blob: cbb566b56808372d660ba9e1a8e8c5b67bf9591a [file] [log] [blame]
Lasso
=====
Lasso is a well known technique for sparse linear regression.
It is obtained by adding an :math:`\ell_1` regularization term in the objective,
.. math::
\begin{array}{ll}
\mbox{minimize} & \frac{1}{2} \| Ax - b \|_2^2 + \gamma \| x \|_1
\end{array}
where :math:`x \in \mathbf{R}^{n}` is the vector of parameters, :math:`A \in \mathbf{R}^{m \times n}` is the data matrix, and :math:`\gamma > 0` is the weighting parameter.
The problem has the following equivalent form,
.. math::
\begin{array}{ll}
\mbox{minimize} & \frac{1}{2} y^T y + \gamma \boldsymbol{1}^T t \\
\mbox{subject to} & y = Ax - b \\
& -t \le x \le t
\end{array}
In order to get a good trade-off between sparsity of the solution and quality of the linear fit, we solve the problem for varying weighting parameter :math:`\gamma`.
Since :math:`\gamma` enters only in the linear part of the objective function, we can reuse the matrix factorization and enable warm starting to reduce the computation time.
Python
------
.. code:: python
import osqp
import numpy as np
import scipy as sp
from scipy import sparse
# Generate problem data
sp.random.seed(1)
n = 10
m = 1000
Ad = sparse.random(m, n, density=0.5)
x_true = np.multiply((np.random.rand(n) > 0.8).astype(float),
np.random.randn(n)) / np.sqrt(n)
b = Ad.dot(x_true) + 0.5*np.random.randn(m)
gammas = np.linspace(1, 10, 11)
# Auxiliary data
In = sparse.eye(n)
Im = sparse.eye(m)
On = sparse.csc_matrix((n, n))
Onm = sparse.csc_matrix((n, m))
# OSQP data
P = sparse.block_diag([On, sparse.eye(m), On], format='csc')
q = np.zeros(2*n + m)
A = sparse.vstack([sparse.hstack([Ad, -Im, Onm.T]),
sparse.hstack([In, Onm, -In]),
sparse.hstack([In, Onm, In])], format='csc')
l = np.hstack([b, -np.inf * np.ones(n), np.zeros(n)])
u = np.hstack([b, np.zeros(n), np.inf * np.ones(n)])
# Create an OSQP object
prob = osqp.OSQP()
# Setup workspace
prob.setup(P, q, A, l, u, warm_start=True)
# Solve problem for different values of gamma parameter
for gamma in gammas:
# Update linear cost
q_new = np.hstack([np.zeros(n+m), gamma*np.ones(n)])
prob.update(q=q_new)
# Solve
res = prob.solve()
Matlab
------
.. code:: matlab
% Generate problem data
rng(1)
n = 10;
m = 1000;
Ad = sprandn(m, n, 0.5);
x_true = (randn(n, 1) > 0.8) .* randn(n, 1) / sqrt(n);
b = Ad * x_true + 0.5 * randn(m, 1);
gammas = linspace(1, 10, 11);
% OSQP data
P = blkdiag(sparse(n, n), speye(m), sparse(n, n));
q = zeros(2*n+m, 1);
A = [Ad, -speye(m), sparse(m,n);
speye(n), sparse(n, m), -speye(n);
speye(n), sparse(n, m), speye(n);];
l = [b; -inf*ones(n, 1); zeros(n, 1)];
u = [b; zeros(n, 1); inf*ones(n, 1)];
% Create an OSQP object
prob = osqp;
% Setup workspace
prob.setup(P, q, A, l, u, 'warm_start', true);
% Solve problem for different values of gamma parameter
for i = 1 : length(gammas)
% Update linear cost
gamma = gammas(i);
q_new = [zeros(n+m,1); gamma*ones(n,1)];
prob.update('q', q_new);
% Solve
res = prob.solve();
end
CVXPY
-----
.. code:: python
from cvxpy import *
import numpy as np
import scipy as sp
from scipy import sparse
# Generate problem data
sp.random.seed(1)
n = 10
m = 1000
A = sparse.random(m, n, density=0.5)
x_true = np.multiply((np.random.rand(n) > 0.8).astype(float),
np.random.randn(n)) / np.sqrt(n)
b = A.dot(x_true) + 0.5*np.random.randn(m)
gammas = np.linspace(1, 10, 11)
# Define problem
x = Variable(n)
gamma = Parameter(nonneg=True)
objective = 0.5*sum_squares(A*x - b) + gamma*norm1(x)
prob = Problem(Minimize(objective))
# Solve problem for different values of gamma parameter
for gamma_val in gammas:
gamma.value = gamma_val
prob.solve(solver=OSQP, warm_start=True)
YALMIP
------
.. code:: matlab
% Generate problem data
rng(1)
n = 10;
m = 1000;
A = sprandn(m, n, 0.5);
x_true = (randn(n, 1) > 0.8) .* randn(n, 1) / sqrt(n);
b = A * x_true + 0.5 * randn(m, 1);
gammas = linspace(1, 10, 11);
% Define problem
x = sdpvar(n, 1);
gamma = sdpvar;
objective = 0.5*norm(A*x - b)^2 + gamma*norm(x,1);
% Solve with OSQP
options = sdpsettings('solver', 'osqp');
x_opt = optimizer([], objective, options, gamma, x);
% Solve problem for different values of gamma parameter
for i = 1 : length(gammas)
x_opt(gammas(i));
end