blob: 226daf79630a0e5912eddbad69056a80a9d4b2c7 [file] [log] [blame]
#include <chrono>
#include <thread>
#include "absl/strings/str_cat.h"
#include "aos/events/ping_generated.h"
#include "aos/events/pong_generated.h"
#include "aos/ipc_lib/event.h"
#include "aos/network/message_bridge_client_lib.h"
#include "aos/network/message_bridge_server_lib.h"
#include "aos/network/team_number.h"
#include "aos/testing/path.h"
#include "aos/util/file.h"
#include "gtest/gtest.h"
DECLARE_string(boot_uuid);
namespace aos {
void SetShmBase(const std::string_view base);
namespace message_bridge {
namespace testing {
using aos::testing::ArtifactPath;
namespace chrono = std::chrono;
std::string ShmBase(const std::string_view node) {
const char *tmpdir_c_str = getenv("TEST_TMPDIR");
if (tmpdir_c_str != nullptr) {
return absl::StrCat(tmpdir_c_str, "/", node);
} else {
return absl::StrCat("/dev/shm/", node);
}
}
void DoSetShmBase(const std::string_view node) {
aos::SetShmBase(ShmBase(node));
}
// Parameters to run all the tests with.
struct Param {
// The config file to use.
std::string config;
// If true, the RemoteMessage channel should be shared between all the remote
// channels. If false, there will be 1 RemoteMessage channel per remote
// channel.
bool shared;
};
class MessageBridgeParameterizedTest
: public ::testing::TestWithParam<struct Param> {
public:
MessageBridgeParameterizedTest()
: config(aos::configuration::ReadConfig(
ArtifactPath(absl::StrCat("aos/network/", GetParam().config)))),
pi1_boot_uuid_(UUID::Random()),
pi2_boot_uuid_(UUID::Random()) {
util::UnlinkRecursive(ShmBase("pi1"));
util::UnlinkRecursive(ShmBase("pi2"));
}
bool shared() const { return GetParam().shared; }
void OnPi1() {
DoSetShmBase("pi1");
FLAGS_override_hostname = "raspberrypi";
FLAGS_boot_uuid = pi1_boot_uuid_.ToString();
}
void OnPi2() {
DoSetShmBase("pi2");
FLAGS_override_hostname = "raspberrypi2";
FLAGS_boot_uuid = pi2_boot_uuid_.ToString();
}
void MakePi1Server() {
OnPi1();
FLAGS_application_name = "pi1_message_bridge_server";
pi1_server_event_loop =
std::make_unique<aos::ShmEventLoop>(&config.message());
pi1_server_event_loop->SetRuntimeRealtimePriority(1);
pi1_message_bridge_server =
std::make_unique<MessageBridgeServer>(pi1_server_event_loop.get());
}
void RunPi1Server(chrono::nanoseconds duration) {
// Setup a shutdown callback.
aos::TimerHandler *const quit = pi1_server_event_loop->AddTimer(
[this]() { pi1_server_event_loop->Exit(); });
pi1_server_event_loop->OnRun([this, quit, duration]() {
// Stop between timestamps, not exactly on them.
quit->Setup(pi1_server_event_loop->monotonic_now() + duration);
});
pi1_server_event_loop->Run();
}
void StartPi1Server() {
pi1_server_thread = std::thread([this]() {
LOG(INFO) << "Started pi1_message_bridge_server";
pi1_server_event_loop->Run();
});
}
void StopPi1Server() {
if (pi1_server_thread.joinable()) {
pi1_server_event_loop->Exit();
pi1_server_thread.join();
pi1_server_thread = std::thread();
}
pi1_message_bridge_server.reset();
pi1_server_event_loop.reset();
}
void MakePi1Client() {
OnPi1();
FLAGS_application_name = "pi1_message_bridge_client";
pi1_client_event_loop =
std::make_unique<aos::ShmEventLoop>(&config.message());
pi1_client_event_loop->SetRuntimeRealtimePriority(1);
pi1_message_bridge_client =
std::make_unique<MessageBridgeClient>(pi1_client_event_loop.get());
}
void StartPi1Client() {
pi1_client_thread = std::thread([this]() {
LOG(INFO) << "Started pi1_message_bridge_client";
pi1_client_event_loop->Run();
});
}
void StopPi1Client() {
pi1_client_event_loop->Exit();
pi1_client_thread.join();
pi1_client_thread = std::thread();
pi1_message_bridge_client.reset();
pi1_client_event_loop.reset();
}
void MakePi1Test() {
OnPi1();
FLAGS_application_name = "test1";
pi1_test_event_loop =
std::make_unique<aos::ShmEventLoop>(&config.message());
pi1_test_event_loop->MakeWatcher(
"/pi1/aos", [](const ServerStatistics &stats) {
VLOG(1) << "/pi1/aos ServerStatistics " << FlatbufferToJson(&stats);
});
pi1_test_event_loop->MakeWatcher(
"/pi1/aos", [](const ClientStatistics &stats) {
VLOG(1) << "/pi1/aos ClientStatistics " << FlatbufferToJson(&stats);
});
pi1_test_event_loop->MakeWatcher(
"/pi1/aos", [](const Timestamp &timestamp) {
VLOG(1) << "/pi1/aos Timestamp " << FlatbufferToJson(&timestamp);
});
pi1_test_event_loop->MakeWatcher(
"/pi2/aos", [this](const Timestamp &timestamp) {
VLOG(1) << "/pi2/aos Timestamp " << FlatbufferToJson(&timestamp);
EXPECT_EQ(pi1_test_event_loop->context().source_boot_uuid,
pi2_boot_uuid_);
});
}
void StartPi1Test() {
pi1_test_thread = std::thread([this]() {
LOG(INFO) << "Started pi1_test";
pi1_test_event_loop->Run();
});
}
void StopPi1Test() {
pi1_test_event_loop->Exit();
pi1_test_thread.join();
}
void MakePi2Server() {
OnPi2();
FLAGS_application_name = "pi2_message_bridge_server";
pi2_server_event_loop =
std::make_unique<aos::ShmEventLoop>(&config.message());
pi2_server_event_loop->SetRuntimeRealtimePriority(1);
pi2_message_bridge_server =
std::make_unique<MessageBridgeServer>(pi2_server_event_loop.get());
}
void RunPi2Server(chrono::nanoseconds duration) {
// Setup a shutdown callback.
aos::TimerHandler *const quit = pi2_server_event_loop->AddTimer(
[this]() { pi2_server_event_loop->Exit(); });
pi2_server_event_loop->OnRun([this, quit, duration]() {
// Stop between timestamps, not exactly on them.
quit->Setup(pi2_server_event_loop->monotonic_now() + duration);
});
pi2_server_event_loop->Run();
}
void StartPi2Server() {
pi2_server_thread = std::thread([this]() {
LOG(INFO) << "Started pi2_message_bridge_server";
pi2_server_event_loop->Run();
});
}
void StopPi2Server() {
if (pi2_server_thread.joinable()) {
pi2_server_event_loop->Exit();
pi2_server_thread.join();
pi2_server_thread = std::thread();
}
pi2_message_bridge_server.reset();
pi2_server_event_loop.reset();
}
void MakePi2Client() {
OnPi2();
FLAGS_application_name = "pi2_message_bridge_client";
pi2_client_event_loop =
std::make_unique<aos::ShmEventLoop>(&config.message());
pi2_client_event_loop->SetRuntimeRealtimePriority(1);
pi2_message_bridge_client =
std::make_unique<MessageBridgeClient>(pi2_client_event_loop.get());
}
void RunPi2Client(chrono::nanoseconds duration) {
// Run for 5 seconds to make sure we have time to estimate the offset.
aos::TimerHandler *const quit = pi2_client_event_loop->AddTimer(
[this]() { pi2_client_event_loop->Exit(); });
pi2_client_event_loop->OnRun([this, quit, duration]() {
// Stop between timestamps, not exactly on them.
quit->Setup(pi2_client_event_loop->monotonic_now() + duration);
});
// And go!
pi2_client_event_loop->Run();
}
void StartPi2Client() {
pi2_client_thread = std::thread([this]() {
LOG(INFO) << "Started pi2_message_bridge_client";
pi2_client_event_loop->Run();
});
}
void StopPi2Client() {
if (pi2_client_thread.joinable()) {
pi2_client_event_loop->Exit();
pi2_client_thread.join();
pi2_client_thread = std::thread();
}
pi2_message_bridge_client.reset();
pi2_client_event_loop.reset();
}
void MakePi2Test() {
OnPi2();
FLAGS_application_name = "test2";
pi2_test_event_loop =
std::make_unique<aos::ShmEventLoop>(&config.message());
pi2_test_event_loop->MakeWatcher(
"/pi2/aos", [](const ServerStatistics &stats) {
VLOG(1) << "/pi2/aos ServerStatistics " << FlatbufferToJson(&stats);
});
pi2_test_event_loop->MakeWatcher(
"/pi2/aos", [](const ClientStatistics &stats) {
VLOG(1) << "/pi2/aos ClientStatistics " << FlatbufferToJson(&stats);
});
pi2_test_event_loop->MakeWatcher(
"/pi1/aos", [this](const Timestamp &timestamp) {
VLOG(1) << "/pi1/aos Timestamp " << FlatbufferToJson(&timestamp);
EXPECT_EQ(pi2_test_event_loop->context().source_boot_uuid,
pi1_boot_uuid_);
});
pi2_test_event_loop->MakeWatcher(
"/pi2/aos", [](const Timestamp &timestamp) {
VLOG(1) << "/pi2/aos Timestamp " << FlatbufferToJson(&timestamp);
});
}
void StartPi2Test() {
pi2_test_thread = std::thread([this]() {
LOG(INFO) << "Started pi2_message_bridge_test";
pi2_test_event_loop->Run();
});
}
void StopPi2Test() {
pi2_test_event_loop->Exit();
pi2_test_thread.join();
}
aos::FlatbufferDetachedBuffer<aos::Configuration> config;
const UUID pi1_boot_uuid_;
const UUID pi2_boot_uuid_;
std::unique_ptr<aos::ShmEventLoop> pi1_server_event_loop;
std::unique_ptr<MessageBridgeServer> pi1_message_bridge_server;
std::thread pi1_server_thread;
std::unique_ptr<aos::ShmEventLoop> pi1_client_event_loop;
std::unique_ptr<MessageBridgeClient> pi1_message_bridge_client;
std::thread pi1_client_thread;
std::unique_ptr<aos::ShmEventLoop> pi1_test_event_loop;
std::thread pi1_test_thread;
std::unique_ptr<aos::ShmEventLoop> pi2_server_event_loop;
std::unique_ptr<MessageBridgeServer> pi2_message_bridge_server;
std::thread pi2_server_thread;
std::unique_ptr<aos::ShmEventLoop> pi2_client_event_loop;
std::unique_ptr<MessageBridgeClient> pi2_message_bridge_client;
std::thread pi2_client_thread;
std::unique_ptr<aos::ShmEventLoop> pi2_test_event_loop;
std::thread pi2_test_thread;
};
// Test that we can send a ping message over sctp and receive it.
TEST_P(MessageBridgeParameterizedTest, PingPong) {
// This is rather annoying to set up. We need to start up a client and
// server, on the same node, but get them to think that they are on different
// nodes.
//
// We then get to wait until they are connected.
//
// After they are connected, we send a Ping message.
//
// On the other end, we receive a Pong message.
//
// But, we need the client to not post directly to "/test" like it would in a
// real system, otherwise we will re-send the ping message... So, use an
// application specific map to have the client post somewhere else.
//
// To top this all off, each of these needs to be done with a ShmEventLoop,
// which needs to run in a separate thread... And it is really hard to get
// everything started up reliably. So just be super generous on timeouts and
// hope for the best. We can be more generous in the future if we need to.
//
// We are faking the application names by passing in --application_name=foo
OnPi1();
// Force ourselves to be "raspberrypi" and allocate everything.
MakePi1Server();
MakePi1Client();
// And build the app which sends the pings.
FLAGS_application_name = "ping";
aos::ShmEventLoop ping_event_loop(&config.message());
aos::Sender<examples::Ping> ping_sender =
ping_event_loop.MakeSender<examples::Ping>("/test");
aos::ShmEventLoop pi1_test_event_loop(&config.message());
aos::Fetcher<RemoteMessage> message_header_fetcher1 =
pi1_test_event_loop.MakeFetcher<RemoteMessage>(
shared() ? "/pi1/aos/remote_timestamps/pi2"
: "/pi1/aos/remote_timestamps/pi2/test/aos-examples-Ping");
// Fetchers for confirming the remote timestamps made it.
aos::Fetcher<examples::Ping> ping_on_pi1_fetcher =
ping_event_loop.MakeFetcher<examples::Ping>("/test");
aos::Fetcher<Timestamp> pi1_on_pi1_timestamp_fetcher =
ping_event_loop.MakeFetcher<Timestamp>("/aos");
// Now do it for "raspberrypi2", the client.
OnPi2();
MakePi2Client();
MakePi2Server();
// And build the app which sends the pongs.
FLAGS_application_name = "pong";
aos::ShmEventLoop pong_event_loop(&config.message());
// And build the app for testing.
FLAGS_application_name = "test";
aos::ShmEventLoop test_event_loop(&config.message());
aos::Fetcher<ClientStatistics> client_statistics_fetcher =
test_event_loop.MakeFetcher<ClientStatistics>("/aos");
aos::Fetcher<RemoteMessage> message_header_fetcher2 =
test_event_loop.MakeFetcher<RemoteMessage>(
shared() ? "/pi2/aos/remote_timestamps/pi1"
: "/pi2/aos/remote_timestamps/pi1/pi2/aos/"
"aos-message_bridge-Timestamp");
// Event loop for fetching data delivered to pi2 from pi1 to match up
// messages.
aos::ShmEventLoop delivered_messages_event_loop(&config.message());
aos::Fetcher<Timestamp> pi1_on_pi2_timestamp_fetcher =
delivered_messages_event_loop.MakeFetcher<Timestamp>("/pi1/aos");
aos::Fetcher<examples::Ping> ping_on_pi2_fetcher =
delivered_messages_event_loop.MakeFetcher<examples::Ping>("/test");
EXPECT_FALSE(ping_on_pi2_fetcher.Fetch());
EXPECT_FALSE(pi1_on_pi2_timestamp_fetcher.Fetch());
// Count the pongs.
int pong_count = 0;
pong_event_loop.MakeWatcher("/test", [&pong_count, &pong_event_loop,
this](const examples::Ping &ping) {
EXPECT_EQ(pong_event_loop.context().source_boot_uuid, pi1_boot_uuid_);
++pong_count;
VLOG(1) << "Got ping back " << FlatbufferToJson(&ping);
});
FLAGS_override_hostname = "";
// Wait until we are connected, then send.
int ping_count = 0;
int pi1_server_statistics_count = 0;
ping_event_loop.MakeWatcher("/pi1/aos", [this, &ping_count, &ping_sender,
&pi1_server_statistics_count](
const ServerStatistics &stats) {
VLOG(1) << "/pi1/aos ServerStatistics " << FlatbufferToJson(&stats);
ASSERT_TRUE(stats.has_connections());
EXPECT_EQ(stats.connections()->size(), 1);
bool connected = false;
for (const ServerConnection *connection : *stats.connections()) {
// Confirm that we are estimating the server time offset correctly. It
// should be about 0 since we are on the same machine here.
if (connection->has_monotonic_offset()) {
EXPECT_LT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::milliseconds(-1));
++pi1_server_statistics_count;
}
if (connection->node()->name()->string_view() ==
pi2_client_event_loop->node()->name()->string_view()) {
if (connection->state() == State::CONNECTED) {
EXPECT_TRUE(connection->has_boot_uuid());
EXPECT_EQ(connection->connection_count(), 1u);
EXPECT_LT(monotonic_clock::time_point(chrono::nanoseconds(
connection->connected_since_time())),
monotonic_clock::now());
connected = true;
} else {
EXPECT_FALSE(connection->has_connection_count());
EXPECT_FALSE(connection->has_connected_since_time());
}
}
}
if (connected) {
VLOG(1) << "Connected! Sent ping.";
auto builder = ping_sender.MakeBuilder();
examples::Ping::Builder ping_builder =
builder.MakeBuilder<examples::Ping>();
ping_builder.add_value(ping_count + 971);
EXPECT_EQ(builder.Send(ping_builder.Finish()), RawSender::Error::kOk);
++ping_count;
}
});
// Confirm both client and server statistics messages have decent offsets in
// them.
int pi2_server_statistics_count = 0;
pong_event_loop.MakeWatcher("/pi2/aos", [&pi2_server_statistics_count](
const ServerStatistics &stats) {
VLOG(1) << "/pi2/aos ServerStatistics " << FlatbufferToJson(&stats);
for (const ServerConnection *connection : *stats.connections()) {
if (connection->has_monotonic_offset()) {
++pi2_server_statistics_count;
// Confirm that we are estimating the server time offset correctly. It
// should be about 0 since we are on the same machine here.
EXPECT_LT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(connection->has_boot_uuid());
}
if (connection->state() == State::CONNECTED) {
EXPECT_EQ(connection->connection_count(), 1u);
EXPECT_LT(monotonic_clock::time_point(
chrono::nanoseconds(connection->connected_since_time())),
monotonic_clock::now());
} else {
EXPECT_FALSE(connection->has_connection_count());
EXPECT_FALSE(connection->has_connected_since_time());
}
}
});
int pi1_client_statistics_count = 0;
int pi1_connected_client_statistics_count = 0;
ping_event_loop.MakeWatcher(
"/pi1/aos",
[&pi1_client_statistics_count,
&pi1_connected_client_statistics_count](const ClientStatistics &stats) {
VLOG(1) << "/pi1/aos ClientStatistics " << FlatbufferToJson(&stats);
for (const ClientConnection *connection : *stats.connections()) {
if (connection->has_monotonic_offset()) {
++pi1_client_statistics_count;
// It takes at least 10 microseconds to send a message between the
// client and server. The min (filtered) time shouldn't be over 10
// milliseconds on localhost. This might have to bump up if this is
// proving flaky.
EXPECT_LT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::milliseconds(10))
<< " " << connection->monotonic_offset()
<< "ns vs 10000ns on iteration " << pi1_client_statistics_count;
EXPECT_GT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::microseconds(10))
<< " " << connection->monotonic_offset()
<< "ns vs 10000ns on iteration " << pi1_client_statistics_count;
}
if (connection->state() == State::CONNECTED) {
EXPECT_EQ(connection->connection_count(), 1u);
EXPECT_LT(monotonic_clock::time_point(chrono::nanoseconds(
connection->connected_since_time())),
monotonic_clock::now());
// The first Connected message may not have a UUID in it since no
// data has flown. That's fine.
if (pi1_connected_client_statistics_count > 0) {
EXPECT_TRUE(connection->has_boot_uuid())
<< ": " << aos::FlatbufferToJson(connection);
}
++pi1_connected_client_statistics_count;
} else {
EXPECT_FALSE(connection->has_connection_count());
EXPECT_FALSE(connection->has_connected_since_time());
}
}
});
int pi2_client_statistics_count = 0;
int pi2_connected_client_statistics_count = 0;
pong_event_loop.MakeWatcher(
"/pi2/aos",
[&pi2_client_statistics_count,
&pi2_connected_client_statistics_count](const ClientStatistics &stats) {
VLOG(1) << "/pi2/aos ClientStatistics " << FlatbufferToJson(&stats);
for (const ClientConnection *connection : *stats.connections()) {
if (connection->has_monotonic_offset()) {
++pi2_client_statistics_count;
EXPECT_LT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::milliseconds(10))
<< ": got " << aos::FlatbufferToJson(connection);
EXPECT_GT(chrono::nanoseconds(connection->monotonic_offset()),
chrono::microseconds(10))
<< ": got " << aos::FlatbufferToJson(connection);
}
if (connection->state() == State::CONNECTED) {
EXPECT_EQ(connection->connection_count(), 1u);
EXPECT_LT(monotonic_clock::time_point(chrono::nanoseconds(
connection->connected_since_time())),
monotonic_clock::now());
if (pi2_connected_client_statistics_count > 0) {
EXPECT_TRUE(connection->has_boot_uuid());
}
++pi2_connected_client_statistics_count;
} else {
EXPECT_FALSE(connection->has_connection_count());
EXPECT_FALSE(connection->has_connected_since_time());
}
}
});
ping_event_loop.MakeWatcher("/pi1/aos", [](const Timestamp &timestamp) {
EXPECT_TRUE(timestamp.has_offsets());
VLOG(1) << "/pi1/aos Timestamp " << FlatbufferToJson(&timestamp);
});
pong_event_loop.MakeWatcher("/pi2/aos", [](const Timestamp &timestamp) {
EXPECT_TRUE(timestamp.has_offsets());
VLOG(1) << "/pi2/aos Timestamp " << FlatbufferToJson(&timestamp);
});
// Run for 5 seconds to make sure we have time to estimate the offset.
aos::TimerHandler *quit = ping_event_loop.AddTimer(
[&ping_event_loop]() { ping_event_loop.Exit(); });
ping_event_loop.OnRun([quit, &ping_event_loop]() {
// Stop between timestamps, not exactly on them.
quit->Setup(ping_event_loop.monotonic_now() + chrono::milliseconds(5050));
});
// Find the channel index for both the /pi1/aos Timestamp channel and Ping
// channel.
const size_t pi1_timestamp_channel = configuration::ChannelIndex(
pong_event_loop.configuration(), pi1_on_pi2_timestamp_fetcher.channel());
const size_t ping_timestamp_channel =
configuration::ChannelIndex(delivered_messages_event_loop.configuration(),
ping_on_pi2_fetcher.channel());
for (const Channel *channel : *ping_event_loop.configuration()->channels()) {
VLOG(1) << "Channel "
<< configuration::ChannelIndex(ping_event_loop.configuration(),
channel)
<< " " << configuration::CleanedChannelToString(channel);
}
// For each remote timestamp we get back, confirm that it is either a ping
// message, or a timestamp we sent out. Also confirm that the timestamps are
// correct.
for (std::pair<int, std::string> channel :
shared()
? std::vector<std::pair<
int, std::string>>{{-1, "/pi1/aos/remote_timestamps/pi2"}}
: std::vector<std::pair<int, std::string>>{
{pi1_timestamp_channel,
"/pi1/aos/remote_timestamps/pi2/pi1/aos/"
"aos-message_bridge-Timestamp"},
{ping_timestamp_channel,
"/pi1/aos/remote_timestamps/pi2/test/aos-examples-Ping"}}) {
ping_event_loop.MakeWatcher(
channel.second,
[pi1_timestamp_channel, ping_timestamp_channel, &ping_on_pi2_fetcher,
&ping_on_pi1_fetcher, &pi1_on_pi2_timestamp_fetcher,
&pi1_on_pi1_timestamp_fetcher,
channel_index = channel.first](const RemoteMessage &header) {
VLOG(1) << "/pi1/aos/remote_timestamps/pi2 RemoteMessage "
<< aos::FlatbufferToJson(&header);
EXPECT_TRUE(header.has_boot_uuid());
if (channel_index != -1) {
ASSERT_EQ(channel_index, header.channel_index());
}
const aos::monotonic_clock::time_point header_monotonic_sent_time(
chrono::nanoseconds(header.monotonic_sent_time()));
const aos::realtime_clock::time_point header_realtime_sent_time(
chrono::nanoseconds(header.realtime_sent_time()));
const aos::monotonic_clock::time_point header_monotonic_remote_time(
chrono::nanoseconds(header.monotonic_remote_time()));
const aos::realtime_clock::time_point header_realtime_remote_time(
chrono::nanoseconds(header.realtime_remote_time()));
const Context *pi1_context = nullptr;
const Context *pi2_context = nullptr;
if (header.channel_index() == pi1_timestamp_channel) {
// Find the forwarded message.
while (pi1_on_pi2_timestamp_fetcher.context().monotonic_event_time <
header_monotonic_sent_time) {
ASSERT_TRUE(pi1_on_pi2_timestamp_fetcher.FetchNext());
}
// And the source message.
while (pi1_on_pi1_timestamp_fetcher.context().monotonic_event_time <
header_monotonic_remote_time) {
ASSERT_TRUE(pi1_on_pi1_timestamp_fetcher.FetchNext());
}
pi1_context = &pi1_on_pi1_timestamp_fetcher.context();
pi2_context = &pi1_on_pi2_timestamp_fetcher.context();
} else if (header.channel_index() == ping_timestamp_channel) {
// Find the forwarded message.
while (ping_on_pi2_fetcher.context().monotonic_event_time <
header_monotonic_sent_time) {
ASSERT_TRUE(ping_on_pi2_fetcher.FetchNext());
}
// And the source message.
while (ping_on_pi1_fetcher.context().monotonic_event_time <
header_monotonic_remote_time) {
ASSERT_TRUE(ping_on_pi1_fetcher.FetchNext());
}
pi1_context = &ping_on_pi1_fetcher.context();
pi2_context = &ping_on_pi2_fetcher.context();
} else {
LOG(FATAL) << "Unknown channel";
}
// Confirm the forwarded message has matching timestamps to the
// timestamps we got back.
EXPECT_EQ(pi2_context->queue_index, header.queue_index());
EXPECT_EQ(pi2_context->monotonic_event_time,
header_monotonic_sent_time);
EXPECT_EQ(pi2_context->realtime_event_time,
header_realtime_sent_time);
EXPECT_EQ(pi2_context->realtime_remote_time,
header_realtime_remote_time);
EXPECT_EQ(pi2_context->monotonic_remote_time,
header_monotonic_remote_time);
// Confirm the forwarded message also matches the source message.
EXPECT_EQ(pi1_context->queue_index, header.queue_index());
EXPECT_EQ(pi1_context->monotonic_event_time,
header_monotonic_remote_time);
EXPECT_EQ(pi1_context->realtime_event_time,
header_realtime_remote_time);
});
}
// Start everything up. Pong is the only thing we don't know how to wait
// on, so start it first.
std::thread pong_thread([&pong_event_loop]() { pong_event_loop.Run(); });
StartPi1Server();
StartPi1Client();
StartPi2Client();
StartPi2Server();
// And go!
ping_event_loop.Run();
// Shut everyone else down
StopPi1Server();
StopPi1Client();
StopPi2Client();
StopPi2Server();
pong_event_loop.Exit();
pong_thread.join();
// Make sure we sent something.
EXPECT_GE(ping_count, 1);
// And got something back.
EXPECT_GE(pong_count, 1);
// Confirm that we are estimating a monotonic offset on the client.
ASSERT_TRUE(client_statistics_fetcher.Fetch());
EXPECT_EQ(client_statistics_fetcher->connections()->size(), 1u);
EXPECT_EQ(client_statistics_fetcher->connections()
->Get(0)
->node()
->name()
->string_view(),
"pi1");
// Make sure the offset in one direction is less than a second.
EXPECT_GT(
client_statistics_fetcher->connections()->Get(0)->monotonic_offset(), 0)
<< aos::FlatbufferToJson(client_statistics_fetcher.get());
EXPECT_LT(
client_statistics_fetcher->connections()->Get(0)->monotonic_offset(),
1000000000)
<< aos::FlatbufferToJson(client_statistics_fetcher.get());
EXPECT_GE(pi1_server_statistics_count, 2);
EXPECT_GE(pi2_server_statistics_count, 2);
EXPECT_GE(pi1_client_statistics_count, 2);
EXPECT_GE(pi2_client_statistics_count, 2);
// Confirm we got timestamps back!
EXPECT_TRUE(message_header_fetcher1.Fetch());
EXPECT_TRUE(message_header_fetcher2.Fetch());
}
// Test that the client disconnecting triggers the server offsets on both sides
// to clear.
TEST_P(MessageBridgeParameterizedTest, ClientRestart) {
// This is rather annoying to set up. We need to start up a client and
// server, on the same node, but get them to think that they are on different
// nodes.
//
// We need the client to not post directly to "/test" like it would in a
// real system, otherwise we will re-send the ping message... So, use an
// application specific map to have the client post somewhere else.
//
// To top this all off, each of these needs to be done with a ShmEventLoop,
// which needs to run in a separate thread... And it is really hard to get
// everything started up reliably. So just be super generous on timeouts and
// hope for the best. We can be more generous in the future if we need to.
//
// We are faking the application names by passing in --application_name=foo
OnPi1();
MakePi1Server();
MakePi1Client();
// And build the app for testing.
MakePi1Test();
aos::Fetcher<ServerStatistics> pi1_server_statistics_fetcher =
pi1_test_event_loop->MakeFetcher<ServerStatistics>("/pi1/aos");
// Now do it for "raspberrypi2", the client.
OnPi2();
MakePi2Server();
// And build the app for testing.
MakePi2Test();
aos::Fetcher<ServerStatistics> pi2_server_statistics_fetcher =
pi2_test_event_loop->MakeFetcher<ServerStatistics>("/pi2/aos");
// Wait until we are connected, then send.
StartPi1Test();
StartPi2Test();
StartPi1Server();
StartPi1Client();
StartPi2Server();
{
MakePi2Client();
RunPi2Client(chrono::milliseconds(3050));
// Now confirm we are synchronized.
EXPECT_TRUE(pi1_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi2_server_statistics_fetcher.Fetch());
const ServerConnection *const pi1_connection =
pi1_server_statistics_fetcher->connections()->Get(0);
const ServerConnection *const pi2_connection =
pi2_server_statistics_fetcher->connections()->Get(0);
EXPECT_EQ(pi1_connection->state(), State::CONNECTED);
EXPECT_EQ(pi1_connection->connection_count(), 1u);
EXPECT_TRUE(pi1_connection->has_connected_since_time());
EXPECT_TRUE(pi1_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(pi1_connection->has_boot_uuid());
EXPECT_EQ(pi2_connection->state(), State::CONNECTED);
EXPECT_EQ(pi2_connection->connection_count(), 1u);
EXPECT_TRUE(pi2_connection->has_connected_since_time());
EXPECT_TRUE(pi2_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(pi2_connection->has_boot_uuid());
StopPi2Client();
}
std::this_thread::sleep_for(SctpClientConnection::kReconnectTimeout +
std::chrono::seconds(1));
{
// Now confirm we are un-synchronized.
EXPECT_TRUE(pi1_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi2_server_statistics_fetcher.Fetch());
const ServerConnection *const pi1_connection =
pi1_server_statistics_fetcher->connections()->Get(0);
const ServerConnection *const pi2_connection =
pi2_server_statistics_fetcher->connections()->Get(0);
EXPECT_EQ(pi1_connection->state(), State::DISCONNECTED);
EXPECT_EQ(pi1_connection->connection_count(), 1u);
EXPECT_FALSE(pi1_connection->has_connected_since_time());
EXPECT_FALSE(pi1_connection->has_monotonic_offset());
EXPECT_FALSE(pi1_connection->has_boot_uuid());
EXPECT_EQ(pi2_connection->state(), State::CONNECTED);
EXPECT_FALSE(pi2_connection->has_monotonic_offset());
EXPECT_TRUE(pi2_connection->has_boot_uuid());
EXPECT_EQ(pi2_connection->connection_count(), 1u);
EXPECT_TRUE(pi2_connection->has_connected_since_time());
}
{
MakePi2Client();
// And go!
RunPi2Client(chrono::milliseconds(3050));
EXPECT_TRUE(pi1_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi2_server_statistics_fetcher.Fetch());
// Now confirm we are synchronized again.
const ServerConnection *const pi1_connection =
pi1_server_statistics_fetcher->connections()->Get(0);
const ServerConnection *const pi2_connection =
pi2_server_statistics_fetcher->connections()->Get(0);
EXPECT_EQ(pi1_connection->state(), State::CONNECTED);
EXPECT_EQ(pi1_connection->connection_count(), 2u);
EXPECT_TRUE(pi1_connection->has_connected_since_time());
EXPECT_TRUE(pi1_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(1))
<< ": " << FlatbufferToJson(pi1_connection);
EXPECT_GT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(-1))
<< ": " << FlatbufferToJson(pi1_connection);
EXPECT_TRUE(pi1_connection->has_boot_uuid());
EXPECT_EQ(pi2_connection->state(), State::CONNECTED);
EXPECT_EQ(pi2_connection->connection_count(), 1u);
EXPECT_TRUE(pi2_connection->has_connected_since_time());
EXPECT_TRUE(pi2_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(1))
<< ": " << FlatbufferToJson(pi2_connection);
EXPECT_GT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(-1))
<< ": " << FlatbufferToJson(pi2_connection);
EXPECT_TRUE(pi2_connection->has_boot_uuid());
StopPi2Client();
}
// Shut everyone else down
StopPi1Server();
StopPi1Client();
StopPi2Server();
StopPi1Test();
StopPi2Test();
}
// Test that the server disconnecting triggers the server offsets on the other
// side to clear, along with the other client.
TEST_P(MessageBridgeParameterizedTest, ServerRestart) {
// This is rather annoying to set up. We need to start up a client and
// server, on the same node, but get them to think that they are on different
// nodes.
//
// We need the client to not post directly to "/test" like it would in a
// real system, otherwise we will re-send the ping message... So, use an
// application specific map to have the client post somewhere else.
//
// To top this all off, each of these needs to be done with a ShmEventLoop,
// which needs to run in a separate thread... And it is really hard to get
// everything started up reliably. So just be super generous on timeouts and
// hope for the best. We can be more generous in the future if we need to.
//
// We are faking the application names by passing in --application_name=foo
// Force ourselves to be "raspberrypi" and allocate everything.
OnPi1();
MakePi1Server();
MakePi1Client();
// And build the app for testing.
MakePi1Test();
aos::Fetcher<ServerStatistics> pi1_server_statistics_fetcher =
pi1_test_event_loop->MakeFetcher<ServerStatistics>("/pi1/aos");
aos::Fetcher<ClientStatistics> pi1_client_statistics_fetcher =
pi1_test_event_loop->MakeFetcher<ClientStatistics>("/pi1/aos");
// Now do it for "raspberrypi2", the client.
OnPi2();
MakePi2Client();
// And build the app for testing.
MakePi2Test();
aos::Fetcher<ServerStatistics> pi2_server_statistics_fetcher =
pi2_test_event_loop->MakeFetcher<ServerStatistics>("/pi2/aos");
// Start everything up. Pong is the only thing we don't know how to wait on,
// so start it first.
StartPi1Test();
StartPi2Test();
StartPi1Server();
StartPi1Client();
StartPi2Client();
// Confirm both client and server statistics messages have decent offsets in
// them.
{
MakePi2Server();
RunPi2Server(chrono::milliseconds(3050));
// Now confirm we are synchronized.
EXPECT_TRUE(pi1_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi2_server_statistics_fetcher.Fetch());
const ServerConnection *const pi1_connection =
pi1_server_statistics_fetcher->connections()->Get(0);
const ServerConnection *const pi2_connection =
pi2_server_statistics_fetcher->connections()->Get(0);
EXPECT_EQ(pi1_connection->state(), State::CONNECTED);
EXPECT_TRUE(pi1_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(pi1_connection->has_boot_uuid());
EXPECT_TRUE(pi1_connection->has_connected_since_time());
EXPECT_EQ(pi1_connection->connection_count(), 1u);
EXPECT_EQ(pi2_connection->state(), State::CONNECTED);
EXPECT_TRUE(pi2_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(pi2_connection->has_boot_uuid());
EXPECT_TRUE(pi2_connection->has_connected_since_time());
EXPECT_EQ(pi2_connection->connection_count(), 1u);
StopPi2Server();
}
std::this_thread::sleep_for(std::chrono::seconds(2));
{
// And confirm we are unsynchronized.
EXPECT_TRUE(pi1_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi1_client_statistics_fetcher.Fetch());
const ServerConnection *const pi1_server_connection =
pi1_server_statistics_fetcher->connections()->Get(0);
const ClientConnection *const pi1_client_connection =
pi1_client_statistics_fetcher->connections()->Get(0);
EXPECT_EQ(pi1_server_connection->state(), State::CONNECTED);
EXPECT_FALSE(pi1_server_connection->has_monotonic_offset());
EXPECT_TRUE(pi1_server_connection->has_connected_since_time());
EXPECT_EQ(pi1_server_connection->connection_count(), 1u);
EXPECT_TRUE(pi1_server_connection->has_boot_uuid());
EXPECT_EQ(pi1_client_connection->state(), State::DISCONNECTED);
EXPECT_FALSE(pi1_client_connection->has_monotonic_offset());
EXPECT_FALSE(pi1_client_connection->has_connected_since_time());
EXPECT_EQ(pi1_client_connection->connection_count(), 1u);
EXPECT_FALSE(pi1_client_connection->has_boot_uuid());
}
{
MakePi2Server();
RunPi2Server(chrono::milliseconds(3050));
// And confirm we are synchronized again.
EXPECT_TRUE(pi1_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi2_server_statistics_fetcher.Fetch());
EXPECT_TRUE(pi1_client_statistics_fetcher.Fetch());
const ServerConnection *const pi1_connection =
pi1_server_statistics_fetcher->connections()->Get(0);
const ServerConnection *const pi2_connection =
pi2_server_statistics_fetcher->connections()->Get(0);
const ClientConnection *const pi1_client_connection =
pi1_client_statistics_fetcher->connections()->Get(0);
EXPECT_EQ(pi1_connection->state(), State::CONNECTED);
EXPECT_TRUE(pi1_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(pi1_connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(pi1_connection->has_boot_uuid());
EXPECT_EQ(pi1_client_connection->state(), State::CONNECTED);
EXPECT_TRUE(pi1_client_connection->has_connected_since_time());
EXPECT_EQ(pi1_client_connection->connection_count(), 2u);
EXPECT_TRUE(pi1_client_connection->has_boot_uuid());
EXPECT_EQ(pi2_connection->state(), State::CONNECTED);
EXPECT_TRUE(pi2_connection->has_monotonic_offset());
EXPECT_LT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(1));
EXPECT_GT(chrono::nanoseconds(pi2_connection->monotonic_offset()),
chrono::milliseconds(-1));
EXPECT_TRUE(pi2_connection->has_boot_uuid());
StopPi2Server();
}
// Shut everyone else down
StopPi1Server();
StopPi1Client();
StopPi2Client();
StopPi1Test();
StopPi2Test();
}
// TODO(austin): The above test confirms that the external state does the right
// thing, but doesn't confirm that the internal state does. We either need to
// expose a way to check the state in a thread-safe way, or need a way to jump
// time for one node to do that.
void SendPing(aos::Sender<examples::Ping> *sender, int value) {
aos::Sender<examples::Ping>::Builder builder = sender->MakeBuilder();
examples::Ping::Builder ping_builder = builder.MakeBuilder<examples::Ping>();
ping_builder.add_value(value);
builder.CheckOk(builder.Send(ping_builder.Finish()));
}
// Tests that when a message is sent before the bridge starts up, but is
// configured as reliable, we forward it. Confirm this survives a client reset.
TEST_P(MessageBridgeParameterizedTest, ReliableSentBeforeClientStartup) {
OnPi1();
FLAGS_application_name = "sender";
aos::ShmEventLoop send_event_loop(&config.message());
aos::Sender<examples::Ping> ping_sender =
send_event_loop.MakeSender<examples::Ping>("/test");
SendPing(&ping_sender, 1);
aos::Sender<examples::Ping> unreliable_ping_sender =
send_event_loop.MakeSender<examples::Ping>("/unreliable");
SendPing(&unreliable_ping_sender, 1);
MakePi1Server();
MakePi1Client();
FLAGS_application_name = "pi1_timestamp";
aos::ShmEventLoop pi1_remote_timestamp_event_loop(&config.message());
// Now do it for "raspberrypi2", the client.
OnPi2();
MakePi2Server();
aos::ShmEventLoop receive_event_loop(&config.message());
aos::Fetcher<examples::Ping> ping_fetcher =
receive_event_loop.MakeFetcher<examples::Ping>("/test");
aos::Fetcher<examples::Ping> unreliable_ping_fetcher =
receive_event_loop.MakeFetcher<examples::Ping>("/unreliable");
aos::Fetcher<ClientStatistics> pi2_client_statistics_fetcher =
receive_event_loop.MakeFetcher<ClientStatistics>("/pi2/aos");
const size_t ping_channel_index = configuration::ChannelIndex(
receive_event_loop.configuration(), ping_fetcher.channel());
std::atomic<int> ping_timestamp_count{0};
const std::string channel_name =
shared() ? "/pi1/aos/remote_timestamps/pi2"
: "/pi1/aos/remote_timestamps/pi2/test/aos-examples-Ping";
pi1_remote_timestamp_event_loop.MakeWatcher(
channel_name, [this, channel_name, ping_channel_index,
&ping_timestamp_count](const RemoteMessage &header) {
VLOG(1) << channel_name << " RemoteMessage "
<< aos::FlatbufferToJson(&header);
EXPECT_TRUE(header.has_boot_uuid());
if (shared() && header.channel_index() != ping_channel_index) {
return;
}
CHECK_EQ(header.channel_index(), ping_channel_index);
++ping_timestamp_count;
});
// Before everything starts up, confirm there is no message.
EXPECT_FALSE(ping_fetcher.Fetch());
EXPECT_FALSE(unreliable_ping_fetcher.Fetch());
// Spin up the persistant pieces.
StartPi1Server();
StartPi1Client();
StartPi2Server();
// Event used to wait for the timestamp counting thread to start.
aos::Event event;
std::thread pi1_remote_timestamp_thread(
[&pi1_remote_timestamp_event_loop, &event]() {
pi1_remote_timestamp_event_loop.OnRun([&event]() { event.Set(); });
pi1_remote_timestamp_event_loop.Run();
});
event.Wait();
{
// Now, spin up a client for 2 seconds.
MakePi2Client();
RunPi2Client(chrono::milliseconds(2050));
// Confirm there is no detected duplicate packet.
EXPECT_TRUE(pi2_client_statistics_fetcher.Fetch());
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->duplicate_packets(),
0u);
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->partial_deliveries(),
0u);
EXPECT_TRUE(ping_fetcher.Fetch());
EXPECT_FALSE(unreliable_ping_fetcher.Fetch());
EXPECT_EQ(ping_timestamp_count, 1);
StopPi2Client();
}
{
// Now, spin up a client for 2 seconds.
MakePi2Client();
RunPi2Client(chrono::milliseconds(5050));
// Confirm we detect the duplicate packet correctly.
EXPECT_TRUE(pi2_client_statistics_fetcher.Fetch());
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->duplicate_packets(),
1u);
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->partial_deliveries(),
0u);
EXPECT_EQ(ping_timestamp_count, 1);
EXPECT_FALSE(ping_fetcher.Fetch());
EXPECT_FALSE(unreliable_ping_fetcher.Fetch());
StopPi2Client();
}
// Shut everyone else down
StopPi1Client();
StopPi2Server();
pi1_remote_timestamp_event_loop.Exit();
pi1_remote_timestamp_thread.join();
StopPi1Server();
}
// Tests that when a message is sent before the bridge starts up, but is
// configured as reliable, we forward it. Confirm this works across server
// resets.
TEST_P(MessageBridgeParameterizedTest, ReliableSentBeforeServerStartup) {
// Now do it for "raspberrypi2", the client.
OnPi2();
MakePi2Server();
MakePi2Client();
aos::ShmEventLoop receive_event_loop(&config.message());
aos::Fetcher<examples::Ping> ping_fetcher =
receive_event_loop.MakeFetcher<examples::Ping>("/test");
aos::Fetcher<examples::Ping> unreliable_ping_fetcher =
receive_event_loop.MakeFetcher<examples::Ping>("/unreliable");
aos::Fetcher<ClientStatistics> pi2_client_statistics_fetcher =
receive_event_loop.MakeFetcher<ClientStatistics>("/pi2/aos");
// Force ourselves to be "raspberrypi" and allocate everything.
OnPi1();
FLAGS_application_name = "sender";
aos::ShmEventLoop send_event_loop(&config.message());
aos::Sender<examples::Ping> ping_sender =
send_event_loop.MakeSender<examples::Ping>("/test");
{
aos::Sender<examples::Ping>::Builder builder = ping_sender.MakeBuilder();
examples::Ping::Builder ping_builder =
builder.MakeBuilder<examples::Ping>();
ping_builder.add_value(1);
builder.CheckOk(builder.Send(ping_builder.Finish()));
}
MakePi1Client();
FLAGS_application_name = "pi1_timestamp";
aos::ShmEventLoop pi1_remote_timestamp_event_loop(&config.message());
const size_t ping_channel_index = configuration::ChannelIndex(
receive_event_loop.configuration(), ping_fetcher.channel());
std::atomic<int> ping_timestamp_count{0};
const std::string channel_name =
shared() ? "/pi1/aos/remote_timestamps/pi2"
: "/pi1/aos/remote_timestamps/pi2/test/aos-examples-Ping";
pi1_remote_timestamp_event_loop.MakeWatcher(
channel_name, [this, channel_name, ping_channel_index,
&ping_timestamp_count](const RemoteMessage &header) {
VLOG(1) << channel_name << " RemoteMessage "
<< aos::FlatbufferToJson(&header);
EXPECT_TRUE(header.has_boot_uuid());
if (shared() && header.channel_index() != ping_channel_index) {
return;
}
CHECK_EQ(header.channel_index(), ping_channel_index);
++ping_timestamp_count;
});
// Before everything starts up, confirm there is no message.
EXPECT_FALSE(ping_fetcher.Fetch());
EXPECT_FALSE(unreliable_ping_fetcher.Fetch());
// Spin up the persistant pieces.
StartPi1Client();
StartPi2Server();
StartPi2Client();
// Event used to wait for the timestamp counting thread to start.
aos::Event event;
std::thread pi1_remote_timestamp_thread(
[&pi1_remote_timestamp_event_loop, &event]() {
pi1_remote_timestamp_event_loop.OnRun([&event]() { event.Set(); });
pi1_remote_timestamp_event_loop.Run();
});
event.Wait();
{
// Now, spin up a server for 2 seconds.
MakePi1Server();
RunPi1Server(chrono::milliseconds(2050));
// Confirm there is no detected duplicate packet.
EXPECT_TRUE(pi2_client_statistics_fetcher.Fetch());
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->duplicate_packets(),
0u);
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->partial_deliveries(),
0u);
EXPECT_TRUE(ping_fetcher.Fetch());
EXPECT_FALSE(unreliable_ping_fetcher.Fetch());
EXPECT_EQ(ping_timestamp_count, 1);
LOG(INFO) << "Shutting down first pi1 MessageBridgeServer";
StopPi1Server();
}
{
// Now, spin up a second server for 2 seconds.
MakePi1Server();
RunPi1Server(chrono::milliseconds(2050));
// Confirm we detect the duplicate packet correctly.
EXPECT_TRUE(pi2_client_statistics_fetcher.Fetch());
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->duplicate_packets(),
1u);
EXPECT_EQ(pi2_client_statistics_fetcher->connections()
->Get(0)
->partial_deliveries(),
0u);
EXPECT_EQ(ping_timestamp_count, 1);
EXPECT_FALSE(ping_fetcher.Fetch());
EXPECT_FALSE(unreliable_ping_fetcher.Fetch());
StopPi1Server();
}
// Shut everyone else down
StopPi1Client();
StopPi2Server();
StopPi2Client();
pi1_remote_timestamp_event_loop.Exit();
pi1_remote_timestamp_thread.join();
}
INSTANTIATE_TEST_SUITE_P(
MessageBridgeTests, MessageBridgeParameterizedTest,
::testing::Values(
Param{"message_bridge_test_combined_timestamps_common_config.json",
true},
Param{"message_bridge_test_common_config.json", false}));
} // namespace testing
} // namespace message_bridge
} // namespace aos