blob: 53a28cb882e757a84a17282a8af4bdbfcd69b643 [file] [log] [blame]
#include "aos/network/sctp_lib.h"
#include <arpa/inet.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/sctp.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <string_view>
#include "aos/util/file.h"
DEFINE_string(interface, "", "network interface");
DEFINE_bool(disable_ipv6, false, "disable ipv6");
DEFINE_int32(rmem, 0, "If nonzero, set rmem to this size.");
namespace aos {
namespace message_bridge {
namespace {
const char *sac_state_tbl[] = {"COMMUNICATION_UP", "COMMUNICATION_LOST",
"RESTART", "SHUTDOWN_COMPLETE",
"CANT_START_ASSOCIATION"};
typedef union {
struct sctp_initmsg init;
struct sctp_sndrcvinfo sndrcvinfo;
} _sctp_cmsg_data_t;
} // namespace
bool Ipv6Enabled() {
if (FLAGS_disable_ipv6) {
return false;
}
int fd = socket(AF_INET6, SOCK_SEQPACKET, IPPROTO_SCTP);
if (fd != -1) {
close(fd);
return true;
}
switch (errno) {
case EAFNOSUPPORT:
case EINVAL:
case EPROTONOSUPPORT:
PLOG(INFO) << "no ipv6";
return false;
default:
PLOG(FATAL) << "Open socket failed";
return false;
};
}
struct sockaddr_storage ResolveSocket(std::string_view host, int port,
bool use_ipv6) {
struct sockaddr_storage result;
struct addrinfo *addrinfo_result;
struct sockaddr_in *t_addr = (struct sockaddr_in *)&result;
struct sockaddr_in6 *t_addr6 = (struct sockaddr_in6 *)&result;
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
if (!use_ipv6) {
hints.ai_family = AF_INET;
} else {
// Default to IPv6 as the clearly superior protocol, since it also handles
// IPv4.
hints.ai_family = AF_INET6;
}
hints.ai_socktype = SOCK_SEQPACKET;
hints.ai_protocol = IPPROTO_SCTP;
// We deliberately avoid AI_ADDRCONFIG here because it breaks running things
// inside Bazel's test sandbox, which has no non-localhost IPv4 or IPv6
// addresses. Also, it's not really helpful, because most systems will have
// link-local addresses of both types with any interface that's up.
hints.ai_flags = AI_PASSIVE | AI_V4MAPPED | AI_NUMERICSERV;
int ret = getaddrinfo(host.empty() ? nullptr : std::string(host).c_str(),
std::to_string(port).c_str(), &hints, &addrinfo_result);
if (ret == EAI_SYSTEM) {
PLOG(FATAL) << "getaddrinfo failed to look up '" << host << "'";
} else if (ret != 0) {
LOG(FATAL) << "getaddrinfo failed to look up '" << host
<< "': " << gai_strerror(ret);
}
switch (addrinfo_result->ai_family) {
case AF_INET:
memcpy(t_addr, addrinfo_result->ai_addr, addrinfo_result->ai_addrlen);
t_addr->sin_family = addrinfo_result->ai_family;
t_addr->sin_port = htons(port);
break;
case AF_INET6:
memcpy(t_addr6, addrinfo_result->ai_addr, addrinfo_result->ai_addrlen);
t_addr6->sin6_family = addrinfo_result->ai_family;
t_addr6->sin6_port = htons(port);
if (FLAGS_interface.size() > 0) {
t_addr6->sin6_scope_id = if_nametoindex(FLAGS_interface.c_str());
}
break;
}
// Now print it back out nicely.
char host_string[NI_MAXHOST];
char service_string[NI_MAXSERV];
int error = getnameinfo((struct sockaddr *)&result,
addrinfo_result->ai_addrlen, host_string, NI_MAXHOST,
service_string, NI_MAXSERV, NI_NUMERICHOST);
if (error) {
LOG(ERROR) << "Reverse lookup failed ... " << gai_strerror(error);
}
LOG(INFO) << "remote:addr=" << host_string << ", port=" << service_string
<< ", family=" << addrinfo_result->ai_family;
freeaddrinfo(addrinfo_result);
return result;
}
std::string_view Family(const struct sockaddr_storage &sockaddr) {
if (sockaddr.ss_family == AF_INET) {
return "AF_INET";
} else if (sockaddr.ss_family == AF_INET6) {
return "AF_INET6";
} else {
return "unknown";
}
}
std::string Address(const struct sockaddr_storage &sockaddr) {
char addrbuf[INET6_ADDRSTRLEN];
if (sockaddr.ss_family == AF_INET) {
const struct sockaddr_in *sin = (const struct sockaddr_in *)&sockaddr;
return std::string(
inet_ntop(AF_INET, &sin->sin_addr, addrbuf, INET6_ADDRSTRLEN));
} else {
const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)&sockaddr;
return std::string(
inet_ntop(AF_INET6, &sin6->sin6_addr, addrbuf, INET6_ADDRSTRLEN));
}
}
void PrintNotification(const Message *msg) {
const union sctp_notification *snp =
(const union sctp_notification *)msg->data();
LOG(INFO) << "Notification:";
switch (snp->sn_header.sn_type) {
case SCTP_ASSOC_CHANGE: {
const struct sctp_assoc_change *sac = &snp->sn_assoc_change;
LOG(INFO) << "SCTP_ASSOC_CHANGE(" << sac_state_tbl[sac->sac_state] << ")";
VLOG(1) << " (assoc_change: state=" << sac->sac_state
<< ", error=" << sac->sac_error
<< ", instr=" << sac->sac_inbound_streams
<< " outstr=" << sac->sac_outbound_streams
<< ", assoc=" << sac->sac_assoc_id << ")";
} break;
case SCTP_PEER_ADDR_CHANGE: {
const struct sctp_paddr_change *spc = &snp->sn_paddr_change;
LOG(INFO) << " SlCTP_PEER_ADDR_CHANGE";
VLOG(1) << "\t\t(peer_addr_change: " << Address(spc->spc_aaddr)
<< " state=" << spc->spc_state << ", error=" << spc->spc_error
<< ")";
} break;
case SCTP_SEND_FAILED: {
const struct sctp_send_failed *ssf = &snp->sn_send_failed;
LOG(INFO) << " SCTP_SEND_FAILED";
VLOG(1) << "\t\t(sendfailed: len=" << ssf->ssf_length
<< " err=" << ssf->ssf_error << ")";
} break;
case SCTP_REMOTE_ERROR: {
const struct sctp_remote_error *sre = &snp->sn_remote_error;
LOG(INFO) << " SCTP_REMOTE_ERROR";
VLOG(1) << "\t\t(remote_error: err=" << ntohs(sre->sre_error) << ")";
} break;
case SCTP_STREAM_CHANGE_EVENT: {
const struct sctp_stream_change_event *sce = &snp->sn_strchange_event;
LOG(INFO) << " SCTP_STREAM_CHANGE_EVENT";
VLOG(1) << "\t\t(stream_change_event: flags=" << sce->strchange_flags
<< ", assoc_id=" << sce->strchange_assoc_id
<< ", instrms=" << sce->strchange_instrms
<< ", outstrms=" << sce->strchange_outstrms << " )";
} break;
case SCTP_SHUTDOWN_EVENT: {
LOG(INFO) << " SCTP_SHUTDOWN_EVENT";
} break;
default:
LOG(INFO) << " Unknown type: " << snp->sn_header.sn_type;
break;
}
}
std::string GetHostname() {
char buf[256];
buf[sizeof(buf) - 1] = '\0';
PCHECK(gethostname(buf, sizeof(buf) - 1) == 0);
return buf;
}
std::string Message::PeerAddress() const { return Address(sin); }
void LogSctpStatus(int fd, sctp_assoc_t assoc_id) {
struct sctp_status status;
memset(&status, 0, sizeof(status));
status.sstat_assoc_id = assoc_id;
socklen_t size = sizeof(status);
const int result = getsockopt(fd, SOL_SCTP, SCTP_STATUS,
reinterpret_cast<void *>(&status), &size);
if (result == -1 && errno == EINVAL) {
LOG(INFO) << "sctp_status) not associated";
return;
}
PCHECK(result == 0);
LOG(INFO) << "sctp_status) sstat_assoc_id:" << status.sstat_assoc_id
<< " sstat_state:" << status.sstat_state
<< " sstat_rwnd:" << status.sstat_rwnd
<< " sstat_unackdata:" << status.sstat_unackdata
<< " sstat_penddata:" << status.sstat_penddata
<< " sstat_instrms:" << status.sstat_instrms
<< " sstat_outstrms:" << status.sstat_outstrms
<< " sstat_fragmentation_point:" << status.sstat_fragmentation_point
<< " sstat_primary.spinfo_srtt:" << status.sstat_primary.spinfo_srtt
<< " sstat_primary.spinfo_rto:" << status.sstat_primary.spinfo_rto;
}
void SctpReadWrite::OpenSocket(const struct sockaddr_storage &sockaddr_local) {
fd_ = socket(sockaddr_local.ss_family, SOCK_SEQPACKET, IPPROTO_SCTP);
PCHECK(fd_ != -1);
LOG(INFO) << "socket(" << Family(sockaddr_local)
<< ", SOCK_SEQPACKET, IPPROTOSCTP) = " << fd_;
{
// Per https://tools.ietf.org/html/rfc6458
// Setting this to !0 allows event notifications to be interleaved
// with data if enabled. This typically only matters during congestion.
// However, Linux seems to interleave under memory pressure regardless of
// this being enabled, so we have to handle it in the code anyways, so might
// as well turn it on all the time.
// TODO(Brian): Change this to 2 once we have kernels that support it, and
// also address the TODO in ProcessNotification to match on all the
// necessary fields.
int interleaving = 1;
PCHECK(setsockopt(fd_, IPPROTO_SCTP, SCTP_FRAGMENT_INTERLEAVE,
&interleaving, sizeof(interleaving)) == 0);
}
{
// Enable recvinfo when a packet arrives.
int on = 1;
PCHECK(setsockopt(fd_, IPPROTO_SCTP, SCTP_RECVRCVINFO, &on, sizeof(int)) ==
0);
}
{
// TODO(austin): This is the old style registration... But, the sctp
// stack out in the wild for linux is old and primitive.
struct sctp_event_subscribe subscribe;
memset(&subscribe, 0, sizeof(subscribe));
subscribe.sctp_association_event = 1;
subscribe.sctp_stream_change_event = 1;
subscribe.sctp_partial_delivery_event = 1;
PCHECK(setsockopt(fd(), SOL_SCTP, SCTP_EVENTS, (char *)&subscribe,
sizeof(subscribe)) == 0);
}
DoSetMaxSize();
}
bool SctpReadWrite::SendMessage(
int stream, std::string_view data, int time_to_live,
std::optional<struct sockaddr_storage> sockaddr_remote,
sctp_assoc_t snd_assoc_id) {
CHECK(fd_ != -1);
struct iovec iov;
iov.iov_base = const_cast<char *>(data.data());
iov.iov_len = data.size();
// Use the assoc_id for the destination instead of the msg_name.
struct msghdr outmsg;
if (sockaddr_remote) {
outmsg.msg_name = &*sockaddr_remote;
outmsg.msg_namelen = sizeof(*sockaddr_remote);
VLOG(2) << "Sending to " << Address(*sockaddr_remote);
} else {
outmsg.msg_namelen = 0;
}
// Data to send.
outmsg.msg_iov = &iov;
outmsg.msg_iovlen = 1;
// Build up the sndinfo message.
char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
outmsg.msg_control = outcmsg;
outmsg.msg_controllen = sizeof(outcmsg);
outmsg.msg_flags = 0;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&outmsg);
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
struct sctp_sndrcvinfo *sinfo =
reinterpret_cast<struct sctp_sndrcvinfo *>(CMSG_DATA(cmsg));
memset(sinfo, 0, sizeof(struct sctp_sndrcvinfo));
sinfo->sinfo_ppid = ++send_ppid_;
sinfo->sinfo_stream = stream;
sinfo->sinfo_flags = 0;
sinfo->sinfo_assoc_id = snd_assoc_id;
sinfo->sinfo_timetolive = time_to_live;
// And send.
const ssize_t size = sendmsg(fd_, &outmsg, MSG_NOSIGNAL | MSG_DONTWAIT);
if (size == -1) {
if (errno == EPIPE || errno == EAGAIN || errno == ESHUTDOWN ||
errno == EINTR) {
if (VLOG_IS_ON(1)) {
PLOG(WARNING) << "sendmsg on sctp socket failed";
}
return false;
}
PLOG(FATAL) << "sendmsg on sctp socket failed";
return false;
}
CHECK_EQ(static_cast<ssize_t>(data.size()), size);
VLOG(2) << "Sent " << data.size();
return true;
}
// We read each fragment into a fresh Message, because most of them won't be
// fragmented. If we do end up with a fragment, then we copy the data out of it.
aos::unique_c_ptr<Message> SctpReadWrite::ReadMessage() {
CHECK(fd_ != -1);
while (true) {
aos::unique_c_ptr<Message> result(
reinterpret_cast<Message *>(malloc(sizeof(Message) + max_size_ + 1)));
struct msghdr inmessage;
memset(&inmessage, 0, sizeof(struct msghdr));
struct iovec iov;
iov.iov_len = max_size_ + 1;
iov.iov_base = result->mutable_data();
inmessage.msg_iov = &iov;
inmessage.msg_iovlen = 1;
char incmsg[CMSG_SPACE(sizeof(_sctp_cmsg_data_t))];
inmessage.msg_control = incmsg;
inmessage.msg_controllen = sizeof(incmsg);
inmessage.msg_namelen = sizeof(struct sockaddr_storage);
inmessage.msg_name = &result->sin;
const ssize_t size = recvmsg(fd_, &inmessage, MSG_DONTWAIT);
if (size == -1) {
if (errno == EINTR || errno == EAGAIN || errno == EWOULDBLOCK) {
// These are all non-fatal failures indicating we should retry later.
return nullptr;
}
PLOG(FATAL) << "recvmsg on sctp socket " << fd_ << " failed";
}
CHECK(!(inmessage.msg_flags & MSG_CTRUNC))
<< ": Control message truncated.";
CHECK_LE(size, static_cast<ssize_t>(max_size_))
<< ": Message overflowed buffer on stream "
<< result->header.rcvinfo.rcv_sid << ".";
result->size = size;
if (MSG_NOTIFICATION & inmessage.msg_flags) {
result->message_type = Message::kNotification;
} else {
result->message_type = Message::kMessage;
}
result->partial_deliveries = 0;
{
bool found_rcvinfo = false;
for (struct cmsghdr *scmsg = CMSG_FIRSTHDR(&inmessage); scmsg != NULL;
scmsg = CMSG_NXTHDR(&inmessage, scmsg)) {
switch (scmsg->cmsg_type) {
case SCTP_RCVINFO: {
CHECK(!found_rcvinfo);
found_rcvinfo = true;
result->header.rcvinfo =
*reinterpret_cast<struct sctp_rcvinfo *>(CMSG_DATA(scmsg));
} break;
default:
LOG(INFO) << "\tUnknown type: " << scmsg->cmsg_type;
break;
}
}
CHECK_EQ(found_rcvinfo, result->message_type == Message::kMessage)
<< ": Failed to find a SCTP_RCVINFO cmsghdr. flags: "
<< inmessage.msg_flags;
}
if (result->message_type == Message::kNotification) {
// Notifications are never fragmented, just return it now.
CHECK(inmessage.msg_flags & MSG_EOR)
<< ": Notifications should never be big enough to fragment";
if (ProcessNotification(result.get())) {
// We handled this notification internally, so don't pass it on.
return nullptr;
}
return result;
}
auto partial_message_iterator =
std::find_if(partial_messages_.begin(), partial_messages_.end(),
[&result](const aos::unique_c_ptr<Message> &candidate) {
return result->header.rcvinfo.rcv_sid ==
candidate->header.rcvinfo.rcv_sid &&
result->header.rcvinfo.rcv_ssn ==
candidate->header.rcvinfo.rcv_ssn &&
result->header.rcvinfo.rcv_assoc_id ==
candidate->header.rcvinfo.rcv_assoc_id;
});
if (partial_message_iterator != partial_messages_.end()) {
const aos::unique_c_ptr<Message> &partial_message =
*partial_message_iterator;
// Verify it's really part of the same message.
CHECK_EQ(partial_message->message_type, result->message_type)
<< ": for " << result->header.rcvinfo.rcv_sid << ","
<< result->header.rcvinfo.rcv_ssn << ","
<< result->header.rcvinfo.rcv_assoc_id;
CHECK_EQ(partial_message->header.rcvinfo.rcv_ppid,
result->header.rcvinfo.rcv_ppid)
<< ": for " << result->header.rcvinfo.rcv_sid << ","
<< result->header.rcvinfo.rcv_ssn << ","
<< result->header.rcvinfo.rcv_assoc_id;
// Now copy the data over and update the size.
CHECK_LE(partial_message->size + result->size, max_size_)
<< ": Assembled fragments overflowed buffer on stream "
<< result->header.rcvinfo.rcv_sid << ".";
memcpy(partial_message->mutable_data() + partial_message->size,
result->data(), result->size);
++partial_message->partial_deliveries;
VLOG(2) << "Merged fragment of " << result->size << " after "
<< partial_message->size << ", had "
<< partial_message->partial_deliveries
<< ", for: " << result->header.rcvinfo.rcv_sid << ","
<< result->header.rcvinfo.rcv_ssn << ","
<< result->header.rcvinfo.rcv_assoc_id;
partial_message->size += result->size;
result.reset();
}
if (inmessage.msg_flags & MSG_EOR) {
// This is the last fragment, so we have something to return.
if (partial_message_iterator != partial_messages_.end()) {
// It was already merged into the message in the list, so now we pull
// that out of the list and return it.
CHECK(!result);
result = std::move(*partial_message_iterator);
partial_messages_.erase(partial_message_iterator);
VLOG(1) << "Final count: " << (result->partial_deliveries + 1)
<< ", size: " << result->size
<< ", for: " << result->header.rcvinfo.rcv_sid << ","
<< result->header.rcvinfo.rcv_ssn << ","
<< result->header.rcvinfo.rcv_assoc_id;
}
CHECK(result);
return result;
}
if (partial_message_iterator == partial_messages_.end()) {
VLOG(2) << "Starting fragment for: " << result->header.rcvinfo.rcv_sid
<< "," << result->header.rcvinfo.rcv_ssn << ","
<< result->header.rcvinfo.rcv_assoc_id;
// Need to record this as the first fragment.
partial_messages_.emplace_back(std::move(result));
}
}
}
bool SctpReadWrite::Abort(sctp_assoc_t snd_assoc_id) {
if (fd_ == -1) {
return true;
}
VLOG(1) << "Sending abort to assoc " << snd_assoc_id;
// Use the assoc_id for the destination instead of the msg_name.
struct msghdr outmsg;
outmsg.msg_namelen = 0;
outmsg.msg_iovlen = 0;
// Build up the sndinfo message.
char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
outmsg.msg_control = outcmsg;
outmsg.msg_controllen = CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
outmsg.msg_flags = 0;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&outmsg);
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
struct sctp_sndrcvinfo *sinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
memset(sinfo, 0, sizeof(struct sctp_sndrcvinfo));
sinfo->sinfo_stream = 0;
sinfo->sinfo_flags = SCTP_ABORT;
sinfo->sinfo_assoc_id = snd_assoc_id;
// And send.
const ssize_t size = sendmsg(fd_, &outmsg, MSG_NOSIGNAL | MSG_DONTWAIT);
if (size == -1) {
if (errno == EPIPE || errno == EAGAIN || errno == ESHUTDOWN) {
return false;
}
return false;
} else {
CHECK_EQ(0, size);
return true;
}
}
void SctpReadWrite::CloseSocket() {
if (fd_ == -1) {
return;
}
LOG(INFO) << "close(" << fd_ << ")";
PCHECK(close(fd_) == 0);
fd_ = -1;
}
void SctpReadWrite::DoSetMaxSize() {
size_t max_size = max_size_;
// This sets the max packet size that we can send.
CHECK_GE(ReadWMemMax(), max_size)
<< "wmem_max is too low. To increase wmem_max temporarily, do sysctl "
"-w net.core.wmem_max="
<< max_size;
PCHECK(setsockopt(fd(), SOL_SOCKET, SO_SNDBUF, &max_size, sizeof(max_size)) ==
0);
// The SO_RCVBUF option (also controlled by net.core.rmem_default) needs to be
// decently large but the actual size can be measured by tuning. The defaults
// should be fine. If it isn't big enough, transmission will fail.
if (FLAGS_rmem > 0) {
size_t rmem = FLAGS_rmem;
PCHECK(setsockopt(fd(), SOL_SOCKET, SO_RCVBUF, &rmem, sizeof(rmem)) == 0);
}
}
bool SctpReadWrite::ProcessNotification(const Message *message) {
const union sctp_notification *const snp =
reinterpret_cast<const union sctp_notification *>(message->data());
switch (snp->sn_header.sn_type) {
case SCTP_PARTIAL_DELIVERY_EVENT: {
const struct sctp_pdapi_event *const partial_delivery =
&snp->sn_pdapi_event;
CHECK_EQ(partial_delivery->pdapi_length, sizeof(*partial_delivery))
<< ": Kernel's SCTP code is not a version we support";
switch (partial_delivery->pdapi_indication) {
case SCTP_PARTIAL_DELIVERY_ABORTED: {
const auto iterator = std::find_if(
partial_messages_.begin(), partial_messages_.end(),
[partial_delivery](const aos::unique_c_ptr<Message> &candidate) {
// TODO(Brian): Once we have new enough userpace headers, for
// kernels that support level-2 interleaving, we'll need to add
// this:
// candidate->header.rcvinfo.rcv_sid ==
// partial_delivery->pdapi_stream &&
// candidate->header.rcvinfo.rcv_ssn ==
// partial_delivery->pdapi_seq &&
return candidate->header.rcvinfo.rcv_assoc_id ==
partial_delivery->pdapi_assoc_id;
});
CHECK(iterator != partial_messages_.end())
<< ": Got out of sync with the kernel for "
<< partial_delivery->pdapi_assoc_id;
VLOG(1) << "Pruning partial delivery for "
<< iterator->get()->header.rcvinfo.rcv_sid << ","
<< iterator->get()->header.rcvinfo.rcv_ssn << ","
<< iterator->get()->header.rcvinfo.rcv_assoc_id;
partial_messages_.erase(iterator);
}
return true;
}
} break;
}
return false;
}
void Message::LogRcvInfo() const {
LOG(INFO) << "\tSNDRCV (stream=" << header.rcvinfo.rcv_sid
<< " ssn=" << header.rcvinfo.rcv_ssn
<< " tsn=" << header.rcvinfo.rcv_tsn << " flags=0x" << std::hex
<< header.rcvinfo.rcv_flags << std::dec
<< " ppid=" << header.rcvinfo.rcv_ppid
<< " cumtsn=" << header.rcvinfo.rcv_cumtsn << ")";
}
size_t ReadRMemMax() {
struct stat current_stat;
if (stat("/proc/sys/net/core/rmem_max", &current_stat) != -1) {
return static_cast<size_t>(
std::stoi(util::ReadFileToStringOrDie("/proc/sys/net/core/rmem_max")));
} else {
LOG(WARNING) << "/proc/sys/net/core/rmem_max doesn't exist. Are you in a "
"container?";
return 212992;
}
}
size_t ReadWMemMax() {
struct stat current_stat;
if (stat("/proc/sys/net/core/wmem_max", &current_stat) != -1) {
return static_cast<size_t>(
std::stoi(util::ReadFileToStringOrDie("/proc/sys/net/core/wmem_max")));
} else {
LOG(WARNING) << "/proc/sys/net/core/wmem_max doesn't exist. Are you in a "
"container?";
return 212992;
}
}
} // namespace message_bridge
} // namespace aos