| #ifndef AOS_EVENTS_EVENT_LOOP_H_ |
| #define AOS_EVENTS_EVENT_LOOP_H_ |
| |
| #include <sched.h> |
| |
| #include <atomic> |
| #include <ostream> |
| #include <string> |
| #include <string_view> |
| |
| #include "absl/container/btree_set.h" |
| #include "flatbuffers/flatbuffers.h" |
| #include "glog/logging.h" |
| |
| #include "aos/configuration.h" |
| #include "aos/configuration_generated.h" |
| #include "aos/events/channel_preallocated_allocator.h" |
| #include "aos/events/context.h" |
| #include "aos/events/event_loop_event.h" |
| #include "aos/events/event_loop_generated.h" |
| #include "aos/events/timing_statistics.h" |
| #include "aos/flatbuffers.h" |
| #include "aos/flatbuffers/builder.h" |
| #include "aos/ftrace.h" |
| #include "aos/ipc_lib/data_alignment.h" |
| #include "aos/json_to_flatbuffer.h" |
| #include "aos/time/time.h" |
| #include "aos/util/phased_loop.h" |
| #include "aos/uuid.h" |
| |
| DECLARE_bool(timing_reports); |
| DECLARE_int32(timing_report_ms); |
| |
| namespace aos { |
| |
| class EventLoop; |
| class WatcherState; |
| |
| // Raw version of fetcher. Contains a local variable that the fetcher will |
| // update. This is used for reflection and as an interface to implement typed |
| // fetchers. |
| class RawFetcher { |
| public: |
| RawFetcher(EventLoop *event_loop, const Channel *channel); |
| RawFetcher(const RawFetcher &) = delete; |
| RawFetcher &operator=(const RawFetcher &) = delete; |
| virtual ~RawFetcher(); |
| |
| // Fetches the next message in the queue without blocking. Returns true if |
| // there was a new message and we got it. |
| bool FetchNext(); |
| // Fetches the next message if there is one, and the provided function returns |
| // true. The data and buffer_index are the only pieces of the Context which |
| // are zeroed out. The function must be valid. |
| bool FetchNextIf(std::function<bool(const Context &context)> fn); |
| |
| // Fetches the latest message without blocking. |
| bool Fetch(); |
| // Fetches the latest message conditionally without blocking. fn must be |
| // valid. |
| bool FetchIf(std::function<bool(const Context &context)> fn); |
| |
| // Returns the channel this fetcher uses. |
| const Channel *channel() const { return channel_; } |
| // Returns the context for the current message. |
| const Context &context() const { return context_; } |
| |
| protected: |
| EventLoop *event_loop() { return event_loop_; } |
| const EventLoop *event_loop() const { return event_loop_; } |
| |
| Context context_; |
| |
| private: |
| friend class EventLoop; |
| // Implementation |
| virtual std::pair<bool, monotonic_clock::time_point> DoFetchNext() = 0; |
| virtual std::pair<bool, monotonic_clock::time_point> DoFetchNextIf( |
| std::function<bool(const Context &)> fn) = 0; |
| virtual std::pair<bool, monotonic_clock::time_point> DoFetch() = 0; |
| virtual std::pair<bool, monotonic_clock::time_point> DoFetchIf( |
| std::function<bool(const Context &)> fn) = 0; |
| |
| EventLoop *const event_loop_; |
| const Channel *const channel_; |
| const std::string ftrace_prefix_; |
| |
| internal::RawFetcherTiming timing_; |
| Ftrace ftrace_; |
| }; |
| |
| using SharedSpan = std::shared_ptr<const absl::Span<const uint8_t>>; |
| |
| // Holds storage for a span object and the data referenced by that span for |
| // compatibility with SharedSpan users. If constructed with MakeSharedSpan, span |
| // points to only the aligned segment of the entire data. |
| struct AlignedOwningSpan { |
| AlignedOwningSpan(absl::Span<const uint8_t> new_span) : span(new_span) {} |
| |
| AlignedOwningSpan(const AlignedOwningSpan &) = delete; |
| AlignedOwningSpan &operator=(const AlignedOwningSpan &) = delete; |
| absl::Span<const uint8_t> span; |
| char *data() { return reinterpret_cast<char *>(this + 1); } |
| }; |
| |
| // Constructs a span which owns its data through a shared_ptr. The owning span |
| // points to a const view of the data; also returns a temporary mutable span |
| // which is only valid while the const shared span is kept alive. |
| std::pair<SharedSpan, absl::Span<uint8_t>> MakeSharedSpan(size_t size); |
| |
| // Raw version of sender. Sends a block of data. This is used for reflection |
| // and as a building block to implement typed senders. |
| class RawSender { |
| public: |
| using SharedSpan = std::shared_ptr<const absl::Span<const uint8_t>>; |
| |
| enum class [[nodiscard]] Error { |
| // Represents success and no error |
| kOk, |
| |
| // Error for messages on channels being sent faster than their |
| // frequency and channel storage duration allow |
| kMessagesSentTooFast, |
| // Access to Redzone was attempted in Sender Queue |
| kInvalidRedzone, |
| }; |
| |
| RawSender(EventLoop *event_loop, const Channel *channel); |
| RawSender(const RawSender &) = delete; |
| RawSender &operator=(const RawSender &) = delete; |
| |
| virtual ~RawSender(); |
| |
| // Returns the buffer to write new messages into. This is always valid, and |
| // may change after calling any of the Send functions. |
| virtual void *data() = 0; |
| virtual size_t size() = 0; |
| |
| // Sends a message without copying it. The users starts by copying up to |
| // size() bytes into the data backed by data(). They then call Send to send. |
| // Returns Error::kOk on a successful send, or |
| // Error::kMessagesSentTooFast if messages were sent too fast. If provided, |
| // monotonic_remote_time, realtime_remote_time, and remote_queue_index are |
| // attached to the message and are available in the context on the read side. |
| // If they are not populated, the read side will get the sent times instead. |
| Error Send(size_t size); |
| Error Send(size_t size, monotonic_clock::time_point monotonic_remote_time, |
| realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, const UUID &source_boot_uuid); |
| |
| // Sends a single block of data by copying it. |
| // The remote arguments have the same meaning as in Send above. |
| // Returns Error::kMessagesSentTooFast if messages were sent too fast |
| Error Send(const void *data, size_t size); |
| Error Send(const void *data, size_t size, |
| monotonic_clock::time_point monotonic_remote_time, |
| realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, const UUID &source_boot_uuid); |
| |
| // CHECKs that no sending Error occurred and logs the channel_ data if |
| // one did |
| void CheckOk(const Error err); |
| |
| // Sends a single block of data by refcounting it to avoid copies. The data |
| // must not change after being passed into Send. The remote arguments have the |
| // same meaning as in Send above. |
| Error Send(const SharedSpan data); |
| Error Send(const SharedSpan data, |
| monotonic_clock::time_point monotonic_remote_time, |
| realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, const UUID &remote_boot_uuid); |
| const Channel *channel() const { return channel_; } |
| |
| // Returns the time_points that the last message was sent at. |
| aos::monotonic_clock::time_point monotonic_sent_time() const { |
| return monotonic_sent_time_; |
| } |
| aos::realtime_clock::time_point realtime_sent_time() const { |
| return realtime_sent_time_; |
| } |
| // Returns the queue index that this was sent with. |
| uint32_t sent_queue_index() const { return sent_queue_index_; } |
| |
| // Returns the associated flatbuffers-style allocator. This must be |
| // deallocated before the message is sent. |
| ChannelPreallocatedAllocator *fbb_allocator() { |
| CHECK(!static_allocator_.has_value()) |
| << ": May not mix-and-match static and raw flatbuffer builders."; |
| if (fbb_allocator_.has_value()) { |
| CHECK(!fbb_allocator_.value().allocated()) |
| << ": May not have multiple active allocators on a single sender."; |
| } |
| return &fbb_allocator_.emplace(reinterpret_cast<uint8_t *>(data()), size(), |
| channel()); |
| } |
| |
| fbs::SpanAllocator *static_allocator() { |
| CHECK(!fbb_allocator_.has_value()) |
| << ": May not mix-and-match static and raw flatbuffer builders."; |
| return &static_allocator_.emplace( |
| std::span<uint8_t>{reinterpret_cast<uint8_t *>(data()), size()}); |
| } |
| |
| // Index of the buffer which is currently exposed by data() and the various |
| // other accessors. This is the message the caller should be filling out. |
| virtual int buffer_index() = 0; |
| |
| protected: |
| EventLoop *event_loop() { return event_loop_; } |
| const EventLoop *event_loop() const { return event_loop_; } |
| |
| monotonic_clock::time_point monotonic_sent_time_ = monotonic_clock::min_time; |
| realtime_clock::time_point realtime_sent_time_ = realtime_clock::min_time; |
| uint32_t sent_queue_index_ = 0xffffffff; |
| |
| private: |
| friend class EventLoop; |
| |
| virtual Error DoSend(const void *data, size_t size, |
| monotonic_clock::time_point monotonic_remote_time, |
| realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, |
| const UUID &source_boot_uuid) = 0; |
| virtual Error DoSend(size_t size, |
| monotonic_clock::time_point monotonic_remote_time, |
| realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, |
| const UUID &source_boot_uuid) = 0; |
| virtual Error DoSend(const SharedSpan data, |
| monotonic_clock::time_point monotonic_remote_time, |
| realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, |
| const UUID &source_boot_uuid); |
| |
| void RecordSendResult(const Error error, size_t message_size); |
| |
| EventLoop *const event_loop_; |
| const Channel *const channel_; |
| const std::string ftrace_prefix_; |
| |
| internal::RawSenderTiming timing_; |
| Ftrace ftrace_; |
| |
| // Depending on which API is being used, we will populate either |
| // fbb_allocator_ (for use with FlatBufferBuilders) or the SpanAllocator (for |
| // use with the static flatbuffer API). |
| std::optional<ChannelPreallocatedAllocator> fbb_allocator_; |
| std::optional<fbs::SpanAllocator> static_allocator_; |
| }; |
| |
| // Needed for compatibility with glog |
| std::ostream &operator<<(std::ostream &os, const RawSender::Error err); |
| |
| // Fetches the newest message from a channel. |
| // This provides a polling based interface for channels. |
| template <typename T> |
| class Fetcher { |
| public: |
| Fetcher() {} |
| |
| // Fetches the next message. Returns true if it fetched a new message. This |
| // method will only return messages sent after the Fetcher was created. |
| bool FetchNext() { |
| const bool result = CHECK_NOTNULL(fetcher_)->FetchNext(); |
| if (result) { |
| CheckChannelDataAlignment(fetcher_->context().data, |
| fetcher_->context().size); |
| } |
| return result; |
| } |
| |
| // Fetches the next message if there is one, and the provided function returns |
| // true. The data and buffer_index are the only pieces of the Context which |
| // are zeroed out. The function must be valid. |
| bool FetchNextIf(std::function<bool(const Context &)> fn) { |
| const bool result = CHECK_NOTNULL(fetcher_)->FetchNextIf(std::move(fn)); |
| if (result) { |
| CheckChannelDataAlignment(fetcher_->context().data, |
| fetcher_->context().size); |
| } |
| return result; |
| } |
| |
| // Fetches the most recent message. Returns true if it fetched a new message. |
| // This will return the latest message regardless of if it was sent before or |
| // after the fetcher was created. |
| bool Fetch() { |
| const bool result = CHECK_NOTNULL(fetcher_)->Fetch(); |
| if (result) { |
| CheckChannelDataAlignment(fetcher_->context().data, |
| fetcher_->context().size); |
| } |
| return result; |
| } |
| |
| // Fetches the most recent message conditionally. Returns true if it fetched a |
| // new message. This will return the latest message regardless of if it was |
| // sent before or after the fetcher was created. The function must be valid. |
| bool FetchIf(std::function<bool(const Context &)> fn) { |
| const bool result = CHECK_NOTNULL(fetcher_)->FetchIf(std::move(fn)); |
| if (result) { |
| CheckChannelDataAlignment(fetcher_->context().data, |
| fetcher_->context().size); |
| } |
| return result; |
| } |
| |
| // Returns a pointer to the contained flatbuffer, or nullptr if there is no |
| // available message. |
| const T *get() const { |
| return CHECK_NOTNULL(fetcher_)->context().data != nullptr |
| ? flatbuffers::GetRoot<T>( |
| reinterpret_cast<const char *>(fetcher_->context().data)) |
| : nullptr; |
| } |
| |
| // Returns the channel this fetcher uses |
| const Channel *channel() const { return CHECK_NOTNULL(fetcher_)->channel(); } |
| |
| // Returns the context holding timestamps and other metadata about the |
| // message. |
| const Context &context() const { return CHECK_NOTNULL(fetcher_)->context(); } |
| |
| const T &operator*() const { return *get(); } |
| const T *operator->() const { return get(); } |
| |
| // Returns true if this fetcher is valid and connected to a channel. If you, |
| // e.g., are using TryMakeFetcher, then you must check valid() before |
| // attempting to use the Fetcher. |
| bool valid() const { return static_cast<bool>(fetcher_); } |
| |
| // Copies the current flatbuffer into a FlatbufferVector. |
| FlatbufferVector<T> CopyFlatBuffer() const { |
| return context().template CopyFlatBuffer<T>(); |
| } |
| |
| private: |
| friend class EventLoop; |
| Fetcher(::std::unique_ptr<RawFetcher> fetcher) |
| : fetcher_(::std::move(fetcher)) {} |
| ::std::unique_ptr<RawFetcher> fetcher_; |
| }; |
| |
| // Sends messages to a channel. |
| // The type T used with the Sender may either be a raw flatbuffer type (e.g., |
| // aos::examples::Ping) or the static flatbuffer type (e.g. |
| // aos::examples::PingStatic). The Builder type that you use must correspond |
| // with the flatbuffer type being used. |
| template <typename T> |
| class Sender { |
| public: |
| Sender() {} |
| |
| // Represents a single message that is about to be sent on the channel. |
| // Uses the static flatbuffer API rather than the FlatBufferBuilder paradigm. |
| // |
| // Typical usage pattern is: |
| // |
| // Sender<PingStatic>::Builder builder = sender.MakeStaticBuilder() |
| // builder.get()->set_value(971); |
| // builder.CheckOk(builder.Send()); |
| class StaticBuilder { |
| public: |
| StaticBuilder(RawSender *sender, fbs::SpanAllocator *allocator) |
| : builder_(allocator), sender_(CHECK_NOTNULL(sender)) {} |
| StaticBuilder(const StaticBuilder &) = delete; |
| StaticBuilder(StaticBuilder &&) = default; |
| |
| StaticBuilder &operator=(const StaticBuilder &) = delete; |
| StaticBuilder &operator=(StaticBuilder &&) = default; |
| |
| fbs::Builder<T> *builder() { |
| DCHECK(builder_.has_value()); |
| return &builder_.value(); |
| } |
| |
| T *get() { return builder()->get(); } |
| T &operator*() { return *get(); } |
| T *operator->() { return get(); } |
| |
| RawSender::Error Send() { |
| const auto err = sender_->Send(builder_.value().buffer().size()); |
| builder_.reset(); |
| return err; |
| } |
| |
| // Equivalent to RawSender::CheckOk |
| void CheckOk(const RawSender::Error err) { sender_->CheckOk(err); }; |
| |
| private: |
| std::optional<fbs::Builder<T>> builder_; |
| RawSender *sender_; |
| }; |
| |
| // Represents a single message about to be sent to the queue. |
| // The lifecycle goes: |
| // |
| // Builder builder = sender.MakeBuilder(); |
| // T::Builder t_builder = builder.MakeBuilder<T>(); |
| // Populate(&t_builder); |
| // builder.Send(t_builder.Finish()); |
| class Builder { |
| public: |
| Builder(RawSender *sender, ChannelPreallocatedAllocator *allocator) |
| : fbb_(allocator->size(), allocator), |
| allocator_(allocator), |
| sender_(CHECK_NOTNULL(sender)) { |
| CheckChannelDataAlignment(allocator->data(), allocator->size()); |
| fbb_.ForceDefaults(true); |
| } |
| Builder() {} |
| Builder(const Builder &) = delete; |
| Builder(Builder &&) = default; |
| |
| Builder &operator=(const Builder &) = delete; |
| Builder &operator=(Builder &&) = default; |
| |
| flatbuffers::FlatBufferBuilder *fbb() { return &fbb_; } |
| |
| template <typename T2> |
| typename T2::Builder MakeBuilder() { |
| return typename T2::Builder(fbb_); |
| } |
| |
| RawSender::Error Send(flatbuffers::Offset<T> offset) { |
| fbb_.Finish(offset); |
| const auto err = sender_->Send(fbb_.GetSize()); |
| // Ensure fbb_ knows it shouldn't access the memory any more. |
| fbb_ = flatbuffers::FlatBufferBuilder(); |
| return err; |
| } |
| |
| // Equivalent to RawSender::CheckOk |
| void CheckOk(const RawSender::Error err) { sender_->CheckOk(err); }; |
| |
| // CHECKs that this message was sent. |
| void CheckSent() { |
| CHECK(!allocator_->is_allocated()) << ": Message was not sent yet"; |
| } |
| |
| // Detaches a buffer, for later use calling Sender::Send directly. |
| // |
| // Note that the underlying memory remains with the Sender, so creating |
| // another Builder before destroying the FlatbufferDetachedBuffer will fail. |
| FlatbufferDetachedBuffer<T> Detach(flatbuffers::Offset<T> offset) { |
| fbb_.Finish(offset); |
| return fbb_.Release(); |
| } |
| |
| private: |
| flatbuffers::FlatBufferBuilder fbb_; |
| ChannelPreallocatedAllocator *allocator_; |
| RawSender *sender_; |
| }; |
| |
| // Constructs an above builder. |
| // |
| // Only a single one of these may be "alive" for this object at any point in |
| // time. After calling Send on the result, it is no longer "alive". This means |
| // that you must manually reset a variable holding the return value (by |
| // assigning a default-constructed Builder to it) before calling this method |
| // again to overwrite the value in the variable. |
| Builder MakeBuilder(); |
| StaticBuilder MakeStaticBuilder() { |
| return StaticBuilder(sender_.get(), sender_->static_allocator()); |
| } |
| |
| // Sends a prebuilt flatbuffer. |
| // This will copy the data out of the provided flatbuffer, and so does not |
| // have to correspond to an existing Builder. |
| RawSender::Error Send(const NonSizePrefixedFlatbuffer<T> &flatbuffer); |
| |
| // Sends a prebuilt flatbuffer which was detached from a Builder created via |
| // MakeBuilder() on this object. |
| RawSender::Error SendDetached(FlatbufferDetachedBuffer<T> detached); |
| |
| // Equivalent to RawSender::CheckOk |
| void CheckOk(const RawSender::Error err) { |
| CHECK_NOTNULL(sender_)->CheckOk(err); |
| }; |
| |
| // Returns the name of the underlying queue, if valid. You must check valid() |
| // first. |
| const Channel *channel() const { return CHECK_NOTNULL(sender_)->channel(); } |
| |
| // Returns true if the Sender is a valid Sender. If you, e.g., are using |
| // TryMakeSender, then you must check valid() before attempting to use the |
| // Sender. |
| // TODO(austin): Deprecate the operator bool. |
| operator bool() const { return sender_ ? true : false; } |
| bool valid() const { return static_cast<bool>(sender_); } |
| |
| // Returns the time_points that the last message was sent at. |
| aos::monotonic_clock::time_point monotonic_sent_time() const { |
| return CHECK_NOTNULL(sender_)->monotonic_sent_time(); |
| } |
| aos::realtime_clock::time_point realtime_sent_time() const { |
| return CHECK_NOTNULL(sender_)->realtime_sent_time(); |
| } |
| // Returns the queue index that this was sent with. |
| uint32_t sent_queue_index() const { |
| return CHECK_NOTNULL(sender_)->sent_queue_index(); |
| } |
| |
| // Returns the buffer index which MakeBuilder() will expose access to. This is |
| // the buffer the caller can fill out. |
| int buffer_index() const { return CHECK_NOTNULL(sender_)->buffer_index(); } |
| |
| private: |
| friend class EventLoop; |
| Sender(std::unique_ptr<RawSender> sender) : sender_(std::move(sender)) {} |
| std::unique_ptr<RawSender> sender_; |
| }; |
| |
| // Class for keeping a count of send failures on a certain channel |
| class SendFailureCounter { |
| public: |
| inline void Count(const RawSender::Error err) { |
| failures_ += static_cast<size_t>(err != RawSender::Error::kOk); |
| just_failed_ = (err != RawSender::Error::kOk); |
| } |
| |
| inline size_t failures() const { return failures_; } |
| inline bool just_failed() const { return just_failed_; } |
| |
| private: |
| size_t failures_ = 0; |
| bool just_failed_ = false; |
| }; |
| |
| // Interface for timers. |
| class TimerHandler { |
| public: |
| virtual ~TimerHandler(); |
| |
| // Timer should sleep until base, base + offset, base + offset * 2, ... |
| // If repeat_offset isn't set, the timer only expires once. |
| // base must be greater than or equal to zero. |
| virtual void Schedule(monotonic_clock::time_point base, |
| monotonic_clock::duration repeat_offset = |
| ::aos::monotonic_clock::zero()) = 0; |
| |
| // Stop future calls to callback(). |
| virtual void Disable() = 0; |
| |
| // Check if the timer is disabled |
| virtual bool IsDisabled() = 0; |
| |
| // Sets and gets the name of the timer. Set this if you want a descriptive |
| // name in the timing report. |
| void set_name(std::string_view name) { name_ = std::string(name); } |
| const std::string_view name() const { return name_; } |
| |
| protected: |
| TimerHandler(EventLoop *event_loop, std::function<void()> fn); |
| |
| template <typename T> |
| monotonic_clock::time_point Call(T get_time, |
| monotonic_clock::time_point event_time); |
| |
| private: |
| friend class EventLoop; |
| |
| EventLoop *event_loop_; |
| // The function to call when Call is called. |
| std::function<void()> fn_; |
| std::string name_; |
| |
| internal::TimerTiming timing_; |
| Ftrace ftrace_; |
| }; |
| |
| // Interface for phased loops. They are built on timers. |
| class PhasedLoopHandler { |
| public: |
| virtual ~PhasedLoopHandler(); |
| |
| // Sets the interval and offset. Any changes to interval and offset only take |
| // effect when the handler finishes running or upon a call to Reschedule(). |
| // |
| // The precise semantics of the monotonic_now parameter are defined in |
| // phased_loop.h. The way that it gets used in this interface is to control |
| // what the cycles elapsed counter will read on the following call to your |
| // handler. In an idealized simulation environment, if you call |
| // set_interval_and_offset() during the phased loop offset without setting |
| // monotonic_now, then you should always see a count of 1 on the next cycle. |
| // |
| // With the default behavior (this is called inside your handler and with |
| // monotonic_now = nullopt), the next phased loop call will occur at most |
| // interval time after the current time. Note that in many cases this will |
| // *not* be the preferred behavior (in most cases, you would likely aim to |
| // keep the average frequency of the calls reasonably consistent). |
| // |
| // A combination of the monotonic_now parameter and manually calling |
| // Reschedule() outside of the phased loop handler can be used to alter the |
| // behavior of cycles_elapsed. For the default behavior, you can set |
| // monotonic_now to the current time. If you call set_interval_and_offset() |
| // and Reschedule() with the same monotonic_now, that will cause the next |
| // callback to occur in the range (monotonic_now, monotonic_now + interval] |
| // and get called with a count of 1 (if the event is actually able to happen |
| // when it is scheduled to). E.g., if you are just adjusting the phased loop |
| // offset (but not the interval) and want to maintain a consistent frequency, |
| // you may call these functions with monotonic_now = now + interval / 2. |
| void set_interval_and_offset( |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset, |
| std::optional<monotonic_clock::time_point> monotonic_now = std::nullopt) { |
| phased_loop_.set_interval_and_offset(interval, offset, monotonic_now); |
| } |
| |
| // Reruns the scheduler for the phased loop, scheduling the next callback at |
| // the next available time after monotonic_now. This allows |
| // set_interval_and_offset() to be called and have the changes take effect |
| // before the next handler finishes. This will have no effect if run during |
| // the phased loop's own handler. |
| void Reschedule(monotonic_clock::time_point monotonic_now) { |
| cycles_elapsed_ += phased_loop_.Iterate(monotonic_now); |
| Schedule(phased_loop_.sleep_time()); |
| } |
| |
| // Sets and gets the name of the timer. Set this if you want a descriptive |
| // name in the timing report. |
| void set_name(std::string_view name) { name_ = std::string(name); } |
| const std::string_view name() const { return name_; } |
| |
| protected: |
| void Call(std::function<monotonic_clock::time_point()> get_time); |
| |
| PhasedLoopHandler(EventLoop *event_loop, std::function<void(int)> fn, |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset); |
| |
| private: |
| friend class EventLoop; |
| |
| virtual void Schedule(monotonic_clock::time_point sleep_time) = 0; |
| |
| EventLoop *event_loop_; |
| std::function<void(int)> fn_; |
| std::string name_; |
| time::PhasedLoop phased_loop_; |
| |
| int cycles_elapsed_ = 0; |
| |
| internal::TimerTiming timing_; |
| Ftrace ftrace_; |
| }; |
| |
| // Note, it is supported to create only: |
| // multiple fetchers, and (one sender or one watcher) per <name, type> |
| // tuple. |
| class EventLoop { |
| public: |
| // Holds configuration by reference for the lifetime of this object. It may |
| // never be mutated externally in any way. |
| EventLoop(const Configuration *configuration); |
| |
| virtual ~EventLoop(); |
| |
| // Current time. |
| virtual monotonic_clock::time_point monotonic_now() const = 0; |
| virtual realtime_clock::time_point realtime_now() const = 0; |
| |
| template <typename T> |
| const Channel *GetChannel(const std::string_view channel_name) { |
| return configuration::GetChannel(configuration(), channel_name, |
| T::GetFullyQualifiedName(), name(), node(), |
| true); |
| } |
| // Returns true if the channel exists in the configuration. |
| template <typename T> |
| bool HasChannel(const std::string_view channel_name) { |
| return GetChannel<T>(channel_name) != nullptr; |
| } |
| |
| // Like MakeFetcher, but returns an invalid fetcher if the given channel is |
| // not readable on this node or does not exist. You must check valid() on the |
| // Fetcher before using it. |
| template <typename T> |
| Fetcher<T> TryMakeFetcher(const std::string_view channel_name) { |
| const Channel *const channel = GetChannel<T>(channel_name); |
| if (channel == nullptr) { |
| return Fetcher<T>(); |
| } |
| |
| if (!configuration::ChannelIsReadableOnNode(channel, node())) { |
| return Fetcher<T>(); |
| } |
| |
| return Fetcher<T>(MakeRawFetcher(channel)); |
| } |
| |
| // Makes a class that will always fetch the most recent value |
| // sent to the provided channel. |
| template <typename T> |
| Fetcher<T> MakeFetcher(const std::string_view channel_name) { |
| CHECK(HasChannel<T>(channel_name)) |
| << ": Channel { \"name\": \"" << channel_name << "\", \"type\": \"" |
| << T::GetFullyQualifiedName() << "\" } not found in config."; |
| |
| Fetcher<T> result = TryMakeFetcher<T>(channel_name); |
| if (!result.valid()) { |
| LOG(FATAL) << "Channel { \"name\": \"" << channel_name |
| << "\", \"type\": \"" << T::GetFullyQualifiedName() |
| << "\" } is not able to be fetched on this node. Check your " |
| "configuration."; |
| } |
| |
| return result; |
| } |
| |
| // Like MakeSender, but returns an invalid sender if the given channel is |
| // not sendable on this node or does not exist. You must check valid() on the |
| // Sender before using it. |
| template <typename T> |
| Sender<T> TryMakeSender(const std::string_view channel_name) { |
| const Channel *channel = GetChannel<T>(channel_name); |
| if (channel == nullptr) { |
| return Sender<T>(); |
| } |
| |
| if (!configuration::ChannelIsSendableOnNode(channel, node())) { |
| return Sender<T>(); |
| } |
| |
| return Sender<T>(MakeRawSender(channel)); |
| } |
| |
| // Makes class that allows constructing and sending messages to |
| // the provided channel. |
| template <typename T> |
| Sender<T> MakeSender(const std::string_view channel_name) { |
| CHECK(HasChannel<T>(channel_name)) |
| << ": Channel { \"name\": \"" << channel_name << "\", \"type\": \"" |
| << T::GetFullyQualifiedName() << "\" } not found in config for " |
| << name() |
| << (configuration::MultiNode(configuration()) |
| ? absl::StrCat(" on node ", node()->name()->string_view()) |
| : "."); |
| |
| Sender<T> result = TryMakeSender<T>(channel_name); |
| if (!result) { |
| LOG(FATAL) << "Channel { \"name\": \"" << channel_name |
| << "\", \"type\": \"" << T::GetFullyQualifiedName() |
| << "\" } is not able to be sent on this node. Check your " |
| "configuration."; |
| } |
| |
| return result; |
| } |
| |
| // This will watch messages sent to the provided channel. |
| // |
| // w must have a non-polymorphic operator() (aka it can only be called with a |
| // single set of arguments; no overloading or templates). It must be callable |
| // with this signature: |
| // void(const MessageType &); |
| // |
| // Lambdas are a common form for w. A std::function will work too. |
| // |
| // Note that bind expressions have polymorphic call operators, so they are not |
| // allowed. |
| // |
| // We template Watch as a whole instead of using std::function<void(const T |
| // &)> to allow deducing MessageType from lambdas and other things which are |
| // implicitly convertible to std::function, but not actually std::function |
| // instantiations. Template deduction guides might allow solving this |
| // differently in newer versions of C++, but those have their own corner |
| // cases. |
| template <typename Watch> |
| void MakeWatcher(const std::string_view channel_name, Watch &&w); |
| |
| // Like MakeWatcher, but doesn't have access to the message data. This may be |
| // implemented to use less resources than an equivalent MakeWatcher. |
| // |
| // The function will still have access to context(), although that will have |
| // its data field set to nullptr. |
| template <typename MessageType> |
| void MakeNoArgWatcher(const std::string_view channel_name, |
| std::function<void()> w); |
| |
| // The passed in function will be called when the event loop starts. |
| // Use this to run code once the thread goes into "real-time-mode", |
| virtual void OnRun(::std::function<void()> on_run) = 0; |
| |
| // Gets the name of the event loop. This is the application name. |
| virtual const std::string_view name() const = 0; |
| |
| // Returns the node that this event loop is running on. Returns nullptr if we |
| // are running in single-node mode. |
| virtual const Node *node() const = 0; |
| |
| // Creates a timer that executes callback when the timer expires |
| // Returns a TimerHandle for configuration of the timer |
| // TODO(milind): callback should take the number of cycles elapsed as a |
| // parameter. |
| virtual TimerHandler *AddTimer(::std::function<void()> callback) = 0; |
| |
| // Creates a timer that executes callback periodically at the specified |
| // interval and offset. Returns a PhasedLoopHandler for interacting with the |
| // timer. |
| virtual PhasedLoopHandler *AddPhasedLoop( |
| ::std::function<void(int)> callback, |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset = ::std::chrono::seconds(0)) = 0; |
| |
| // TODO(austin): OnExit for cleanup. |
| |
| // May be safely called from any thread. |
| bool is_running() const { return is_running_.load(); } |
| |
| // Sets the scheduler priority to run the event loop at. This may not be |
| // called after we go into "real-time-mode". |
| virtual void SetRuntimeRealtimePriority(int priority) = 0; |
| // Defaults to 0 if this loop will not run realtime. |
| virtual int runtime_realtime_priority() const = 0; |
| |
| static cpu_set_t DefaultAffinity(); |
| |
| // Sets the scheduler affinity to run the event loop with. This may only be |
| // called before Run(). |
| virtual void SetRuntimeAffinity(const cpu_set_t &cpuset) = 0; |
| // Defaults to DefaultAffinity() if this loop will not run pinned. |
| virtual const cpu_set_t &runtime_affinity() const = 0; |
| |
| // Fetches new messages from the provided channel (path, type). |
| // |
| // Note: this channel must be a member of the exact configuration object this |
| // was built with. |
| virtual std::unique_ptr<RawFetcher> MakeRawFetcher( |
| const Channel *channel) = 0; |
| |
| // Watches channel (name, type) for new messages. |
| virtual void MakeRawWatcher( |
| const Channel *channel, |
| std::function<void(const Context &context, const void *message)> |
| watcher) = 0; |
| |
| // Watches channel (name, type) for new messages, without needing to extract |
| // the message contents. Default implementation simply re-uses MakeRawWatcher. |
| virtual void MakeRawNoArgWatcher( |
| const Channel *channel, |
| std::function<void(const Context &context)> watcher) { |
| MakeRawWatcher(channel, [watcher](const Context &context, const void *) { |
| Context new_context = context; |
| new_context.data = nullptr; |
| new_context.buffer_index = -1; |
| watcher(new_context); |
| }); |
| } |
| |
| // Creates a raw sender for the provided channel. This is used for reflection |
| // based sending. |
| // Note: this ignores any node constraints. Ignore at your own peril. |
| virtual std::unique_ptr<RawSender> MakeRawSender(const Channel *channel) = 0; |
| |
| // Returns the context for the current callback. |
| const Context &context() const { return context_; } |
| |
| // Returns the configuration that this event loop was built with. |
| const Configuration *configuration() const { return configuration_; } |
| |
| // Prevents the event loop from sending a timing report. |
| void SkipTimingReport(); |
| |
| // Prevents AOS_LOG being sent to message on /aos. |
| void SkipAosLog() { skip_logger_ = true; } |
| |
| // Returns the number of buffers for this channel. This corresponds with the |
| // range of Context::buffer_index values for this channel. |
| virtual int NumberBuffers(const Channel *channel) = 0; |
| |
| // Returns the boot UUID. |
| virtual const UUID &boot_uuid() const = 0; |
| |
| // Sets the version string that will be used in any newly constructed |
| // EventLoop objects. This can be overridden for individual EventLoop's by |
| // calling EventLoop::SetVersionString(). The version string is populated into |
| // the timing report message. Makes a copy of the provided string_view. |
| static void SetDefaultVersionString(std::string_view version); |
| |
| // Overrides the version string for this event loop. Makes a copy of the |
| // provided string_view. |
| void SetVersionString(std::string_view version); |
| |
| std::optional<std::string_view> VersionString() const { |
| return version_string_; |
| } |
| |
| protected: |
| // Sets the name of the event loop. This is the application name. |
| virtual void set_name(const std::string_view name) = 0; |
| |
| void set_is_running(bool value) { is_running_.store(value); } |
| |
| // Validates that channel exists inside configuration_ and finds its index. |
| int ChannelIndex(const Channel *channel); |
| |
| // Returns the state for the watcher on the corresponding channel. This |
| // watcher must exist before calling this. |
| WatcherState *GetWatcherState(const Channel *channel); |
| |
| // Returns a Sender's protected RawSender. |
| template <typename T> |
| static RawSender *GetRawSender(aos::Sender<T> *sender) { |
| return sender->sender_.get(); |
| } |
| |
| // Returns a Fetcher's protected RawFetcher. |
| template <typename T> |
| static RawFetcher *GetRawFetcher(aos::Fetcher<T> *fetcher) { |
| return fetcher->fetcher_.get(); |
| } |
| |
| // Context available for watchers, timers, and phased loops. |
| Context context_; |
| |
| friend class RawSender; |
| friend class TimerHandler; |
| friend class RawFetcher; |
| friend class PhasedLoopHandler; |
| friend class WatcherState; |
| |
| // Methods used to implement timing reports. |
| void NewSender(RawSender *sender); |
| void DeleteSender(RawSender *sender); |
| TimerHandler *NewTimer(std::unique_ptr<TimerHandler> timer); |
| PhasedLoopHandler *NewPhasedLoop( |
| std::unique_ptr<PhasedLoopHandler> phased_loop); |
| void NewFetcher(RawFetcher *fetcher); |
| void DeleteFetcher(RawFetcher *fetcher); |
| WatcherState *NewWatcher(std::unique_ptr<WatcherState> watcher); |
| |
| // Tracks that we have a (single) watcher on the given channel. |
| void TakeWatcher(const Channel *channel); |
| // Tracks that we have at least one sender on the given channel. |
| void TakeSender(const Channel *channel); |
| |
| std::vector<RawSender *> senders_; |
| std::vector<RawFetcher *> fetchers_; |
| |
| std::vector<std::unique_ptr<TimerHandler>> timers_; |
| std::vector<std::unique_ptr<PhasedLoopHandler>> phased_loops_; |
| std::vector<std::unique_ptr<WatcherState>> watchers_; |
| |
| // Does nothing if timing reports are disabled. |
| void SendTimingReport(); |
| |
| void UpdateTimingReport(); |
| void MaybeScheduleTimingReports(); |
| |
| std::unique_ptr<RawSender> timing_report_sender_; |
| |
| // Tracks which event sources (timers and watchers) have data, and which |
| // don't. Added events may not change their event_time(). |
| // TODO(austin): Test case 1: timer triggers at t1, handler takes until after |
| // t2 to run, t2 should then be picked up without a context switch. |
| void AddEvent(EventLoopEvent *event); |
| void RemoveEvent(EventLoopEvent *event); |
| size_t EventCount() const { return events_.size(); } |
| EventLoopEvent *PopEvent(); |
| EventLoopEvent *PeekEvent() { return events_.front(); } |
| void ReserveEvents(); |
| |
| std::vector<EventLoopEvent *> events_; |
| size_t event_generation_ = 1; |
| |
| // If true, don't send AOS_LOG to /aos |
| bool skip_logger_ = false; |
| |
| // Sets context_ for a timed event which is supposed to happen at the provided |
| // time. |
| void SetTimerContext(monotonic_clock::time_point monotonic_event_time); |
| // Clears context_ so it only has invalid times and elements in it. |
| void ClearContext(); |
| |
| private: |
| virtual pid_t GetTid() = 0; |
| |
| // Default version string to be used in the timing report for any newly |
| // created EventLoop objects. |
| static std::optional<std::string> default_version_string_; |
| |
| // Timing report version string for this event loop. |
| std::optional<std::string> version_string_; |
| |
| FlatbufferDetachedBuffer<timing::Report> timing_report_; |
| |
| ::std::atomic<bool> is_running_{false}; |
| |
| const Configuration *configuration_; |
| |
| // If true, don't send out timing reports. |
| bool skip_timing_report_ = false; |
| |
| SendFailureCounter timing_report_failure_counter_; |
| |
| absl::btree_set<const Channel *> taken_watchers_, taken_senders_; |
| }; |
| |
| // Interface for terminating execution of an EventLoop. |
| // |
| // Prefer this over binding a lambda to an Exit() method when passing ownership |
| // in complicated ways because implementations should have assertions to catch |
| // it outliving the object it's referring to, instead of having a |
| // use-after-free. |
| // |
| // This is not exposed by EventLoop directly because different EventLoop |
| // implementations provide this functionality at different scopes, or possibly |
| // not at all. |
| class ExitHandle { |
| public: |
| ExitHandle() = default; |
| virtual ~ExitHandle() = default; |
| |
| // Exits some set of event loops. Details depend on the implementation. |
| // |
| // This means no more events will be processed, but any currently being |
| // processed will finish. |
| virtual void Exit() = 0; |
| }; |
| |
| } // namespace aos |
| |
| #include "aos/events/event_loop_tmpl.h" // IWYU pragma: export |
| |
| #endif // AOS_EVENTS_EVENT_LOOP_H |