| Lasso |
| ===== |
| |
| |
| Lasso is a well known technique for sparse linear regression. |
| It is obtained by adding an :math:`\ell_1` regularization term in the objective, |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} \| Ax - b \|_2^2 + \gamma \| x \|_1 |
| \end{array} |
| |
| |
| where :math:`x \in \mathbf{R}^{n}` is the vector of parameters, :math:`A \in \mathbf{R}^{m \times n}` is the data matrix, and :math:`\gamma > 0` is the weighting parameter. |
| The problem has the following equivalent form, |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} y^T y + \gamma \boldsymbol{1}^T t \\ |
| \mbox{subject to} & y = Ax - b \\ |
| & -t \le x \le t |
| \end{array} |
| |
| |
| In order to get a good trade-off between sparsity of the solution and quality of the linear fit, we solve the problem for varying weighting parameter :math:`\gamma`. |
| Since :math:`\gamma` enters only in the linear part of the objective function, we can reuse the matrix factorization and enable warm starting to reduce the computation time. |
| |
| |
| |
| Python |
| ------ |
| |
| .. code:: python |
| |
| import osqp |
| import numpy as np |
| import scipy as sp |
| from scipy import sparse |
| |
| # Generate problem data |
| sp.random.seed(1) |
| n = 10 |
| m = 1000 |
| Ad = sparse.random(m, n, density=0.5) |
| x_true = np.multiply((np.random.rand(n) > 0.8).astype(float), |
| np.random.randn(n)) / np.sqrt(n) |
| b = Ad.dot(x_true) + 0.5*np.random.randn(m) |
| gammas = np.linspace(1, 10, 11) |
| |
| # Auxiliary data |
| In = sparse.eye(n) |
| Im = sparse.eye(m) |
| On = sparse.csc_matrix((n, n)) |
| Onm = sparse.csc_matrix((n, m)) |
| |
| # OSQP data |
| P = sparse.block_diag([On, sparse.eye(m), On], format='csc') |
| q = np.zeros(2*n + m) |
| A = sparse.vstack([sparse.hstack([Ad, -Im, Onm.T]), |
| sparse.hstack([In, Onm, -In]), |
| sparse.hstack([In, Onm, In])], format='csc') |
| l = np.hstack([b, -np.inf * np.ones(n), np.zeros(n)]) |
| u = np.hstack([b, np.zeros(n), np.inf * np.ones(n)]) |
| |
| # Create an OSQP object |
| prob = osqp.OSQP() |
| |
| # Setup workspace |
| prob.setup(P, q, A, l, u, warm_start=True) |
| |
| # Solve problem for different values of gamma parameter |
| for gamma in gammas: |
| # Update linear cost |
| q_new = np.hstack([np.zeros(n+m), gamma*np.ones(n)]) |
| prob.update(q=q_new) |
| |
| # Solve |
| res = prob.solve() |
| |
| |
| Matlab |
| ------ |
| |
| .. code:: matlab |
| |
| % Generate problem data |
| rng(1) |
| n = 10; |
| m = 1000; |
| Ad = sprandn(m, n, 0.5); |
| x_true = (randn(n, 1) > 0.8) .* randn(n, 1) / sqrt(n); |
| b = Ad * x_true + 0.5 * randn(m, 1); |
| gammas = linspace(1, 10, 11); |
| |
| % OSQP data |
| P = blkdiag(sparse(n, n), speye(m), sparse(n, n)); |
| q = zeros(2*n+m, 1); |
| A = [Ad, -speye(m), sparse(m,n); |
| speye(n), sparse(n, m), -speye(n); |
| speye(n), sparse(n, m), speye(n);]; |
| l = [b; -inf*ones(n, 1); zeros(n, 1)]; |
| u = [b; zeros(n, 1); inf*ones(n, 1)]; |
| |
| % Create an OSQP object |
| prob = osqp; |
| |
| % Setup workspace |
| prob.setup(P, q, A, l, u, 'warm_start', true); |
| |
| % Solve problem for different values of gamma parameter |
| for i = 1 : length(gammas) |
| % Update linear cost |
| gamma = gammas(i); |
| q_new = [zeros(n+m,1); gamma*ones(n,1)]; |
| prob.update('q', q_new); |
| |
| % Solve |
| res = prob.solve(); |
| end |
| |
| |
| |
| CVXPY |
| ----- |
| |
| .. code:: python |
| |
| from cvxpy import * |
| import numpy as np |
| import scipy as sp |
| from scipy import sparse |
| |
| # Generate problem data |
| sp.random.seed(1) |
| n = 10 |
| m = 1000 |
| A = sparse.random(m, n, density=0.5) |
| x_true = np.multiply((np.random.rand(n) > 0.8).astype(float), |
| np.random.randn(n)) / np.sqrt(n) |
| b = A.dot(x_true) + 0.5*np.random.randn(m) |
| gammas = np.linspace(1, 10, 11) |
| |
| # Define problem |
| x = Variable(n) |
| gamma = Parameter(nonneg=True) |
| objective = 0.5*sum_squares(A*x - b) + gamma*norm1(x) |
| prob = Problem(Minimize(objective)) |
| |
| # Solve problem for different values of gamma parameter |
| for gamma_val in gammas: |
| gamma.value = gamma_val |
| prob.solve(solver=OSQP, warm_start=True) |
| |
| |
| YALMIP |
| ------ |
| |
| .. code:: matlab |
| |
| % Generate problem data |
| rng(1) |
| n = 10; |
| m = 1000; |
| A = sprandn(m, n, 0.5); |
| x_true = (randn(n, 1) > 0.8) .* randn(n, 1) / sqrt(n); |
| b = A * x_true + 0.5 * randn(m, 1); |
| gammas = linspace(1, 10, 11); |
| |
| % Define problem |
| x = sdpvar(n, 1); |
| gamma = sdpvar; |
| objective = 0.5*norm(A*x - b)^2 + gamma*norm(x,1); |
| |
| % Solve with OSQP |
| options = sdpsettings('solver', 'osqp'); |
| x_opt = optimizer([], objective, options, gamma, x); |
| |
| % Solve problem for different values of gamma parameter |
| for i = 1 : length(gammas) |
| x_opt(gammas(i)); |
| end |