_U = controller_indexer.Kff * (goal - observer_indexer.A * goal)
-
-      U = controller_indexer.K * (goal - X_hat) + ff_U
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(indexer.X[0, 0])
-
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
-
-      self.v.append(indexer.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / indexer.dt)
-
-      applied_U = U.copy()
-      if i >= 40:
-        applied_U -= 2
-
-      if FLAGS.stall and i >= 40:
-        indexer.X[1, 0] = 0.0
-      else:
-        indexer.Update(applied_U)
-
-      if observer_indexer is not None:
-        clipped_u = U[0, 0]
-        clip_u_value = 3.0
-        if clipped_u < 0:
-          clipped_u = min(clipped_u, -clip_u_value)
+        if self.t:
+            initial_t = self.t[-1] + indexer.dt
         else:
-          clipped_u = max(clipped_u, clip_u_value)
+            initial_t = 0
 
-        self.stall_ratio.append(10 * (-self.offset[-1] / clipped_u))
+        for i in range(iterations):
+            X_hat = indexer.X
 
-        observer_indexer.PredictObserver(U)
+            if observer_indexer is not None:
+                X_hat = observer_indexer.X_hat
+                observer_indexer.Y = indexer.Y
+                observer_indexer.CorrectObserver(numpy.matrix([[0.0]]))
+                self.x_hat.append(observer_indexer.X_hat[1, 0])
+                self.offset.append(observer_indexer.X_hat[2, 0])
 
-      self.t.append(initial_t + i * indexer.dt)
-      self.u.append(U[0, 0])
+            ff_U = controller_indexer.Kff * (goal - observer_indexer.A * goal)
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.v, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+            U = controller_indexer.K * (goal - X_hat) + ff_U
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(indexer.X[0, 0])
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.plot(self.t, self.stall_ratio, label='stall_ratio')
-    pylab.plot(self.t,
-               [10.0 if x > 6.0 else 0.0 for x in self.stall_ratio],
-               label='is_stalled')
-    pylab.legend()
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+            self.v.append(indexer.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / indexer.dt)
 
-    pylab.show()
+            applied_U = U.copy()
+            if i >= 40:
+                applied_U -= 2
+
+            if FLAGS.stall and i >= 40:
+                indexer.X[1, 0] = 0.0
+            else:
+                indexer.Update(applied_U)
+
+            if observer_indexer is not None:
+                clipped_u = U[0, 0]
+                clip_u_value = 3.0
+                if clipped_u < 0:
+                    clipped_u = min(clipped_u, -clip_u_value)
+                else:
+                    clipped_u = max(clipped_u, clip_u_value)
+
+                self.stall_ratio.append(10 * (-self.offset[-1] / clipped_u))
+
+                observer_indexer.PredictObserver(U)
+
+            self.t.append(initial_t + i * indexer.dt)
+            self.u.append(U[0, 0])
+
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.v, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
+
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.plot(self.t, self.stall_ratio, label='stall_ratio')
+        pylab.plot(self.t,
+                   [10.0 if x > 6.0 else 0.0 for x in self.stall_ratio],
+                   label='is_stalled')
+        pylab.legend()
+
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
+
+        pylab.show()
 
 
 def main(argv):
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  indexer = Indexer()
-  indexer_controller = IntegralIndexer()
-  observer_indexer = IntegralIndexer()
+    indexer = Indexer()
+    indexer_controller = IntegralIndexer()
+    observer_indexer = IntegralIndexer()
 
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[0.0], [20.0], [0.0]])
-  scenario_plotter.run_test(indexer, goal=R, controller_indexer=indexer_controller,
-                            observer_indexer=observer_indexer, iterations=200)
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[0.0], [20.0], [0.0]])
+    scenario_plotter.run_test(indexer,
+                              goal=R,
+                              controller_indexer=indexer_controller,
+                              observer_indexer=observer_indexer,
+                              iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  indexer = Indexer()
-  indexer_controller = IntegralIndexer(voltage_error_noise=1.5)
-  observer_indexer = IntegralIndexer(voltage_error_noise=1.5)
+    indexer = Indexer()
+    indexer_controller = IntegralIndexer(voltage_error_noise=1.5)
+    observer_indexer = IntegralIndexer(voltage_error_noise=1.5)
 
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[0.0], [20.0], [0.0]])
-  scenario_plotter.run_test(indexer, goal=R, controller_indexer=indexer_controller,
-                            observer_indexer=observer_indexer, iterations=200)
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[0.0], [20.0], [0.0]])
+    scenario_plotter.run_test(indexer,
+                              goal=R,
+                              controller_indexer=indexer_controller,
+                              observer_indexer=observer_indexer,
+                              iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  if len(argv) != 7:
-    glog.fatal('Expected .h file name and .cc file names')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'indexer']
-    indexer = Indexer('Indexer')
-    loop_writer = control_loop.ControlLoopWriter('Indexer', [indexer],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', indexer.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', indexer.G))
-    loop_writer.Write(argv[1], argv[2])
+    if len(argv) != 7:
+        glog.fatal('Expected .h file name and .cc file names')
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'indexer']
+        indexer = Indexer('Indexer')
+        loop_writer = control_loop.ControlLoopWriter('Indexer', [indexer],
+                                                     namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', indexer.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', indexer.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_indexer = IntegralIndexer('IntegralIndexer')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralIndexer', [integral_indexer], namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_indexer = IntegralIndexer('IntegralIndexer')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralIndexer', [integral_indexer], namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
 
-    stuck_integral_indexer = IntegralIndexer('StuckIntegralIndexer',
-                                             voltage_error_noise=1.5)
-    stuck_integral_loop_writer = control_loop.ControlLoopWriter(
-        'StuckIntegralIndexer', [stuck_integral_indexer], namespaces=namespaces)
-    stuck_integral_loop_writer.Write(argv[5], argv[6])
+        stuck_integral_indexer = IntegralIndexer('StuckIntegralIndexer',
+                                                 voltage_error_noise=1.5)
+        stuck_integral_loop_writer = control_loop.ControlLoopWriter(
+            'StuckIntegralIndexer', [stuck_integral_indexer],
+            namespaces=namespaces)
+        stuck_integral_loop_writer.Write(argv[5], argv[6])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))
diff --git a/y2017/control_loops/python/polydrivetrain.py b/y2017/control_loops/python/polydrivetrain.py
index 498a2c3..e181ef5 100755
--- a/y2017/control_loops/python/polydrivetrain.py
+++ b/y2017/control_loops/python/polydrivetrain.py
@@ -12,20 +12,22 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
+
 
 def main(argv):
-  if FLAGS.plot:
-    polydrivetrain.PlotPolyDrivetrainMotions(drivetrain.kDrivetrain)
-  elif len(argv) != 7:
-    glog.fatal('Expected .h file name and .cc file name')
-  else:
-    polydrivetrain.WritePolyDrivetrain(argv[1:3], argv[3:5], argv[5:7], 'y2017',
-                                       drivetrain.kDrivetrain)
+    if FLAGS.plot:
+        polydrivetrain.PlotPolyDrivetrainMotions(drivetrain.kDrivetrain)
+    elif len(argv) != 7:
+        glog.fatal('Expected .h file name and .cc file name')
+    else:
+        polydrivetrain.WritePolyDrivetrain(argv[1:3], argv[3:5], argv[5:7],
+                                           'y2017', drivetrain.kDrivetrain)
+
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  glog.init()
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))
diff --git a/y2017/control_loops/python/polydrivetrain_test.py b/y2017/control_loops/python/polydrivetrain_test.py
index 8e0176e..a5bac4a 100755
--- a/y2017/control_loops/python/polydrivetrain_test.py
+++ b/y2017/control_loops/python/polydrivetrain_test.py
@@ -10,73 +10,72 @@
 
 
 class TestVelocityDrivetrain(unittest.TestCase):
-  def MakeBox(self, x1_min, x1_max, x2_min, x2_max):
-    H = numpy.matrix([[1, 0],
-                      [-1, 0],
-                      [0, 1],
-                      [0, -1]])
-    K = numpy.matrix([[x1_max],
-                      [-x1_min],
-                      [x2_max],
-                      [-x2_min]])
-    return polytope.HPolytope(H, K)
 
-  def test_coerce_inside(self):
-    """Tests coercion when the point is inside the box."""
-    box = self.MakeBox(1, 2, 1, 2)
+    def MakeBox(self, x1_min, x1_max, x2_min, x2_max):
+        H = numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]])
+        K = numpy.matrix([[x1_max], [-x1_min], [x2_max], [-x2_min]])
+        return polytope.HPolytope(H, K)
 
-    # x1 = x2
-    K = numpy.matrix([[1, -1]])
-    w = 0
+    def test_coerce_inside(self):
+        """Tests coercion when the point is inside the box."""
+        box = self.MakeBox(1, 2, 1, 2)
 
-    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w,
-                                                 numpy.matrix([[1.5], [1.5]])),
-                       numpy.matrix([[1.5], [1.5]]))
+        # x1 = x2
+        K = numpy.matrix([[1, -1]])
+        w = 0
 
-  def test_coerce_outside_intersect(self):
-    """Tests coercion when the line intersects the box."""
-    box = self.MakeBox(1, 2, 1, 2)
+        assert_array_equal(
+            polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[1.5], [1.5]])),
+            numpy.matrix([[1.5], [1.5]]))
 
-    # x1 = x2
-    K = numpy.matrix([[1, -1]])
-    w = 0
+    def test_coerce_outside_intersect(self):
+        """Tests coercion when the line intersects the box."""
+        box = self.MakeBox(1, 2, 1, 2)
 
-    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
-                       numpy.matrix([[2.0], [2.0]]))
+        # x1 = x2
+        K = numpy.matrix([[1, -1]])
+        w = 0
 
-  def test_coerce_outside_no_intersect(self):
-    """Tests coercion when the line does not intersect the box."""
-    box = self.MakeBox(3, 4, 1, 2)
+        assert_array_equal(
+            polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+            numpy.matrix([[2.0], [2.0]]))
 
-    # x1 = x2
-    K = numpy.matrix([[1, -1]])
-    w = 0
+    def test_coerce_outside_no_intersect(self):
+        """Tests coercion when the line does not intersect the box."""
+        box = self.MakeBox(3, 4, 1, 2)
 
-    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
-                       numpy.matrix([[3.0], [2.0]]))
+        # x1 = x2
+        K = numpy.matrix([[1, -1]])
+        w = 0
 
-  def test_coerce_middle_of_edge(self):
-    """Tests coercion when the line intersects the middle of an edge."""
-    box = self.MakeBox(0, 4, 1, 2)
+        assert_array_equal(
+            polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+            numpy.matrix([[3.0], [2.0]]))
 
-    # x1 = x2
-    K = numpy.matrix([[-1, 1]])
-    w = 0
+    def test_coerce_middle_of_edge(self):
+        """Tests coercion when the line intersects the middle of an edge."""
+        box = self.MakeBox(0, 4, 1, 2)
 
-    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
-                       numpy.matrix([[2.0], [2.0]]))
+        # x1 = x2
+        K = numpy.matrix([[-1, 1]])
+        w = 0
 
-  def test_coerce_perpendicular_line(self):
-    """Tests coercion when the line does not intersect and is in quadrant 2."""
-    box = self.MakeBox(1, 2, 1, 2)
+        assert_array_equal(
+            polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+            numpy.matrix([[2.0], [2.0]]))
 
-    # x1 = -x2
-    K = numpy.matrix([[1, 1]])
-    w = 0
+    def test_coerce_perpendicular_line(self):
+        """Tests coercion when the line does not intersect and is in quadrant 2."""
+        box = self.MakeBox(1, 2, 1, 2)
 
-    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
-                       numpy.matrix([[1.0], [1.0]]))
+        # x1 = -x2
+        K = numpy.matrix([[1, 1]])
+        w = 0
+
+        assert_array_equal(
+            polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+            numpy.matrix([[1.0], [1.0]]))
 
 
 if __name__ == '__main__':
-  unittest.main()
+    unittest.main()
diff --git a/y2017/control_loops/python/shooter.py b/y2017/control_loops/python/shooter.py
index be4fb81..47b7217 100755
--- a/y2017/control_loops/python/shooter.py
+++ b/y2017/control_loops/python/shooter.py
@@ -204,8 +204,8 @@
 
         glog.debug('A: \n%s', repr(self.A_continuous))
         glog.debug('eig(A): \n%s', repr(scipy.linalg.eig(self.A_continuous)))
-        glog.debug('schur(A): \n%s', repr(
-            scipy.linalg.schur(self.A_continuous)))
+        glog.debug('schur(A): \n%s',
+                   repr(scipy.linalg.schur(self.A_continuous)))
         glog.debug('A_dt(A): \n%s', repr(self.A))
 
         q_pos = 0.01
@@ -220,15 +220,17 @@
         r_pos = 0.0003
         self.R_continuous = numpy.matrix([[(r_pos**2.0)]])
 
-        _, _, self.Q, self.R = controls.kalmd(
-            A_continuous=self.A_continuous,
-            B_continuous=self.B_continuous,
-            Q_continuous=self.Q_continuous,
-            R_continuous=self.R_continuous,
-            dt=self.dt)
+        _, _, self.Q, self.R = controls.kalmd(A_continuous=self.A_continuous,
+                                              B_continuous=self.B_continuous,
+                                              Q_continuous=self.Q_continuous,
+                                              R_continuous=self.R_continuous,
+                                              dt=self.dt)
 
-        self.KalmanGain, self.P_steady_state = controls.kalman(
-            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.KalmanGain, self.P_steady_state = controls.kalman(A=self.A,
+                                                               B=self.B,
+                                                               C=self.C,
+                                                               Q=self.Q,
+                                                               R=self.R)
         self.L = self.A * self.KalmanGain
 
         self.K_unaugmented = self.K
@@ -363,13 +365,12 @@
         shooter_controller = IntegralShooter()
         observer_shooter_hybrid = IntegralShooter()
 
-        scenario_plotter_int.run_test(
-            shooter,
-            goal=R,
-            controller_shooter=shooter_controller,
-            observer_shooter=observer_shooter_hybrid,
-            iterations=iterations,
-            hybrid_obs=True)
+        scenario_plotter_int.run_test(shooter,
+                                      goal=R,
+                                      controller_shooter=shooter_controller,
+                                      observer_shooter=observer_shooter_hybrid,
+                                      iterations=iterations,
+                                      hybrid_obs=True)
 
         scenario_plotter_int.Plot()
 
@@ -380,8 +381,8 @@
     else:
         namespaces = ['y2017', 'control_loops', 'superstructure', 'shooter']
         shooter = Shooter('Shooter')
-        loop_writer = control_loop.ControlLoopWriter(
-            'Shooter', [shooter], namespaces=namespaces)
+        loop_writer = control_loop.ControlLoopWriter('Shooter', [shooter],
+                                                     namespaces=namespaces)
         loop_writer.AddConstant(
             control_loop.Constant('kFreeSpeed', '%f', shooter.free_speed))
         loop_writer.AddConstant(
diff --git a/y2017/control_loops/python/turret.py b/y2017/control_loops/python/turret.py
index e67904d..6407133 100755
--- a/y2017/control_loops/python/turret.py
+++ b/y2017/control_loops/python/turret.py
@@ -12,166 +12,176 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
+
 
 class Turret(control_loop.ControlLoop):
-  def __init__(self, name='Turret'):
-    super(Turret, self).__init__(name)
-    # Stall Torque in N m
-    self.stall_torque = 0.71
-    # Stall Current in Amps
-    self.stall_current = 134
-    self.free_speed_rpm = 18730.0
-    # Free Speed in rotations/second.
-    self.free_speed = self.free_speed_rpm / 60.0
-    # Free Current in Amps
-    self.free_current = 0.7
 
-    # Resistance of the motor
-    self.resistance = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
-               (12.0 - self.resistance * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = (12.0 / 60.0) * (11.0 / 94.0)
+    def __init__(self, name='Turret'):
+        super(Turret, self).__init__(name)
+        # Stall Torque in N m
+        self.stall_torque = 0.71
+        # Stall Current in Amps
+        self.stall_current = 134
+        self.free_speed_rpm = 18730.0
+        # Free Speed in rotations/second.
+        self.free_speed = self.free_speed_rpm / 60.0
+        # Free Current in Amps
+        self.free_current = 0.7
 
-    # Motor inertia in kg * m^2
-    self.motor_inertia = 0.00001187
+        # Resistance of the motor
+        self.resistance = 12.0 / self.stall_current
+        # Motor velocity constant
+        self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+                   (12.0 - self.resistance * self.free_current))
+        # Torque constant
+        self.Kt = self.stall_torque / self.stall_current
+        # Gear ratio
+        self.G = (12.0 / 60.0) * (11.0 / 94.0)
 
-    # Moment of inertia, measured in CAD.
-    # Extra mass to compensate for friction is added on.
-    self.J = 0.06 + self.motor_inertia * ((1.0 / self.G) ** 2.0)
-    glog.debug('Turret J is: %f', self.J)
+        # Motor inertia in kg * m^2
+        self.motor_inertia = 0.00001187
 
-    # Control loop time step
-    self.dt = 0.005
+        # Moment of inertia, measured in CAD.
+        # Extra mass to compensate for friction is added on.
+        self.J = 0.06 + self.motor_inertia * ((1.0 / self.G)**2.0)
+        glog.debug('Turret J is: %f', self.J)
 
-    # State is [position, velocity]
-    # Input is [Voltage]
+        # Control loop time step
+        self.dt = 0.005
 
-    C1 = self.Kt / (self.resistance * self.J * self.Kv * self.G * self.G)
-    C2 = self.Kt / (self.J * self.resistance * self.G)
+        # State is [position, velocity]
+        # Input is [Voltage]
 
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -C1]])
+        C1 = self.Kt / (self.resistance * self.J * self.Kv * self.G * self.G)
+        C2 = self.Kt / (self.J * self.resistance * self.G)
 
-    # Start with the unmodified input
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [C2]])
+        self.A_continuous = numpy.matrix([[0, 1], [0, -C1]])
 
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
+        # Start with the unmodified input
+        self.B_continuous = numpy.matrix([[0], [C2]])
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C = numpy.matrix([[1, 0]])
+        self.D = numpy.matrix([[0]])
 
-    controllability = controls.ctrb(self.A, self.B)
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    glog.debug('Free speed is %f',
-               -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
+        controllability = controls.ctrb(self.A, self.B)
 
-    # Calculate the LQR controller gain
-    q_pos = 0.20
-    q_vel = 5.0
-    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_vel ** 2.0))]])
+        glog.debug('Free speed is %f',
+                   -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
 
-    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+        # Calculate the LQR controller gain
+        q_pos = 0.20
+        q_vel = 5.0
+        self.Q = numpy.matrix([[(1.0 / (q_pos**2.0)), 0.0],
+                               [0.0, (1.0 / (q_vel**2.0))]])
 
-    # Calculate the feed forwards gain.
-    q_pos_ff = 0.005
-    q_vel_ff = 1.0
-    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
+        self.R = numpy.matrix([[(1.0 / (12.0**2.0))]])
+        self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
 
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+        # Calculate the feed forwards gain.
+        q_pos_ff = 0.005
+        q_vel_ff = 1.0
+        self.Qff = numpy.matrix([[(1.0 / (q_pos_ff**2.0)), 0.0],
+                                 [0.0, (1.0 / (q_vel_ff**2.0))]])
 
-    q_pos = 0.10
-    q_vel = 1.65
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
-                           [0.0, (q_vel ** 2.0)]])
+        self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
 
-    r_volts = 0.025
-    self.R = numpy.matrix([[(r_volts ** 2.0)]])
+        q_pos = 0.10
+        q_vel = 1.65
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0], [0.0, (q_vel**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_volts = 0.025
+        self.R = numpy.matrix([[(r_volts**2.0)]])
 
-    # The box formed by U_min and U_max must encompass all possible values,
-    # or else Austin's code gets angry.
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        # The box formed by U_min and U_max must encompass all possible values,
+        # or else Austin's code gets angry.
+        self.U_max = numpy.matrix([[12.0]])
+        self.U_min = numpy.matrix([[-12.0]])
+
+        self.InitializeState()
+
 
 class IntegralTurret(Turret):
-  def __init__(self, name='IntegralTurret'):
-    super(IntegralTurret, self).__init__(name=name)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, name='IntegralTurret'):
+        super(IntegralTurret, self).__init__(name=name)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    q_pos = 0.12
-    q_vel = 2.00
-    q_voltage = 3.0
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+        q_pos = 0.12
+        q_vel = 2.00
+        q_voltage = 3.0
+        self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0],
+                               [0.0, (q_vel**2.0), 0.0],
+                               [0.0, 0.0, (q_voltage**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        r_pos = 0.05
+        self.R = numpy.matrix([[(r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
+        self.KalmanGain, self.Q_steady = controls.kalman(A=self.A,
+                                                         B=self.B,
+                                                         C=self.C,
+                                                         Q=self.Q,
+                                                         R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1
 
-    self.InitializeState()
+        self.Kff = numpy.concatenate(
+            (self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+
+        self.InitializeState()
+
 
 class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
 
-  def run_test(self, turret, end_goal,
-             controller_turret,
-             observer_turret=None,
-             iterations=200):
-    """Runs the turret plant with an initial condition and goal.
+    def __init__(self):
+        # Various lists for graphing things.
+        self.t = []
+        self.x = []
+        self.v = []
+        self.a = []
+        self.x_hat = []
+        self.u = []
+        self.offset = []
+
+    def run_test(self,
+                 turret,
+                 end_goal,
+                 controller_turret,
+                 observer_turret=None,
+                 iterations=200):
+        """Runs the turret plant with an initial condition and goal.
 
       Args:
         turret: turret object to use.
@@ -183,130 +193,138 @@
         iterations: Number of timesteps to run the model for.
     """
 
-    if controller_turret is None:
-      controller_turret = turret
+        if controller_turret is None:
+            controller_turret = turret
 
-    vbat = 12.0
+        vbat = 12.0
 
-    if self.t:
-      initial_t = self.t[-1] + turret.dt
-    else:
-      initial_t = 0
+        if self.t:
+            initial_t = self.t[-1] + turret.dt
+        else:
+            initial_t = 0
 
-    goal = numpy.concatenate((turret.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
+        goal = numpy.concatenate((turret.X, numpy.matrix(numpy.zeros((1, 1)))),
+                                 axis=0)
 
-    profile = TrapezoidProfile(turret.dt)
-    profile.set_maximum_acceleration(100.0)
-    profile.set_maximum_velocity(7.0)
-    profile.SetGoal(goal[0, 0])
+        profile = TrapezoidProfile(turret.dt)
+        profile.set_maximum_acceleration(100.0)
+        profile.set_maximum_velocity(7.0)
+        profile.SetGoal(goal[0, 0])
 
-    U_last = numpy.matrix(numpy.zeros((1, 1)))
-    for i in range(iterations):
-      observer_turret.Y = turret.Y
-      observer_turret.CorrectObserver(U_last)
+        U_last = numpy.matrix(numpy.zeros((1, 1)))
+        for i in range(iterations):
+            observer_turret.Y = turret.Y
+            observer_turret.CorrectObserver(U_last)
 
-      self.offset.append(observer_turret.X_hat[2, 0])
-      self.x_hat.append(observer_turret.X_hat[0, 0])
+            self.offset.append(observer_turret.X_hat[2, 0])
+            self.x_hat.append(observer_turret.X_hat[0, 0])
 
-      next_goal = numpy.concatenate(
-          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
-           numpy.matrix(numpy.zeros((1, 1)))),
-          axis=0)
+            next_goal = numpy.concatenate(
+                (profile.Update(end_goal[0, 0], end_goal[1, 0]),
+                 numpy.matrix(numpy.zeros((1, 1)))),
+                axis=0)
 
-      ff_U = controller_turret.Kff * (next_goal - observer_turret.A * goal)
+            ff_U = controller_turret.Kff * (next_goal -
+                                            observer_turret.A * goal)
 
-      U_uncapped = controller_turret.K * (goal - observer_turret.X_hat) + ff_U
-      U_uncapped = controller_turret.K * (end_goal - observer_turret.X_hat)
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(turret.X[0, 0])
+            U_uncapped = controller_turret.K * (goal -
+                                                observer_turret.X_hat) + ff_U
+            U_uncapped = controller_turret.K * (end_goal -
+                                                observer_turret.X_hat)
+            U = U_uncapped.copy()
+            U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+            self.x.append(turret.X[0, 0])
 
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
+            if self.v:
+                last_v = self.v[-1]
+            else:
+                last_v = 0
 
-      self.v.append(turret.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / turret.dt)
+            self.v.append(turret.X[1, 0])
+            self.a.append((self.v[-1] - last_v) / turret.dt)
 
-      offset = 0.0
-      if i > 100:
-        offset = 2.0
-      turret.Update(U + offset)
+            offset = 0.0
+            if i > 100:
+                offset = 2.0
+            turret.Update(U + offset)
 
-      observer_turret.PredictObserver(U)
+            observer_turret.PredictObserver(U)
 
-      self.t.append(initial_t + i * turret.dt)
-      self.u.append(U[0, 0])
+            self.t.append(initial_t + i * turret.dt)
+            self.u.append(U[0, 0])
 
-      ff_U -= U_uncapped - U
-      goal = controller_turret.A * goal + controller_turret.B * ff_U
+            ff_U -= U_uncapped - U
+            goal = controller_turret.A * goal + controller_turret.B * ff_U
 
-      if U[0, 0] != U_uncapped[0, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+            if U[0, 0] != U_uncapped[0, 0]:
+                profile.MoveCurrentState(
+                    numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
 
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr(end_goal - goal))
-    glog.debug('error %s', repr(observer_turret.X_hat - end_goal))
+        glog.debug('Time: %f', self.t[-1])
+        glog.debug('goal_error %s', repr(end_goal - goal))
+        glog.debug('error %s', repr(observer_turret.X_hat - end_goal))
 
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.x, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
+    def Plot(self):
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.t, self.x, label='x')
+        pylab.plot(self.t, self.x_hat, label='x_hat')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.t, self.u, label='u')
+        pylab.plot(self.t, self.offset, label='voltage_offset')
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.t, self.a, label='a')
+        pylab.legend()
 
-    pylab.show()
+        pylab.show()
 
 
 def main(argv):
-  argv = FLAGS(argv)
-  glog.init()
+    argv = FLAGS(argv)
+    glog.init()
 
-  scenario_plotter = ScenarioPlotter()
+    scenario_plotter = ScenarioPlotter()
 
-  turret = Turret()
-  turret_controller = IntegralTurret()
-  observer_turret = IntegralTurret()
+    turret = Turret()
+    turret_controller = IntegralTurret()
+    observer_turret = IntegralTurret()
 
-  # Test moving the turret with constant separation.
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[numpy.pi/2.0], [0.0], [0.0]])
-  scenario_plotter.run_test(turret, end_goal=R,
-                            controller_turret=turret_controller,
-                            observer_turret=observer_turret, iterations=200)
+    # Test moving the turret with constant separation.
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[numpy.pi / 2.0], [0.0], [0.0]])
+    scenario_plotter.run_test(turret,
+                              end_goal=R,
+                              controller_turret=turret_controller,
+                              observer_turret=observer_turret,
+                              iterations=200)
 
-  if FLAGS.plot:
-    scenario_plotter.Plot()
+    if FLAGS.plot:
+        scenario_plotter.Plot()
 
-  # Write the generated constants out to a file.
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name for the turret and integral turret.')
-  else:
-    namespaces = ['y2017', 'control_loops', 'superstructure', 'turret']
-    turret = Turret('Turret')
-    loop_writer = control_loop.ControlLoopWriter('Turret', [turret],
-                                                 namespaces=namespaces)
-    loop_writer.AddConstant(control_loop.Constant(
-        'kFreeSpeed', '%f', turret.free_speed))
-    loop_writer.AddConstant(control_loop.Constant(
-        'kOutputRatio', '%f', turret.G))
-    loop_writer.Write(argv[1], argv[2])
+    # Write the generated constants out to a file.
+    if len(argv) != 5:
+        glog.fatal(
+            'Expected .h file name and .cc file name for the turret and integral turret.'
+        )
+    else:
+        namespaces = ['y2017', 'control_loops', 'superstructure', 'turret']
+        turret = Turret('Turret')
+        loop_writer = control_loop.ControlLoopWriter('Turret', [turret],
+                                                     namespaces=namespaces)
+        loop_writer.AddConstant(
+            control_loop.Constant('kFreeSpeed', '%f', turret.free_speed))
+        loop_writer.AddConstant(
+            control_loop.Constant('kOutputRatio', '%f', turret.G))
+        loop_writer.Write(argv[1], argv[2])
 
-    integral_turret = IntegralTurret('IntegralTurret')
-    integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralTurret', [integral_turret],
-        namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
+        integral_turret = IntegralTurret('IntegralTurret')
+        integral_loop_writer = control_loop.ControlLoopWriter(
+            'IntegralTurret', [integral_turret], namespaces=namespaces)
+        integral_loop_writer.Write(argv[3], argv[4])
+
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    sys.exit(main(sys.argv))