blob: 963bcc6a7d268eee7677fe2549ec5f8afb2e3d1b [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) 2008-2019 FIRST. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in the root directory of */
/* the project. */
/*----------------------------------------------------------------------------*/
#include "frc/Encoder.h"
#include <utility>
#include <hal/Encoder.h>
#include <hal/FRCUsageReporting.h>
#include "frc/DigitalInput.h"
#include "frc/WPIErrors.h"
#include "frc/smartdashboard/SendableBuilder.h"
#include "frc/smartdashboard/SendableRegistry.h"
using namespace frc;
Encoder::Encoder(int aChannel, int bChannel, bool reverseDirection,
EncodingType encodingType) {
m_aSource = std::make_shared<DigitalInput>(aChannel);
m_bSource = std::make_shared<DigitalInput>(bChannel);
InitEncoder(reverseDirection, encodingType);
auto& registry = SendableRegistry::GetInstance();
registry.AddChild(this, m_aSource.get());
registry.AddChild(this, m_bSource.get());
}
Encoder::Encoder(DigitalSource* aSource, DigitalSource* bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(aSource, NullDeleter<DigitalSource>()),
m_bSource(bSource, NullDeleter<DigitalSource>()) {
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
Encoder::Encoder(DigitalSource& aSource, DigitalSource& bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(&aSource, NullDeleter<DigitalSource>()),
m_bSource(&bSource, NullDeleter<DigitalSource>()) {
InitEncoder(reverseDirection, encodingType);
}
Encoder::Encoder(std::shared_ptr<DigitalSource> aSource,
std::shared_ptr<DigitalSource> bSource, bool reverseDirection,
EncodingType encodingType)
: m_aSource(aSource), m_bSource(bSource) {
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
Encoder::~Encoder() {
int32_t status = 0;
HAL_FreeEncoder(m_encoder, &status);
wpi_setHALError(status);
}
int Encoder::Get() const {
if (StatusIsFatal()) return 0;
int32_t status = 0;
int value = HAL_GetEncoder(m_encoder, &status);
wpi_setHALError(status);
return value;
}
void Encoder::Reset() {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_ResetEncoder(m_encoder, &status);
wpi_setHALError(status);
}
double Encoder::GetPeriod() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double value = HAL_GetEncoderPeriod(m_encoder, &status);
wpi_setHALError(status);
return value;
}
void Encoder::SetMaxPeriod(double maxPeriod) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderMaxPeriod(m_encoder, maxPeriod, &status);
wpi_setHALError(status);
}
bool Encoder::GetStopped() const {
if (StatusIsFatal()) return true;
int32_t status = 0;
bool value = HAL_GetEncoderStopped(m_encoder, &status);
wpi_setHALError(status);
return value;
}
bool Encoder::GetDirection() const {
if (StatusIsFatal()) return false;
int32_t status = 0;
bool value = HAL_GetEncoderDirection(m_encoder, &status);
wpi_setHALError(status);
return value;
}
int Encoder::GetRaw() const {
if (StatusIsFatal()) return 0;
int32_t status = 0;
int value = HAL_GetEncoderRaw(m_encoder, &status);
wpi_setHALError(status);
return value;
}
int Encoder::GetEncodingScale() const {
int32_t status = 0;
int val = HAL_GetEncoderEncodingScale(m_encoder, &status);
wpi_setHALError(status);
return val;
}
double Encoder::GetDistance() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double value = HAL_GetEncoderDistance(m_encoder, &status);
wpi_setHALError(status);
return value;
}
double Encoder::GetRate() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double value = HAL_GetEncoderRate(m_encoder, &status);
wpi_setHALError(status);
return value;
}
void Encoder::SetMinRate(double minRate) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderMinRate(m_encoder, minRate, &status);
wpi_setHALError(status);
}
void Encoder::SetDistancePerPulse(double distancePerPulse) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderDistancePerPulse(m_encoder, distancePerPulse, &status);
wpi_setHALError(status);
}
double Encoder::GetDistancePerPulse() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double distancePerPulse = HAL_GetEncoderDistancePerPulse(m_encoder, &status);
wpi_setHALError(status);
return distancePerPulse;
}
void Encoder::SetReverseDirection(bool reverseDirection) {
if (StatusIsFatal()) return;
int32_t status = 0;
HAL_SetEncoderReverseDirection(m_encoder, reverseDirection, &status);
wpi_setHALError(status);
}
void Encoder::SetSamplesToAverage(int samplesToAverage) {
if (samplesToAverage < 1 || samplesToAverage > 127) {
wpi_setWPIErrorWithContext(
ParameterOutOfRange,
"Average counter values must be between 1 and 127");
return;
}
int32_t status = 0;
HAL_SetEncoderSamplesToAverage(m_encoder, samplesToAverage, &status);
wpi_setHALError(status);
}
int Encoder::GetSamplesToAverage() const {
int32_t status = 0;
int result = HAL_GetEncoderSamplesToAverage(m_encoder, &status);
wpi_setHALError(status);
return result;
}
double Encoder::PIDGet() {
if (StatusIsFatal()) return 0.0;
switch (GetPIDSourceType()) {
case PIDSourceType::kDisplacement:
return GetDistance();
case PIDSourceType::kRate:
return GetRate();
default:
return 0.0;
}
}
void Encoder::SetIndexSource(int channel, Encoder::IndexingType type) {
// Force digital input if just given an index
m_indexSource = std::make_shared<DigitalInput>(channel);
SendableRegistry::GetInstance().AddChild(this, m_indexSource.get());
SetIndexSource(*m_indexSource.get(), type);
}
void Encoder::SetIndexSource(const DigitalSource& source,
Encoder::IndexingType type) {
int32_t status = 0;
HAL_SetEncoderIndexSource(
m_encoder, source.GetPortHandleForRouting(),
(HAL_AnalogTriggerType)source.GetAnalogTriggerTypeForRouting(),
(HAL_EncoderIndexingType)type, &status);
wpi_setHALError(status);
}
void Encoder::SetSimDevice(HAL_SimDeviceHandle device) {
HAL_SetEncoderSimDevice(m_encoder, device);
}
int Encoder::GetFPGAIndex() const {
int32_t status = 0;
int val = HAL_GetEncoderFPGAIndex(m_encoder, &status);
wpi_setHALError(status);
return val;
}
void Encoder::InitSendable(SendableBuilder& builder) {
int32_t status = 0;
HAL_EncoderEncodingType type = HAL_GetEncoderEncodingType(m_encoder, &status);
wpi_setHALError(status);
if (type == HAL_EncoderEncodingType::HAL_Encoder_k4X)
builder.SetSmartDashboardType("Quadrature Encoder");
else
builder.SetSmartDashboardType("Encoder");
builder.AddDoubleProperty("Speed", [=]() { return GetRate(); }, nullptr);
builder.AddDoubleProperty("Distance", [=]() { return GetDistance(); },
nullptr);
builder.AddDoubleProperty("Distance per Tick",
[=]() { return GetDistancePerPulse(); }, nullptr);
}
void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) {
int32_t status = 0;
m_encoder = HAL_InitializeEncoder(
m_aSource->GetPortHandleForRouting(),
(HAL_AnalogTriggerType)m_aSource->GetAnalogTriggerTypeForRouting(),
m_bSource->GetPortHandleForRouting(),
(HAL_AnalogTriggerType)m_bSource->GetAnalogTriggerTypeForRouting(),
reverseDirection, (HAL_EncoderEncodingType)encodingType, &status);
wpi_setHALError(status);
HAL_Report(HALUsageReporting::kResourceType_Encoder, GetFPGAIndex() + 1,
encodingType);
SendableRegistry::GetInstance().AddLW(this, "Encoder",
m_aSource->GetChannel());
}
double Encoder::DecodingScaleFactor() const {
if (StatusIsFatal()) return 0.0;
int32_t status = 0;
double val = HAL_GetEncoderDecodingScaleFactor(m_encoder, &status);
wpi_setHALError(status);
return val;
}