blob: a99e9ecd524f516a89b29916e66e1b43371a8bd2 [file] [log] [blame]
#include "frc971/control_loops/angle_adjust.h"
#include "frc971/control_loops/hall_effect_loop.h"
#include "frc971/control_loops/hall_effect_loop-inl.h"
#include <algorithm>
#include "aos/aos_core.h"
#include "aos/common/messages/RobotState.q.h"
#include "aos/common/control_loop/control_loops.q.h"
#include "aos/common/logging/logging.h"
#include "frc971/constants.h"
#include "frc971/control_loops/angle_adjust_motor_plant.h"
namespace frc971 {
namespace control_loops {
AngleAdjustMotor::AngleAdjustMotor(
control_loops::AngleAdjustLoop *my_angle_adjust)
: aos::control_loops::ControlLoop<control_loops::AngleAdjustLoop>(
my_angle_adjust),
hall_effect_(new StateFeedbackLoop<2, 1, 1>(MakeAngleAdjustLoop()), true),
error_count_(0),
time_(0.0) {
if (testing) {
hall_effect_.loop_->StartDataFile("angle_adjust.csv");
}
}
bool AngleAdjustMotor::FetchConstants() {
if (!constants::angle_adjust_horizontal_lower_limit(
&horizontal_lower_limit_)) {
LOG(ERROR, "Failed to fetch the horizontal lower limit constant.\n");
return false;
}
if (!constants::angle_adjust_horizontal_upper_limit(
&horizontal_upper_limit_)) {
LOG(ERROR, "Failed to fetch the horizontal upper limit constant.\n");
return false;
}
if (!constants::angle_adjust_horizontal_hall_effect_stop_angle(
&horizontal_hall_effect_stop_angle_)) {
LOG(ERROR, "Failed to fetch the hall effect stop angle constants.\n");
return false;
}
if (!constants::angle_adjust_horizontal_zeroing_speed(
&horizontal_zeroing_speed_)) {
LOG(ERROR, "Failed to fetch the horizontal zeroing speed constant.\n");
return false;
}
return true;
}
double AngleAdjustMotor::ClipGoal(double goal) const {
return std::min(horizontal_upper_limit_,
std::max(horizontal_lower_limit_, goal));
}
double AngleAdjustMotor::LimitVoltage(double absolute_position,
double voltage) const {
if (hall_effect_.state_ == HallEffectLoop<2>::READY) {
if (absolute_position >= horizontal_upper_limit_) {
voltage = std::min(0.0, voltage);
}
if (absolute_position <= horizontal_lower_limit_) {
voltage = std::max(0.0, voltage);
}
}
double limit = (hall_effect_.state_ == HallEffectLoop<2>::READY) ? 12.0 : 5.0;
// TODO(aschuh): Remove this line when we are done testing.
//limit = std::min(0.3, limit);
voltage = std::min(limit, voltage);
voltage = std::max(-limit, voltage);
return voltage;
}
// Positive angle is up, and positive power is up.
void AngleAdjustMotor::RunIteration(
const ::aos::control_loops::Goal *goal,
const control_loops::AngleAdjustLoop::Position *position,
::aos::control_loops::Output *output,
::aos::control_loops::Status * /*status*/) {
// Disable the motors now so that all early returns will return with the
// motors disabled.
if (output) {
output->voltage = 0;
}
// Cache the constants to avoid error handling down below.
if (!FetchConstants()) {
LOG(WARNING, "Failed to fetch constants.\n");
return;
}
// Uninitialize the bot if too many cycles pass without an encoder.
if (position == NULL) {
LOG(WARNING, "no new pos given\n");
error_count_++;
} else {
error_count_ = 0;
}
if (error_count_ >= 4) {
LOG(WARNING, "err_count is %d so forcing a re-zero\n", error_count_);
hall_effect_.state_ = HallEffectLoop<2>::UNINITIALIZED;
}
double absolute_position = hall_effect_.loop_->X_hat(0, 0);
// Compute the absolute position of the angle adjust.
if (position) {
hall_effect_sensors_[0] = position->bottom_hall_effect;
hall_effect_sensors_[1] = position->middle_hall_effect;
calibration_values_[0] = position->bottom_calibration;
calibration_values_[1] = position->middle_calibration;
absolute_position = position->before_angle;
}
hall_effect_.UpdateZeros(horizontal_hall_effect_stop_angle_,
hall_effect_sensors_,
calibration_values_,
horizontal_zeroing_speed_,
absolute_position,
position != NULL);
if (hall_effect_.state_ == HallEffectLoop<2>::READY) {
const double limited_goal = ClipGoal(goal->goal);
hall_effect_.loop_->R << limited_goal, 0.0;
}
// Update the observer.
hall_effect_.loop_->Update(position != NULL, output == NULL);
if (position) {
LOG(DEBUG, "pos=%f bottom_hall: %s middle_hall: %s\n",
position->before_angle,
position->bottom_hall_effect ? "true" : "false",
position->middle_hall_effect ? "true" : "false");
}
if (hall_effect_.state_ == HallEffectLoop<2>::READY) {
LOG(DEBUG, "calibrated with: %s hall effect\n",
hall_effect_.last_calibration_sensor_ ? "bottom" : "middle");
}
if (output) {
output->voltage = LimitVoltage(hall_effect_.absolute_position_,
hall_effect_.loop_->U(0, 0));
}
if (testing) {
hall_effect_.loop_->RecordDatum("angle_adjust.csv", time_);
}
time_ += dt;
} // RunIteration
} // namespace control_loops
} // namespace frc971